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Abstract

Developmental periods such as gestation and adolescence have enhanced plasticity leaving the 

brain vulnerable to harmful effects from nicotine use. Proper brain maturation and circuit 

organization is critical for normal physiological and behavioral outcomes. Although cigarette 

smoking has declined in popularity, noncombustible nicotine products are readily used. The 

misperceived safety of these alternatives lead to widespread use among vulnerable populations 

such as pregnant women and adolescents. Nicotine exposure during these sensitive developmental 

windows is detrimental to cardiorespiratory function, learning and memory, executive function, 

and reward related circuitry. In this review, we will discuss clinical and preclinical evidence of 

the adverse alterations in the brain and behavior following nicotine exposure. Time-dependent 

nicotine-induced changes in reward related brain regions and drug reward behaviors will be 

discussed and highlight unique sensitivities within a developmental period. We will also review 

long lasting effects of developmental exposure persisting into adulthood, along with permanent 

epigenetic changes in the genome which can be passed to future generations. Taken together, it is 

critical to evaluate the consequences of nicotine exposure during these vulnerable developmental 

windows due to its direct impact on cognition, potential trajectories for other substance use, and 

implicated mechanisms for the neurobiology of substance use disorders.
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1. Introduction

Nicotine, the primary psychoactive component of tobacco, activates nicotinic acetylcholine 

receptors (nAChRs), pentameric ligand-gated ion channels which are widely distributed 

throughout the brain [1,2]. These receptors appear early in development and are functionally 

active in the fetal brain to mediate many critical aspects of brain maturation [1–4]. Nicotine 

exposure during critical developmental periods disrupts neural development, and often has 

long-lasting effects on associated behaviors [3–7]. In this review, we aim to examine the 

brain regions highly impacted by nicotine exposure at vulnerable developmental stages. 

We will discuss implications from human studies of neurobiology and behavior following 

nicotine exposure. Animal studies will further elucidate specific modifications in brain 

regions and neural networks.

2. Prenatal nicotine exposure

A true evaluation of nicotine exposure during pregnancy is difficult to attain as the 

parameters of exposure vary widely. In the United States, self-reports of smoking during 

pregnancy in 2020 found 5.5 % of all births were to mothers who smoked at some 

point during the pregnancy with disparities noted by urbanization levels [8]. Extent of 

exposure is further complicated by use of noncombustible nicotine delivery systems such 

as e-cigarettes and nicotine replacement therapies (NRT), which are misperceived as “safe” 

alternatives. The marketed safety of e-cigarettes contributes to their use during pregnancy 

and is used at rates similar to standard combustible cigarettes [9]. Widespread use of either 

noncombustible delivery systems is of great concern since these are not completely safe 

alternatives and result in detrimental health outcomes in the mother and children [9,10].

Although non-nicotine tobacco smoke constituents have been reported to impact fetal brain 

development [11], nicotine alone is likely the major contributor to the harmful effects of 

maternal tobacco use on their offspring. Animal studies have shown that nicotine readily 

crosses the placental barrier to interact with receptors widely distributed throughout the fetus 

and richly expressed in the fetal brain [12,13]. These nAChRs are functional [14] and are 

upregulated by maternal nicotine intake [15]. The brain develops and organizes in an “inside 

out” pattern in which deep neural layers are formed before the outer superficial cortex, a 

process that is conserved between humans and rodents. Thus, the proper development of the 

brain and subsequent behavior is vulnerable to nicotine’s effects, as is described below (see 

Fig. 1).

2.1. Insights from human studies

Maternal smoking during pregnancy is associated with lower birth weight, preterm birth, and 

smaller frontal lobe and cerebellar volumes in the brains of human infants [16]. Reduced 

brain volume, cerebral gray and white matter, and gyrification persists in children (aged 
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10) exposed to nicotine by maternal smoking throughout pregnancy when compared to 

non-exposed children [17]. Increased behavioral and emotional problems in prenatally 

exposed children (age 6–8) have been associated with decreased volumes of the caudate 

and nucleus accumbens (NAc) and thinning of the superior frontal and parietal cortices [18]. 

