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Acute myeloid leukemia (AML) is a complex mixed entity composed of malignant

tumor cells, immune cells and stromal cells, with intra-tumor and inter-tumor

heterogeneity. Single-cell RNA sequencing enables a comprehensive study of

the highly complex tumor microenvironment, which is conducive to exploring

the evolutionary trajectory of tumor cells. Herein, we carried out comprehensive

analyses of aggrephagy-related cell clusters based on single-cell sequencing for

patients with acute myeloid leukemia. A total of 11 specific cell types (T, NK, CMP,

Myeloid, GMP, MEP, Promono, Plasma, HSC, B, and Erythroid cells) using t-SNE

dimension reduction analysis. Several aggrephagy-related genes were highly

expressed in the 11 specific cell types. Using Monocle analysis and NMF

clustering analysis, six aggrephagy-related CD8+ T clusters, six aggrephagy-

related NK clusters, and six aggrephagy-related Mac clusters were identified. We

also evaluated the ligand-receptor links and Cell–cell communication using

CellChat package and CellChatDB database. Furthermore, the transcription

factors (TFs) of aggrephagy-mediated cell clusters for AML were assessed

through pySCENIC package. Prognostic analysis of the aggrephagy-related cell

clusters based on R package revealed the differences in prognosis of

aggrephagy-mediated cell clusters. Immunotherapy of the aggrephagy-related

cell clusters was investigated using TIDE algorithm and public immunotherapy

cohorts. Our study revealed the significance of aggrephagy-related patterns in

tumor microenvironment, prognosis, and immunotherapy for AML.
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Introduction

Leukemia is a malignant clonal disease originating from

hematopoietic stem cells (1). The affected cells have uncontrolled

proliferation, impaired differentiation, and blocked apoptosis, so the

affected cells are stuck in different stages of cell development (2).

The incidence and mortality rate of leukemia are both high. The

report showed that in 2018 alone, there were 437000 new cases of

leukemia and 309000 new deaths from leukemia worldwide (3).

Leukemia can be classified as acute (4) or chronic (5) according to

its course. Leukemias can be divided into myeloid leukemia and

lymphocytic leukemia according to the cells involved (6). Acute

myeloid leukemia (AML), the most common leukemia in adults, is

a highly heterogeneous disease (7). French-American-British (FAB)

defined eight subtypes (M0 to M7) based on the morphological and

cytological characteristics of leukemia cells (8). According to genetics,

morphology, immunophenotype and clinical manifestations, World

Health Organization (WHO) classified leukemia into six main types

and more than 20 subtypes (9). In addition, the prognosis of AML

can be divided into good, moderate and poor groups based on

cytogenetic characteristics (1, 6), but the prognosis of different

patients in each group is still very different, indicating that the gene

expression pattern of leukemia is very complex.

Tumor microenvironment (TME) is the internal environment

that tumor cells depend on for survival and development. Besides

tumor cells, it also contains many non-malignant cells and some

soluble factors, which play an important role in promoting tumor

occurrence, progression and immune escape (10). Tumor

microenvironment mainly includes immune microenvironment,

including myeloid-derived suppressor cells (MDSCs), tumor-

associated macrophages (TAMs), tumor-associated neutrophils

(TANs), dendritic cell (DC), T cell, B cell, and Natural Killer (NK)

cell, and non-immune microenvironment, including cancer-

associated fibroblasts (CAFs), extracellular matrix, mesenchymal

stem cells, and various secreted factors (11–14). Therefore, tumor is

a complex mixed entity composed of malignant tumor cells, immune

cells and stromal cells, with intra-tumor and inter-tumor

heterogeneity. Since bulk tissue is composed of various cells, its

sequencing cannot reveal the function or cell state of a specific cell

population (15). Therefore, the detection of genome, transcriptome,

epigenome and proteome at the cellular level can overcome the

limitations of the traditional bulk level and conduct more detailed

analysis at the cellular and molecular level (15). Single-cell RNA

sequencing (scRNA-Seq) enables non-targeted quantification of

transcripts in a single cell. Single-cell RNA sequencing enables a

comprehens ive s tudy of the h igh ly complex tumor

microenvironment, which is conducive to exploring the

evolutionary trajectory of tumor cells, the complex interactions

between tumor cells and tumor microenvironment, and the spatio-

temporal functional relationships between different cell population

types (16, 17). Bioinformation analysis can identify new cell types,

identify rare cell populations, and construct cell status and

phylogenetic maps through computational methods such as high-

dimensional data reduction, unsupervised clustering, phylogenetic

modeling, locus inference, RNA rate analysis, lineage tracing, and

ligand-receptor interaction mapping (16, 17).
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Autophagy is an important feedback process of cells under

pressure. Autophagy realizes self-digestion and catabolism by

phagocytic organelles and degradation of cell contents, so as to

maintain the homeostasis balance of cells (18, 19). Autophagy plays

an important role in maintaining vital activities and immune

function and is closely related to tumors and other diseases. The

common types of autophagy include macroautophagy,

microautophagy and chaperonemediated autophagy (20).