Prenatal nicotine exposure, reported as smoking more than one cigarette per day during the 

second trimester of pregnancy, is associated with orbitofrontal cortex thinning correlating 

to enhanced likelihood of drug experimentation during adolescence [19,20]. This effect has 

been linked to higher DNA methylation of brain-derived neurotrophic factor-6 exon, leading 

to overall long-term downregulated expression [19,21]. Prenatal exposure to maternal 

smoking also increased likelihood of smoking, number of drugs tried, and increased striatal 

volume, including caudate nucleus, putamen and NAc, in humans with a single nucleotide 

polymorphism within an untranslated region of a gene coding for the alpha6 nAChR subunit 

[22]. Behavioral problems, particularly attention deficit hyperactivity disorder (ADHD), 

are significantly increased in children of self-reported pregnant smokers or environmental 

tobacco smoke exposure [23,24]. Hyperactivity, impulsivity and oppositional behaviors in 

children whose mothers smoked were only seen in those with a specific dopamine (DA) 

transporter polymorphism [25]. Prenatal nicotine exposure, through smoking one pack of 

cigarettes or less, also induces impairments of language tasks in offspring, with a specific 

involvement of the DA D2 receptor gene [26]. Functional MRI studies have shown reduced 

responses to reward in the striatum of adolescents who were exposed prenatally to nicotine 

through maternal smoking of at least one cigarette a day, consistent with vulnerability of this 

reward circuit for substance dependence [27].

2.2. Hindbrain and midbrain

The hindbrain, consisting of the pons and medulla develops early in gestation and is 

susceptible to the harmful effects of prenatal nicotine exposure. Maternal smoking is a 

major cause of sudden infant death syndrome (SIDS) which has often been attributed 

to dysfunction in the brainstem [28–30]. The pons is a vital region of the brainstem 

that controls unconscious processes such as sleep and respiration [31]. Within the pons, 

the pedunculopontine tegmental nucleus (PPTg) is critical for response to arousal, sleep, 

attention and motivational stimuli. The PPTg has been heavily associated with SIDS due to 

its involvement in REM sleep and control of respiration and exhibits an overall excitatory 

effect of prenatal nicotine exposure [32,33]. The offspring of pregnant rat dams exposed to 

cigarette smoke from embryonic (E) day 14 until birth exhibit changes in the cholinergic 

neurons of this nucleus, rendering them more excitable [34]. Human studies evaluating 

brain tissue following SIDS in infants exposed to nicotine through maternal smoking have 

shown decreased nAChR binding in the nucleus pontis oralis (PoO), a critical component 

of the cholinergic ascending arousal system [35]. Altered nAChR binding was also seen 

in three rostral medullary sites containing serotonin (5-HT) neurons which have previously 

been shown to have abnormal indices of serotonin neurotransmission in SIDS infants [36]. 

Animal studies support an impact of prenatal nicotine exposure on serotonergic function. 

Prenatal nicotine exposure from the start of pregnancy in Rhesus macaque monkeys 

causes significant serotonergic hyperinnervation of brainstem, a hallmark of SIDS, that 

was reversed with Vitamin C cotreatment [37]. Prenatal/perinatal nicotine exposure via 

osmotic minipump in mice from E7-P8 results in decreased firing activity of raphe obscurus 
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(ROb) neurons in neonates and increased expression of serotonin autoreceptors (5HT1ARs) 

[38]. In vitro culture of medullary raphé neurons demonstrates reduced chemosensitivity of 

5-HT neurons and blunted nicotine-induced excitatory activity following perinatal (E7-P8) 

nicotine exposure [39]. The strength of these effects diminishes as neurons mature and 

may reflect features underlying SIDS. Thus, nAChRs appear to regulate brainstem 5-HT 

systems during a critical prenatal period, with resulting deficits in cardiorespiratory function 

following aberrant nicotine exposure.

Prenatal nicotine has also been shown to critically modulate dopamine (DA) function. 

Both the PPTg and laterodorsal tegmental (LDTg) nuclei send cholinergic projections to 

the midbrain ventral tegmental area (VTA), where they activate nAChRs on both DA and 

non-DA neurons [40]. Through this pathway, and direct projections from the LDTg to 

NAc [41], activation of the LDTg can stimulate DA release. Modulation of DA release 

through VTA-NAc terminals has been implicated in reward related behaviors and nicotine 

reinforcement [42]. As with other pontine nuclei, the LDTg has emerged as a highly plastic 

region susceptible to functional alterations during development [43]. Electrophysiological 

analysis of in vitro brain slices has shown that oral nicotine (300 μg/ml) exposure 

throughout gestation reduces nicotine-induced intracellular calcium and AMPA-mediated 

glutamate responses in LDTg neurons [44,45]. Further work has highlighted cell-type 

specific alterations in NMDA receptor-mediated signaling and function in LDTg neurons 

[46]. Specifically, prenatal nicotine exposure decreases functional GluN2B-containing 

synaptic NMDA receptors in cholinergic LDTg neurons, with a concurrent increased 

function in smaller, putative GABA neurons. Thus, prenatal nicotine exposure may result 

in reduced excitatory cholinergic modulatory tone in target brain regions, which may have 

important implications for downstream functions such as DA release and behaviors such 

as motivation, cognition and nicotine reinforcement. Indeed, we know prenatal nicotine 

exposure through osmotic minipump (3 mg/kg/day) in rats increases adolescent DA levels 

in the prefrontal cortex (PFC), striatal D3 receptor binding, and D2 receptor functional 

coupling in ventral striatum and pallidum [47]. Prenatal nicotine exposure throughout 

gestation (6 mg/kg/day) also alters burst firing of DA neurons [48], increases heterogeneity 

and complexity of neurons in subregions of the VTA [49,50], and decreases nicotine-induced 

striatal and cortical DA release [51,52]. DA-linked behavioral alterations include cocaine-

induced locomotion in a sex-specific manner in adolescents [47], as well as cocaine self-

administration [53]. All these alterations in signaling impact output to target regions and 

present possible mechanisms underlying enhanced risk for development of drug dependence 

later in life.

3. Perinatal/early postnatal nicotine exposure

Smokers often try to quit shortly after becoming aware of their pregnancy [54,55], however 

tend to relapse by the third trimester or will often start again after birth [56,57]. Pregnant 

women are often prescribed noncombustible products and other nicotine replacement 

therapies such as transdermal nicotine patches and oral smokeless products (snus). Given 

that nicotine readily crosses the placenta and these products have shown detectable levels 

of nicotine in breast milk [58,59], the marketed safety of these products is of great 

concern. Although some argue e-cigarettes are overall safer than combustible cigarettes 
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[60], exposure to nicotine at these vulnerable time points is still harmful for the mother 

and child, possibly leading to very similar health outcomes as traditional smoking [61,62]. 

Rodent models provide a reasonable analog to human development to further evaluate 

neurobiological effects of nicotine exposure at this vulnerable period. Rodents are born 

underdeveloped and complete neural development postnatally [63]. In rats, the initial 

12 postnatal days parallel the third human trimester, marked by extensive neurogenesis, 

synaptogenesis, and circuit maturation [63–67]. Maturation of sensory circuits, thalamic 

synaptic contacts and formation are critical milestones during this developmental period 

vulnerable to disruption by nicotine exposure (see Fig. 2). Thus, the first two weeks of 

postnatal development in rodents serve as good models for the impact of nicotine on third 

trimester human gestation. Although maternal nicotine use during pregnancy can result in 

neurological risks to growth and development, there is increasing evidence that postnatal 

exposure to environmental tobacco smoke may also be neurotoxic [68]. Several studies 

have shown a relationship between childhood smoke exposure and ADHD and oppositional 

behavior [69–72]. Thus, even though humans are born more mature than rodents, they are 

still at risk for tobacco and nicotine exposure after birth.