Aggrephagy is a kind of selective autophagy, which is the only

way to clear protein aggregates. Once the function of molecular

chaperone and ubiquitin proteasome is limited or the clearance

efficiency of misfolded proteins is lower than the production rate,

protein aggregates will be formed, and the aggrephagy needs to be

activated to degrade them (21).

In this study, the relationship between aggrephagy-related genes

and cell subsets of TME (such as T cells, Natural Killer cell, and

Myeloid cells) for AML was investigated using data of single-cell RNA-

sequencing (scRNA-seq) from GSE116256. After Nonnegative Matrix

Factorization analysis, the characteristics of the aggrephagy-mediated

cell clusters in Pseudotime trajectory, cell–cell communication, ligand-

receptor links, and immunotherapy were investigated.
Materials and methods

Downloading and preprocessing for data
of acute myeloid leukemia

The samples source with single-cell RNA-sequencing (scRNA-

seq, GSE116256) and expression profiles (GSE63270 and

GSE12417) were downloaded from Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) of The

National Center for Biotechnology Information (NCBI) (22). We

enrolled three normal samples and ten patients with acute myeloid

leukemia from GSE116256 for analysis of scRNA-seq (23–25).

There were 104 normal and acute myeloid leukemia (42

populations and 62 leukemic populations) included in GSE63270

dataset (26). GSE12417 dataset contained the analysis of 79 samples

of bone marrow or peripheral blood mononuclear cells from adult

patients with untreated acute myeloid leukemia (27, 28). In

addition, the expression profiles and clinical information were

acquired from TCGA-LAML cohort, including 151 patients with

acute myeloid leukemia (29, 30).
Dimensionality reduction and annotation
of single cell for acute myeloid leukemia

First, the data of single cell was filtered by setting each gene to

be expressed in at least three cells, and each cell to express at least

500 genes, resulting in 9891 cells. We calculated the percentage of

mitochondria and Ribosomal RNA (rRNA) through the

PercentageFeatureSet function of Seurat package (31). The

number of genes expressed in each single cell was greater than

100 and less than 5000, and we ensured the percentage of

mitochondria was less than 20%. Furthermore, the Unique
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Molecular Identifier (UMI) of the single cell was at least greater

than 100, resulting in 9886 cells. Subsequently, we used the method

of log-normalization to standardize the single-cell data from each of

the 13 samples. The highly variable features were identified by

FindVariableFeatures function (32) based on variance stabilization

transformation (VST). The genes were then scaled by using the

ScaleData function for all genes. We utilized RunPCA function for

PCA dimension reduction to find anchors. The FindNeighbors

function with dim=15 and FindClusters function with

Resolution=0.1 was used to luster cells. Ulteriorly, the RunTSNE

function was used to conduct t-SNE (T-Distribution Stochastic

Neighbour Embedding) dimension reduction analysis and the

RunUMAP function was used to conduct UMAP (Uniform

Manifold Approximation and Projection) reduction analysis. The

marker genes for single cell were supplied by SingleR package (33)

and the classical marker from the published literature (25).
Pseudotime trajectory analysis for the
aggrephagy-mediated cell clusters

Monocle R package was applied for the data of single cell to explore

the correlation of aggrephagy-related genes and pseudotime trajectories

(34). The graphs for the pseudotime trajectories of specific cell with

aggrephagy-related genes were plotted using the function from

Monocle R package, such as plot_pseudotime_heatmap and so on.
Nonnegative matrix factorization of
aggrephagy-related genes in single cell for
acute myeloid leukemia

Based on the expression matrix of the scRNA-seq, dimension

reduction analysis of aggrephagy-related genes in each cell clusters

were conducted employing NMF (Nonnegative Matrix

Factorization) R package (35, 36), thus displaying the effect of

aggrephagy-related genes in single cell for acute myeloid leukemia.
Identifying the marker genes of single cell
for acute myeloid leukemia

FindAllMarkers function was applied to identify he marker

genes of single cell for acute myeloid leukemia (31). The

aggrephagy-mediated cell clusters were identified based on

differentially expressed genes (DEGs) with log Fold Change

(logFC) and aggrephagy-related genes. The NK cell subtypes were

summarized from the published literature of Huan Liu et al (37).
Analysis of transcription factors for
aggrephagy-mediated cell clusters