3.1. Hippocampus

The hippocampus, a crucial region for memory and learning, is heavily impacted by the 

neurotoxic effects of nicotine, resulting in persistent molecular changes and impairments 

[73]. Whereas significant hippocampal development occurs during the third trimester of 

pregnancy in humans, the equivalent developmental period in rodents is the first two 

postnatal weeks [74]. During the early postnatal period in rodents, the hippocampal 

cholinergic system undergoes a transient upregulation of nAChRs which regulate critical 

developmental events [75–77]. During early postnatal life, α7 * and β2 * nAChRs modulate 

GABAergic and glutamatergic transmission that underlie nicotine-elicited changes in 

network synchronization [78]. Immature hippocampus is characterized by giant depolarizing 

potentials (GDPs) that result from synergistic interaction of glutamate and GABA neurons, 

the latter being excitatory at this developmental stage due to an immature chloride gradient 

[4,79]. During early postnatal development nicotine increases GDPs via activation of 

GABA neurons [80]. Furthermore, both nicotine and endogenous acetylcholine increase 

synaptic efficacy in early postnatal glutamatergic synapses [81]. Later, α7 nAChRs have 

been shown to control the timing of GABAergic conversion from excitatory to inhibitory 

signaling which normally occurs during the second postnatal week [82]. Chronic early 

neonatal nicotine exposure in rats increases neurotrophic tone during this critical period 

of hippocampal development [83] and alters hippocampal morphology [84]. Mouse pups 

exposed to nicotine during the first two postnatal weeks also show substantial impairment 

of long-term hippocampal dependent spatial memory during adolescence [85]. This memory 

impairment may result from altered nicotinic modulation of long-term potentiation (LTP), 

with a loss of normal α2*nAChR function, and impaired NMDA receptor-dependent long-

term depression (LTD) [85–87].

3.2. Sensory cortices

Sensory systems in rodents exhibit a critical period of early postnatal development when 

topographical projections from thalamus to cortex are refined by inputs from the external 
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environment [88,89]. There is a transient appearance of α7 nAChRs in sensory cortices 

and thalamus that correspond to the timing of this critical period [90–92]. Cortical 

α7 nAChR expression is regulated by activity in these sensory pathways during this 

developmental window [93,94]. These α7 nAChRs are functionally active during initial 

stages of thalamocortical circuit formation and enhance the NMDA receptor-mediated 

component of excitatory postsynaptic potentials [95]. Manipulation of these nAChRs with 

chronic nicotine exposure during the second, but not the first or fourth, postnatal weeks 

disrupts synaptic development in the auditory cortex by altering NMDA receptor-mediated 

synaptic signaling [96]. Furthermore, chronic nicotine treatment from postnatal days 8–12 

increases cortical NMDA receptor 2 A mRNA levels and reduces thalamic NMDA receptor 

2B mRNA levels for up to 2 weeks, consistent with cortical glutamate hyperstimulation 

[97]. This brief chronic neonatal nicotine treatment eliminates normal nAChR signaling in 

adult auditory cortex and impairs performance on an auditory cue avoidance task without 

impacting basic auditory or motor functions [98]. nAChRs other than α7 have also been 

shown to regulate sensory developmental processes [99–101]. In this case, descending 

corticothalamic projections from layer VI cortical neurons, that critically regulate attention, 

have peak currents in the first postnatal month that are mediated by α5- and β2-containing 

heteromeric nAChRs [99]. Chronic postnatal nicotine treatment or elimination of β2 

nAChR subunits impair performance on adult passive avoidance behavior and auditory 

discrimination tasks [100,101]. Taken together, these studies show that nicotine treatment 

during a critical period of sensory cortex development impairs cognitive tasks that use 

sensory cues, without impacting normal sensory function. These findings are consistent with 

clinical studies which have shown that children whose mothers smoked while pregnant are 

more likely to show long-term impairments in auditory processing tasks [102]. There are 

sex differences in the sensitivity of different sensory processes to developmental tobacco 

exposure, with adolescent females showing impairment in tasks requiring somatosensory or 

visual processing while males showing greater impairment in auditory tasks [103]. Possible 

sex differences in the impact of developmental nicotine on subsequent sensory cognitive 

processes have not been carefully evaluated in animal studies.

4. Adolescent nicotine exposure

Adolescence is a vulnerable developmental period marked by heightened neuroplasticity that 

is susceptible to drug-induced alterations. Exploratory drug use, of nicotine in particular, 

is standard behavior in adolescence despite known long term detrimental consequences 

to actively maturing brain regions and pathways [6,104,105]. Most nicotine users initiate 

smoking during adolescence and establish daily use before the age of 18 [106–108]. Recent 

national surveys have demonstrated a large increase in the use of electronic cigarettes 

(e-cigarettes) among school age students and a concurrent decline in combustible cigarette 

use [109–111]. In 2021 alone, an estimated 5.22 million high school students and 1.34 

million middle school students reported ever using a tobacco product [112]. Teen users of 

both combustible cigarettes and e-cigarettes show signs of dependence and difficulty quitting 

[113–115]. Nicotine exposure during this highly plastic state induces long term changes in 

critical circuitry, maturation of monoamine systems, and behavior, including reward related 

behaviors (see Fig. 3) [4,6,7].
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4.1. Prefrontal cortex

The development of the PFC is critically important for the maturation of executive control, 

emotional regulation, and cognitive flexibility [116]. Increasing cognitive capacity during 

adolescence coincides with a decrease in cortical grey matter thickness, which results from 

experience-dependent strengthening of active synapses and concomitant loss of remaining 

connections [117–119]. As the brain matures in later adolescence there is decreased 

connectivity between subcortical regions and increased top-down regulatory control by the 

medial PFC, which results in diminished reactivity to emotional cues [120]. In 2008 deBry 

and Tiffany [121] proposed a Tobacco-Induced Neurotoxicity of Adolescent Cognitive 

Development (TINACD) theory that smoking during early adolescence leads to increased 

impulsivity and inattention resulting from changes in PFC function. Support for this theory 

has since been provided by human studies that show that early onset smoking contributes 

to long-lasting decreases in task-related attention and inhibitory control behaviors [122], as 

well as prefrontal attentional network function [123]. Consistent with the negative impact 

of adolescent nicotine on cognitive performance, recent clinical studies [124,125], including 

a longitudinal one [126], have shown that teen e-cigarette use results in lower academic 

achievement. There are no significant differences between the impact of using e-cigarettes 

and combustible cigarettes on school performance, suggesting an important role for nicotine.

Consistent with these clinical findings, cognitive performance on PFC-dependent tasks in 

animals is negatively influenced by adolescent nicotine exposure [127]. Nicotine treatment 

of adolescent rats, but not adults, results in increased impulsive behavior and decreased 

attention in adulthood [116]. Lasting synaptic changes underlie the attention deficits caused 

by nicotine exposure. In adolescent rats, nicotine exposure over ten consecutive days (P34–

43) decreases inhibitory presynaptic mGluR2 protein expression and function, leading 

to diminished synaptic plasticity of the PFC and inability to filter out irrelevant stimuli 

[128]. Neuronal hyperactivity and decreases in D1 receptor expression, as well as increased 

phosphorylation of ERK 1–2 within the PFC in response to adolescent (P35–44) nicotine 

exposure has also been linked to mood and anxiety-like phenotypes in rats [129]. This is 

consistent with clinical observations of a bidirectional association of depression with teen 

smoking and vaping [130,131].