SCENIC was a tool for simultaneously reconstructing gene

regulatory networks and identifying stable cell states from single-

cell RNA-seq data (38). The gene regulatory network was inferred
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based on co-expression and DNA motif analysis, and then network

activity was analyzed in each cell to identify cell status (38). We

carried out analysis of transcription factors (TFs) for aggrephagy-

mediated cell clusters for acute myeloid leukemia through

pySCENIC package (39–41). RcisTarget R package and two gene-

motif rankings (hg19-tss-centered-10 kb and hg19-500 bp-

upstream) was used to identify binding motifs of TFs in the gene

list for acute myeloid leukemia (42, 43). The threshold value for the

TFs was set as Benjamini–Hochberg false discovery rate (BH-

FDR) <0.05.
Cell–cell communication analysis among
cell subsets for acute myeloid leukemia

The signaling inputs and outputs among the cell types and

aggrephagy-mediated cell clusters were assessed by applying

CellChat package (44) and CellChatDB database (45). The

netVisual_circle function was utilized for evaluating the strength

of cell–cell communication networks among cell subsets (44, 45). In

addition, the ligand-receptor interactions among the specific cell

subsets were estimated via the netVisual_bubble function (44, 45).
Prognostic analysis of the aggrephagy-
related cell clusters for acute
myeloid leukemia

Based on the data of scRNA, Gene Set Variation Analysis

(GSVA) was applied to compute the signature scores involved in

aggrephagy for public database (46). We carried out Cox

proportional hazard regression to evaluate the prognosis for the

aggrephagy-related cell clusters (47). The Kaplan–Meier curves was

plotted through the survminer R package.
Immunotherapy analysis of the
aggrephagy-related cell clusters for acute
myeloid leukemia

We used TIDE (Tumor Immune Dysfunction and Exclusion)

algorithm to analyze the immune checkpoint blockade

immunotherapeutic for the aggrephagy-related cell clusters (48).

We also reviewed the published literature to validate the prognostic

and therapeutic effects of each cell subtype using real-world

immunotherapy cohorts (49–60).
Statistical analysis

The continuous or category variables were compared using

Student’s t-test, Wilcoxon rank sum test, Kruskal–Wallis’s test, or

Chi-square test. The log-rank test was used for survival analyses.
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Results

Dimensionality reduction and annotation
of single cell for acute myeloid leukemia

We carried out dimensionality reduction and annotation of single

cell for acute myeloid leukemia as described in the materials and

methods section. We ensured that the number of genes expressed in

each single cell was greater than 100 and less than 5000, the

percentage of mitochondria was less than 20%, and the Unique

Molecular Identifier (UMI) of the single cell was at least greater than

100, resulting in 9886 cells. Supplementary Figures S1A–B was the

statistical diagram of cell filtration, which could be seen to meet all

thresholds set above (Supplementary Figures S1A, B). The highly

variable features were identified via FindVariableFeatures function

based on VST, and the top ten highly variable genes among the single

cell were marked out in the volcano plot, including IGLL5, HBB,

JCHAIN, HBG1, HBG2, HBD, HBA2, CLC, CA1, and HBA1

(Supplementary Figure S1C). Ulteriorly, PCA analysis was carried

out on the highly variable genes, we used the Elbow algorithm to

carry out the Standard Deviation based on the highly variable genes

(Supplementary Figure S1D). The RunTSNE function was used to

conduct t-SNE dimension reduction analysis and the RunUMAP

function was used to conduct UMAP reduction analysis, thus

identifying a total of 18 cell subsets (Supplementary Figure S1E).

Afterwards, the marker genes were used to annotate the specific cell

types, thus identifying 11 specific cell types, including T cell, Natural

Killer (NK) cell, Common Myeloid Progenitor (CMP) cell, Myeloid

cell, Granulocyte Monocyte Progenitor (GMP) cell, Megakaryocyte

Erythroid Progenitor (MEP) MEP, Promonocyte (Promono) cell,

Plasma cell, Hematopoietic Stem Cell (HSC) cell, B cell, and

Erythroid cell (Figure 1A). We plotted the correlation network for

the number of interactions among the 11 specific cell types

(Figure 1B). Figure 1C visually showed the proportion of different

cell types in each sample. Finally, we created the heat map to show the

expression of the aggrephagy-related genes in different cell types

(Figure 1D). We could see that there were several aggrephagy-related

genes that were highly expressed in the 11 specific cell types,

including HSP90AA1, RPS27A, UBA52, UBB, UBC, and VIM

(Figure 1D). We displayed the global view of the expression pattern

for marker genes gained as described in the methods section,

reflecting the dynamic features of each cell subsets (Supplementary

Figure S2).
Pseudotime analysis for aggrephagy-
mediated T cells

There was a total of 2397 cells in the T cell type. Using UMAP

reduction analysis, the 2397 cells in the T cell type could be

clustered into eight cell clusters (Supplementary Figure S3), and

the global view of the expression pattern for marker genes of the

eight cell clusters was displayed in Supplementary Figure S3.