4.2. Nucleus accumbens

The NAc is a critical region for reward and reinforcement, rich in dopaminergic VTA 

terminals and a major site of nicotine-induced DA release. In vivo microdialysis has shown 

that subcutaneous nicotine administration across two weeks induces increased DA release 

in the NAc core and shell of adolescent male rats (P35–48) when compared to adults 

[132]. Elevated DA release specific to adolescence highlights a role of NAc in altered 

reward behavior. Adolescent rodents are more sensitive than adults to the acute rewarding 

effects of nicotine, as shown by conditioned place preference [133–138], with some studies 

demonstrating reward after a single pairing of drug and context [139,140]. Many studies 

have also shown that adolescent rats readily acquire intravenous nicotine self-administration 

and have higher drug intake than adults [137,141–144]. Clinical studies have shown that 

nicotine exposure during adolescence, but not adulthood, is associated with subsequent 

increases in substance use (i.e., “gateway hypothesis”) [6,7,105,145]. Brief pretreatment of 

Castro et al. Page 7

Pharmacol Res. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



early adolescent rats (postnatal days (P) 28–31) with a low dose of nicotine that models 

smoking initiation significantly increases self-administration of cocaine, ethanol, fentanyl, 

and methamphetamine when compared to adults [146–151]. This nicotine pretreatment 

increases microglial markers, D2 receptor protein and G protein coupling, and cfos mRNA 

expression in adolescent, but not adult, NAc [146,149]. NAc D2 receptors and CX3CL1 are 

a mechanistic interface for nicotine-induced microglial activation with resulting pruning of 

glutamate synapses and enhanced cocaine reinforcement in adolescents [149]. These studies 

highlight a novel glia driven mechanism in adolescent drug exposure which may be further 

investigated in additional nicotine use behaviors.

In addition to being an important hub for reward processing, the NAc shell is critically 

involved in regulating emotional processing [152,153]. As with the PFC, nicotine exposure 

during adolescence (P35–44) upregulates ERK 1/2 and Akt-GSK-3 signaling pathways 

within the NAc and downregulates D1R expression into adulthood [154]. These changes 

are accompanied by alterations in neuronal firing patterns within the NAc, and anxiety 

and depressive-like behavioral abnormalities. The ERK 1/2 pathway is critical for cellular 

processes such as proliferation, differentiation, and survival. It has also been identified 

as an important regulatory mechanism for signaling specificity [155]. DA signaling at 

D1 receptors is a specific neurochemical mechanism necessary for induction of persistent 

dendrite remodeling in adolescence and adulthood [116]. It should be noted that D1 receptor 

alterations are not observed in the NAc when nicotine is given earlier in adolescence 

but, rather, changes in D2 receptors are observed [149]. Thus, even within the period 

of adolescence there are differences in nicotine-induced changes in DA function. This is 

consistent with findings from animal studies of a unique sensitivity of the early adolescent 

period to nicotine effects on reward pathways as compared to late adolescence and 

adulthood [139,146,156]. This also provides a biological basis for the clinical observation 

that the age of first cigarette use is a critical determinant of tobacco dependence, with those 

who begin in their early teens having the greatest difficulty quitting [157,158].

4.3. Hippocampus

The hippocampus is not fully mature by adolescence and nicotine continues to produce 

unique, age-dependent effects. Whereas acute nicotine treatment promotes CA3–CA1 

synaptic potentiation in adult mice, it does not in adolescents [159]. Acute nicotine is also 

less effective in adolescents than adults at enhancing context pre-exposure facilitation, a 

hippocampal-dependent cognitive task [160].

Chronic nicotine treatment of mice for the first two weeks of adolescence increases aptotic 

cell death in the hippocampal molecular layer and CA1 immediately following drug 

treatment [161]. Lasting morphological changes resulting from chronic nicotine treatment 

during adolescence are also seen in adult mice, with reduced dendritic length and complexity 

in apical CA1 branches [162]. Chronic nicotine exposure in adolescent rats enhances cued 

fear conditioning in adulthood, while equivalent exposure in adulthood does not impact task 

performance [163]. In contrast, chronic adolescent nicotine exposure impairs performance 

on two different tests of long-term contextual fear conditioning in mice [162,164], and long-

term spatial learning in female rats only [165]. Sex differences in nicotine-induced changes 
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are critical to consider given that puberty and gonadal maturation also impact hippocampal 

function [166]. The structure, cell composition, and function of the hippocampus mature 

differentially by sex after puberty [167,168]. Taken together, hippocampal dependent 

learning and memory is uniquely susceptible to the detrimental effects of nicotine that 

persist into adulthood. The differential effects of nicotine-induced learning and behavior 

during adolescence may be influenced by sex and should be a major consideration for 

further investigation.

5. Epigenetics and intergenerational transmission

It is critical to consider drug-induced epigenetic modifications during these vulnerable 

developmental periods. Epigenetic modifications describe structural or chemical changes to 

the genome that typically result in altered functional expression of genes [169]. Epigenetic 

changes can occur in response to a wide range of stimuli, including exposure to drugs 

of abuse, particularly nicotine [170–173]. These alterations can occur either after direct 

exposure, or be multigenerational in which germ cells were exposed, or transgenerational 

in which there is no direct exposure of the offspring [174]. Multigenerational and 

transgenerational inheritance suggests offspring of smokers may have altered brain and 

behavioral responses or predispositions before direct exposure to drugs themselves.

The prenatal period has marked epigenomic plasticity relevant for human brain development 

[175,176]. Meta-analysis of blood from human newborn infants born of mothers who 

smoked during pregnancy found differentially methylated CpGs associated with gene 

expression in pathways and processes critical to development [177,178]. Smoking-related 

CpG sites may play a more profound role in neurodevelopment and drive alterations 

from prenatal nicotine exposure. Alterations in DNA methylation patterns in response 

to prenatal nicotine through maternal smoking during pregnancy exist at birth and can 

persist into adolescence [179,180]. Of note, maternal smoking-related methylation sites in 

human adolescents have been associated with schizophrenia in adolescence and adulthood 

[179]. Indeed, altered DNA methylation patterns have been observed in human fetal cortex 

following in utero exposure and are implicated in reduced neuronal count independent of 

cell apoptotic processes [180]. Clinical studies suggest that prenatal nicotine exposure may 

have major developmental consequences across multiple offspring generations, as shown by 

studies in which grandmaternal smoking during their pregnancy increases the likelihood of 

early childhood asthma or a diagnosis of autism in their grandchildren [181,182].

Preclinical studies have also shown nicotine-induced alterations that persist across multiple 

generations of offspring. Mice offspring exposed to nicotine during gestation demonstrate 

increased DNA methylation patterns in the lungs and downregulation of mesenchymal 

peroxisome proliferator-activated receptor-γ (PPARγ) persisting into the third generation 

with parallel asthma-like phenotypes [183–185]. Germ cells are also impacted following 

perinatal nicotine exposure, with DNA methylation remodeled in offspring spermatozoa 

[186]. Mice exposed to nicotine during the perinatal period exhibit multiple neurochemical 

and behavioral alterations across F1 and F2 generations [187–189]. These include increased 

oral nicotine consumption, hyperactivity and risk-taking behaviors, altered corticostriatal 

nAChR and DA transporter function and methylome deficits, as well as BDNF functional 
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deficits and hypothalamic-pituitary-adrenal axis dysregulation. These changes result from 

differential impacts on discrete epigenetic factors in a brain region-selective fashion and are 

modulated by the Chrna5 D397N polymorphism in adolescent mice [190].