Further, the eight cell clusters could be re-clustered into nine cell

subsets (Supplementary Figure S3). Based on the aggrephagy-

related genes, six clusters were identified using Monocle analysis
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(Figure 2A), including Cluster 1 (DYNC1LI2 and TUBB1), Cluster

2 (PRKN, TUBB2A, DYNLL2, RPS27A and UBA52), Cluster 3

(TUBA1A, UBE2V1, IFT88 and VCP), Cluster 4 (TUBA1C,

TUBA3C, TUBA3D, HSP90AA1, VIM, DYNC1I2, PARK7,

UBE2N, DYNLL1 and HSF1), Cluster 5 (TUBA4A, TUBB4B,

TUBA1B, ARL13B and PCNT), and Cluster 6 (DYNC1LI1, UBB,

HDAC6, DYNC1H1 and UBC). From the heatmap generated by

Pseudotime analysis, the critical role of the aggrephagy-related

genes in the trajectory process of T cells was observed

(Figure 2A). Four subgroups of T cells were obtained by re-

clustering annotation using t-SNE dimension reduction analysis,

including CD8+ T cell, CD4+ T cell, natural killer (NK) cells, and

Regulatory T (Treg) cells (Figure 2B). Among the four cell

subgroups, we found that CD8+ T cell and CD4+ T cell had a

higher percentage both in tumor samples and normal samples than

the other two cell subgroups (Figure 2C), and CD8+ T cell occupied

the highest proportion among the four cell subgroups (Figure 2C).

The result of CD8+ T cell revealed that the whole trajectory could be

divided into three segments (State 1, State 2, and State 3) on the

basis of the developmental order (Figure 2D). Ulteriorly, NMF

clustering analysis of the aggrephagy-related gene set for the

trajectories showed that these cells aggregated into nine clusters

(Figure 2E). In addition, the results of UMAP reduction analysis

indicated that the NMF cell types were clustered into six

aggrephagy-related CD8+ T clusters, including TUBA1B+CD8+ T

−C1, DYNC1H1+CD8+ T−C2, UBE2V1+CD8+ T−C3, UBE2N

+CD8+ T−C4, Unc−CD8+ T−C5, and Non−Aggre−CD8+ T−C6

(Figure 2F). The number of ligand-receptor links among the six

aggrephagy-related CD8+ T clusters was computed by Cell-Chat

analysis (Figure 2G). The weights and strength of ligand-receptor

links among the six aggrephagy-related CD8+ T clusters was

computed by Cell-Chat analysis (Supplementary Figure S3).

Lastly, the discrepancies in the exhausted CD8+ T (CD8+_exhau),

cytotoxic CD8+ T (CD8+_cyoto), and TFs (BTN3A1, BTN3A2,

BTN2A2, LGALS9, TIGIT, CD274, BTLA, CTLA4, IL10, LAIR1,

CD247, TGFB1, SLAMF7, CD160, CD244, HAVCR2, LAG3, CD96,

ADORA2A, PDCD1, and CD48) among the six aggrephagy-related

CD8+ T clusters were visually displayed in the pathway heatmap

(Figure 2H). TUBA1B+CD8+ T−C1 tended to be exhausted CD8+ T

(CD8+_exhau), while UBE2N+CD8+ T−C4 tended to be cytotoxic

CD8+ T (CD8+_cyoto) as shown in Figure 2H. It is noteworthy that

TFs of LGALS9, TIGIT, BTLA, and CTLA4 were upregulated in the

TUBA1B+CD8+ T−C1, TFs of IL10 and CD160 were upregulated in

the DYNC1H1+CD8+ T−C2, ADORA2A was upregulated in the

UBE2V1+CD8+ T−C3, BTN3A1, BTN3A2, CD274, CD247,

SLAMF7, LAG3, and PDCD1 were upregulated in the UBE2N

+CD8+ T−C4, BTN2A2 and LAIR1 were upregulated in the Non

− Aggre−CD8+ T−C6 (Figure 2H).
Pseudotime analysis for aggrephagy-
mediated NK cells

There was a total of 1067 cells in the NK cell type. Using UMAP

reduction analysis, the 1067 cells in the NK cell type could be

clustered into eleven cell clusters (Supplementary Figure S4). Based
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on the aggrephagy-related genes, six clusters were identified using