Adolescent nicotine exposure also elicits epigenetic alterations that impact future behaviors. 

Nicotine exposure across 35 days during adolescence of rats (P25–59) of both sexes leads 

to learning and cognitive deficits in their offspring [191]. In another study of adolescent 

mice, chronic nicotine exposure via osmotic minipump and stress led to reduced nicotine 

sensitization in further generations, persisting into the third generation in female mice [171]. 

Evidence of indirect “transgenerational” transmission resulting from adolescent nicotine 

exposure is critical because this has major implications for neural vulnerabilities that would 

be present as early as conception. Recent efforts focused on maternal or paternal exposure 

to nicotine prior to conception have also shown that epigenetic changes resulting from 

nicotine exposure can occur beyond the perinatal period [192–194]. These findings indicate 

permanent epigenetic alterations induced by nicotine exposure and posit critical implications 

for future investigation of altered neurochemistry and behaviors.

Nicotine-induced epigenetic alterations persisting across multiple generations challenges the 

classic notion of a genetic “reset” during reproduction. Collective genetic and behavioral 

changes in offspring with and without direct exposure to nicotine (see Fig. 4) highlights 

novel developmental vulnerabilities. Thus, it is important to assess all critical windows of 

exposure for therapeutic targets and interventions.

6. Conclusions

In this review, we present evidence from human and animal studies showing brain regions 

that are impacted by developmental nicotine exposure (see Table 1). Our review is not 

fully comprehensive since some areas involved in addiction, such as the medial habenula, 

have not been fully studied across developmental timepoints. There is some indication, 

however, that this area that mediates the aversive effects of nicotine responds differently in 

adolescents than adults [195]. Thus, there is more work to be done. However, the available 

data show that developmental periods of regional heightened plasticity are vulnerable to 

the harmful effects of nicotine [105,196,197]. Despite marketed safety of noncombustible 

products and e-cigarettes, exposure to nicotine alone can drive these negative effects on 

the brain and behavior. We know initial exposures have unique and persistent effects into 

adulthood [3,4,6,7,105,145]. Interestingly, a compounding effect of exposure can arise in 

which prenatal nicotine-induced alterations can further exacerbate effects of adolescent 

exposure with long term implications in reward related functions and behaviors [19–22, 

103, 198]. Further, nicotine-induced epigenetic changes and transgenerational transmission 

highlight permanent changes that are critical to evaluate in future studies. Permanent and 

compounding effects of nicotine create a cycle leading to susceptibility for nicotine use and 

the dangerous potential for use of other controlled substances due to altered reward circuitry. 

Thus, it is critical to advance our understanding of mechanisms underlying developmental 

nicotine exposure, possible therapeutic interventions, and pursue policy changes to limit 

exposure.
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Fig. 1. 
Major nicotine-induced alterations within rodent brain during prenatal period. PFC, 

prefrontal cortex. NAc, nucleus accumbens. SN, substantia nigra. VTA, ventral tegmental 

area. PPTg, pedunculopontine nucleus. LDTg, laterodorsal tegmental. ROb, raphe obscurus. 

DA, dopamine.
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Fig. 2. 
Major nicotine-induced alterations within rodent during postnatal/perinatal period. Hipp, 

hippocampus.
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Fig. 3. 
Major nicotine-induced alterations within rodent brain during adolescent period. PFC, 

prefrontal cortex. NAc, nucleus accumbens. SN, substantia nigra. VTA, ventral tegmental 

area. DA, dopamine.
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Fig. 4. 
Multigenerational and transgenerational transmission of nicotine-induced effects. This 

diagram illustrates multigenerational transmission of effects following direct prenatal 

and perinatal nicotine exposure in F0 mothers. Transgenerational transmission effects, 

resulting without direct exposure to nicotine, are described in F2 generation from prenatal 

and perinatal exposure. Adolescent nicotine exposure in animals from both sexes elicits 

transgenerational effects in F1 and F2 offspring.
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