Monocle analysis (Figure 3A), including Cluster 1 (TUBA1B,

TUBA4A, UBA52, UBB, TUBB4B, and UBE2V1), Cluster 2

(TUBA1C, HDAC6, VCP, DYNC1LI1, UBC, PRKN, TUBB1,

HSP90AA1, RPS27A, PCNT, DYNC1H1, and DYNLL2), Cluster 3

(TUBA1A, VIM, HSF1, and UBE2N), Cluster 4 (TUBB6, ARL13B,

DYNC1I2, DYNC1LI2, and TUBB2A), Cluster 5 (IFT88 and

TUBA8), Cluster 6 (TUBA3C, DYNLL1, and PARK7). The results

of UMAP reduction analysis indicated that the NMF cell types were

clustered into six aggrephagy-related NK clusters, including UBE2N

+NK−C1, UBE2V1+NK−C2, DYNC1H1+NK−C3, PARK7+NK−C4,

Unc+NK−C5, and Non−Aggre−NK−C6 (Figure 3B). The number of

ligand-receptor links among the six aggrephagy-related NK clusters

was computed by Cell-Chat analysis (Figure 3C). The number,

weights and strength of ligand-receptor links among the

aggrephagy-related NK clusters was computed by Cell-Chat analysis
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(Supplementary Figure S4). Lastly, the discrepancies in the NK

−CD56bright, NK−CD56dim, NK−HIA, LrNK−FCGR3A, LrNK

−XCL1, KIR2DS1, NCR1, NCR2, NCR3, TLR3, TLR9, KIR3DL1,

KIR2DL3, KLRB1, LILRB1, LILRB2, KLRG1, CEACAM1, CD244,

LAIR1, CD96, TIGIT, and LAG3 among the six aggrephagy-related

NK clusters were visually displayed in the pathway heatmap

(Figures 3D, E). It is noteworthy that NK−CD56bright was

upregulated in PARK7+NK−C4 (Figure 3D), NK−HIA was

upregulated in UBE2N+NK−C1 (Figure 3D), LrNK−FCGR3A

was upregulated in UBE2N+NK−C1 (Figure 3D), LrNK−XCL1 was

upregulated in PARK7+NK−C4 (Figure 3D), NCR1 was upregulated

in UBE2N+NK−C1 (Figure 3E), NCR3 was upregulated in PARK7

+NK−C4 (Figure 3E), TLR9 was upregulated in PARK7+NK

−C4 (Figure 3E), KIR3DL1 was upregulated in UBE2V1+NK−C2

(Figure 3E), LILRB1 was upregulated in UBE2V1+NK−C2

(Figure 3E), LILRB2 was upregulated in DYNC1H1+NK−C3
A B

D

C

FIGURE 1

Dimensionality reduction and annotation of single cell for acute myeloid leukemia. (A) Cells were clustered into 11 specific cell types using t-SNE
algorithm. (B) The number of interactions for communication among the 11 specific cell types. (C) The proportion of the 11 specific cell types in
each sample. (D) Heat map showing the expression of the aggrephagy-related genes in 11 specific cell types.
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A B

D E

F G

H
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FIGURE 2

Pseudotime analysis for aggrephagy-mediated T cells. (A) Pseudotime analysis reveals the role of aggrephagy-related genes for T cells (2397 cells).
(B) Four subgroups of T cells were obtained by re-clustering annotation based on tSNE analysis. (C) Bar plot showing the percentage of the four cell
subgroups (CD8+ T cell, CD4+ T cell, NK cell and Treg cell). (D) Trajectory color-coded by cell state. (E) Trajectory color-coded by NMF cluster. (F)
The UMAP view and clustering analysis identifying six aggrephagy-related CD8+ T clusters. (G) Cell–Cell communications from aggrephagy-related
CD8+ T cells to HSC cell. (H) Heatmap showing the different average expression of exhausted CD8+ T (CD8+_exhau), cytotoxic CD8+ T
(CD8+_cyoto), and TFs among the six aggrephagy-related CD8+ T clusters.
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(Figure 3E), KLRG1 was upregulated in Non−Aggre−NK−C6

(Figure 3E), CEACAM1 was upregulated in PARK7+NK

−C4 (Figure 3E), CD96 was upregulated in DYNC1H1+NK

−C3 (Figure 3E), TIGIT was upregulated in PARK7+NK−C4

(Figure 3E), LAG3 was upregulated in PARK7+NK−C4 (Figure 3E).
Pseudotime analysis for aggrephagy-
mediated myeloid cells

There was a total of 3167 cells in the Myeloid cell type. Based on

Myeloid cell type, the PCA analysis was carried out on the highly

variable genes, the Elbow algorithm to carry out the Standard

Deviation based on the highly variable genes (Supplementary Figure

S5). Using UMAP reduction analysis, the 3167 cells in the Myeloid cell

type could be clustered into eleven and twelve cell clusters

(Supplementary Figure S5). Based on the aggrephagy-related genes,
Frontiers in Oncology 07
six clusters were identified using Monocle analysis (Figure 4A),

including Cluster 1 (VCP, HDAC6, TUBA1A, DYNC1H1, and

TUBB1), Cluster 2 (UBC, TUBA4A, DYNC1LI1, VIM, TUBB2A,

UBB, HSP90AA1, and TUBB6), Cluster 3 (TUBA3C and TUBA3E),

Cluster 4 (PCNT, TUBA1B, UBE2V1, PARK7, TUBB4B, TUBAL3,

RPS27A, UBA52, and UBE2N), Cluster 5 (TUBA1C, ARL13B,

TUBA8, DYNLL2, DYNC1LI2, and HSF1), Cluster 6 (TUBA4B,

IFT88, DYNC1I2, and DYNLL1). Three subgroups of Myeloid cells

were obtained by re-clustering annotation using UMAP reduction

analysis, including Mono (monocytes) cell, Macrophages (MAC) cell,

and Dendritic cell (DC) cell (Figure 4B). Further, we displayed the

global view of the expression pattern for marker genes of Mono

(monocytes) cell and Macrophages (MAC) cell in Supplementary

Figure S5. In addition, the results of UMAP reduction analysis

indicated that the NMF cell types were clustered into six

aggrephagy-related Mac clusters, including DYNLL1+Mac-C1,

UBE2V1+Mac-C2, TUBA1A+Mac-C3, PAPK7+Mac-C4, Unc-
A B

D E

C

FIGURE 3

Pseudotime analysis for aggrephagy-mediated NK cells. (A) Pseudotime analysis reveals the role of aggrephagy-related genes for NK cells (1067
cells). (B) The UMAP view and clustering analysis identifying six aggrephagy-related NK clusters. (C) Cell–Cell communications from aggrephagy-
related NK cells to HSC cell. (D) Heatmap showing the different average expression of NK−CD56bright, NK−CD56dim, NK−HIA, LrNK−FCGR3A, and
LrNK−XCL1 among the six aggrephagy-related NK clusters. (E) Heatmap showing the different average expression of KIR2DS1, NCR1, NCR2, NCR3,
TLR3, TLR9, KIR3DL1, KIR2DL3, KLRB1, LILRB1, LILRB2, KLRG1, CEACAM1, CD244, LAIR1, CD96, TIGIT, and LAG3 among the six aggrephagy-related
NK clusters.
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Aggre-Mac-C5, and Non-Aggre-Mac-C6 (Figure 4C). The number of

ligand-receptor links among the aggrephagy-related Mac clusters was

computed by Cell-Chat analysis (Supplementary Figure S5). Ulteriorly,

we used scMetabolism package to assess the correlation between the

aggrephagy-related Mac clusters and metabolic pathways, and we

could intuitively see the differences in metabolic pathways of each

aggrephagy-related Mac cluster from the bubble map (Figure 4D). To

identify M1/M2 type cells, we scored related genes, suggesting that M1

type macrophages were more active in AML (Figures 4E–H).
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Prognostic analysis of the aggrephagy-
related cell clusters for acute
myeloid leukemia

There were 104 normal and acute myeloid leukemia (42

populations and 62 leukemic populations) samples included in

GSE63270 dataset, we compared the abundance of UBE2N+NK-

C1, UBE2V1+NK-C2, DYNC1H1+NK-C3, PARK7+NK-C4,

TUBA1B+CD8+ T−C1, DYNC1H1+CD8+ T−C2, UBE2V1+CD8+
A B

E F

G

H

D

C

FIGURE 4

Pseudotime analysis for aggrephagy-mediated Myeloid cells. (A) Pseudotime analysis reveals the role of aggrephagy-related genes for Myeloid cells
(3167 cells). (B) Three subgroups of Myeloid cells were obtained by re-clustering annotation based on UMAP analysis. (C) The UMAP view and
clustering analysis identifying six aggrephagy-related Mac clusters. (D) Bubble map showing significantly different activity of metabolic signaling
pathway among the six aggrephagy-related Mac clusters. (E) The score of the six aggrephagy-related Mac clusters in M1 type macrophages. (F) The
score of the six aggrephagy-related Mac clusters in M2 type macrophages. (G) UMAP plots of the six aggrephagy-related Mac clusters in M1 type
macrophages. (H) UMAP plots of the six aggrephagy-related Mac clusters in M2 type macrophages.
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T−C3, UBE2N+CD8+ T−C4, DYNLL1+Mac-C1, UBE2V1+Mac-

C2, TUBA1A+Mac-C3, and PAPK7+Mac-C4 between normal and

AML samples (Figure 5A). The results indicated that the higher

abundance of PARK7+NK-C4, DYNC1H1+CD8+ T−C2, DYNLL1

+Mac-C1, and TUBA1A+Mac-C3 were observed in the AML

samples, while the higher abundance of TUBA1B+CD8+ T−C1,

UBE2V1+CD8+ T−C3, and UBE2V1+Mac-C2 were observed in the

normal samples (Figure 5A). Based on the differentially expressed

genes (DEGs) generated by the DYNC1H1+CD8+ T−C2, TUBA1A

+Mac-C3, and UBE2V1+CD8+ T−C3, the prognostic models were

established using TCGA-LAML cohort, the poor prognosis was

observed in patients with higher level of DYNC1H1+CD8+ T−C2,

lower level of TUBA1A+Mac-C3, and higher level of UBE2V1

+CD8+ T−C3 (Figure 5B). GSVA was used for calculating the

aggrephagy-related score, the prognosis of the AML patients in

the GSE12417 and TCGA-LAML cohorts were further evaluated as

displayed in Figure 5C. We found that the survival rates of AML
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patients in GSE12417 and TCGA-LAML cohorts were significantly

different among DYNC1H1+CD8+ T−C2, DYNC1H1+NK-C3,

DYNLL1+Mac-C1, PAPK7+Mac-C4, PARK7+NK-C4, TUBA1A

+Mac-C3, TUBA1B+CD8+ T−C1, UBE2N+CD8+ T−C4,

UBE2N+NK-C1, UBE2V1+CD8+ T−C3, UBE2V1+Mac-C2, and

UBE2V1+NK-C2 (Figure 5C).
Immunotherapy analysis of the
aggrephagy-related cell clusters for acute
myeloid leukemia

We compared the response status (False or True) of immune

checkpoint blockade therapy for patients with AML among the

aggrephagy-related cell clusters (UBE2N+NK-C1, UBE2V1+NK-

C2, DYNC1H1+NK-C3, PARK7+NK-C4, TUBA1B+CD8+ T−C1,

DYNC1H1+CD8+ T−C2, UBE2V1+CD8+ T−C3, UBE2N+CD8+
A

B

C

FIGURE 5

Prognostic analysis of the aggrephagy-related cell clusters for acute myeloid leukemia. (A) Comparison for the abundance of the aggrephagy-related
cell clusters between normal and AML samples from GSE63270 dataset. (B) Kaplan-Meier curves for DYNC1H1+CD8+ T−C2, TUBA1A+Mac-C3, and
UBE2V1+CD8+ T−C3. (C) Comparison for the survival rates of AML patients in GSE12417 and TCGA-LAML cohorts among the aggrephagy-related
cell clusters. *P < 0.05; **P < 0.01; ****P < 0.0001.
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T−C4, DYNLL1+Mac-C1, UBE2V1+Mac-C2, TUBA1A+Mac-C3,

and PAPK7+Mac-C4) using TIDE algorithm (Figure 6A and

Supplementary Figure S6). For the AML patients with True

response status, the abundance of UBE2N+NK-C1, PARK7+NK-

C4, and TUBA1A+Mac-C3 was higher, while the abundance of

DYNC1H1+CD8+ T−C2 was lower (Figure 6A). We found that the

OR rates of AML patients in GSE12417 and TCGA-LAML cohorts

were significantly different among DYNC1H1+CD8+ T−C2,

DYNC1H1+NK-C3, DYNLL1+Mac-C1, PAPK7+Mac-C4,

PARK7+NK-C4, TUBA1A+Mac-C3, TUBA1B+CD8+ T−C1,

UBE2N+CD8+ T−C4, UBE2N+NK-C1, UBE2V1+CD8+ T−C3,

UBE2V1+Mac-C2, and UBE2V1+NK-C2 (Figure 6B).

In addition, we compared the response status (SD/PD or CR/PR)

of immunotherapy for patients with AML among the aggrephagy-

related cell clusters (UBE2N+NK-C1, UBE2V1+NK-C2, DYNC1H1

+NK-C3, PARK7+NK-C4, TUBA1B+CD8+ T−C1, DYNC1H1+CD8+

T−C2, UBE2V1+CD8+ T−C3, UBE2N+CD8+ T−C4, DYNLL1+Mac-

C1, UBE2V1+Mac-C2, TUBA1A+Mac-C3, and PAPK7+Mac-C4)

based on public dataset (Figure 7A). For the AML patients with CR/

PR response status, the abundance of TUBA1B+CD8+ T−C1 and

DYNLL1+Mac-C1 was higher, while the abundance of TUBA1A

+Mac-C3 was lower (Figure 7A). We also found that AML patients

with low abundance of TUBA1A+Mac-C3 may have the better

prognosis (Figure 7B). In addition, we observed that the expression

of TUBA1A was upregulated in bone marrow cells of AML patient

both in mRNA (Figure 7C) and protein (Figure 7D) levels.
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Discussion

Leukemia is a kind of hematologic malignant disease with

hematopoietic stem cell clonal proliferation. Clonal leukemia cells

proliferate and accumulate in bone marrow and other normal

hematopoietic tissues, inhibit hematopoietic function, and

penetrate into other non-hematopoietic tissues and organs

through blood circulation, resulting in organ failure and poor

prognosis. The clinical manifestations of AML include anemia,

bleeding, infection fever and other symptoms. AML is a common

type of leukemia, accounting for 80% of acute leukemia, with a high

incidence in children (61). Patients with AML tend to die within

one year of diagnosis, with a high mortality rate (62). The

pathogenesis of AML is complex and diverse, including chemical

substances, radioactive substances, genetic factors, gene mutations,

abnormal signaling pathways, epigenetic regulation, leukemia

microenvironment or immune imbalance. Autophagy is a

catabolic process of intracellular substances mediated by

lysosome, which has a bidirectional effect in AML. Autophagy

can remove abnormal organelles, reduce the accumulation of

harmful substances, and effectively prevent cell cancer. However,

autophagy can also enable AML cells to obtain various substances

and energy, which can help malignant cells to fight against the lack

of nutrition and energy caused by their own high metabolism, and

promote the growth and proliferation of AML cells. The autophagy

levels in different stages of AML were different. How to regulate the
A

B

FIGURE 6

Immunotherapy analysis of the aggrephagy-related cell clusters for acute myeloid leukemia based on TIDE algorithm. (A) Comparison for the
response status of immune checkpoint blockade therapy for patients with AML among the aggrephagy-related cell clusters. (B) Comparison for the
OR rates of AML patients in GSE12417 and TCGA-LAML cohorts among the aggrephagy-related cell clusters. *P < 0.05; **P < 0.01; ****P < 0.0001.
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progression of AML, remove AML cells and improve the

therapeutic effect by regulating autophagy level is the focus of

AML prevention and treatment.

The survival and apoptosis of immune cells, the expression of

immunomodulators and the change of tumor microenvironment

(TME) all affect the occurrence and development of AML (25).

Immune cells monitor abnormal cells in the body and play an

immune effect to eliminate them (63). For example, nature killer

(NK) cells recognize and kill tumor cells by mediating cytotoxic

effects (64). Tumor cells can evade immune recognition and attack

by modifying their own surface antigens and changing the

microenvironment around tumor tissue, that is, immune escape

of tumor. The occurrence of AML is also closely related to immune

escape. By changing the activity of immune cells or regulating the

expression of immune molecules, the function of immune cells is

affected, thus achieving immune escape of AML cells (65). It can

effect ively treat AML by inhibit ing the cel l immune

microenvironment and enhancing the immune response (66). To

elucidate the relationship between the occurrence of AML and the

immune response is of great significance for the development of

immunotherapy in patients with AML. In this study, we identified

11 specific cell types, including T cell, Natural Killer (NK) cell,

Common Myeloid Progenitor (CMP) cell, Myeloid cell,

Granulocyte Monocyte Progenitor (GMP) cell, Megakaryocyte

Erythroid Progenitor (MEP) MEP, Promonocyte (Promono) cell,
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Plasma cell, Hematopoietic Stem Cell (HSC) cell, B cell, and

Erythroid cell for AML. Four subgroups of T cells were obtained

by re-clustering annotation using t-SNE dimension reduction

analysis, including CD8+ T cell, CD4+ T cell, natural killer (NK)

cells, and Regulatory T (Treg) cells. NK cell type could be clustered

into eleven cell clusters. As for Myeloid cells, three subgroups of

Myeloid cells were obtained by re-clustering annotation using

UMAP reduction analysis, including Mono (monocytes) cell,

Macrophages (MAC) cell, and Dendritic cell (DC) cell. Our study

identified some specific cell subtypes of AML, which will provide

some reference value for exploring the TME of AML.

Transcription factors (TFs) are involved in the formation of

transcription initiation complexes that affect transcription processes

and thus downstream gene expression (67). AML contains many

abnormal genes, some of which directly affect the expression of TFs,

and some indirectly affect the combination of transcription factors

and regulatory regions to play a role (68). In addition, some TFs

play a role in stem cell maintenance, differentiation and maturation

of hematopoietic stem progenitor cells, and abnormal expression of

these TFs can lead to hematopoietic malignant transformation.

Herein, we found that TFs of LGALS9, TIGIT, BTLA, and CTLA4

were upregulated in the TUBA1B+CD8+ T−C1, TFs of IL10 and

CD160 were upregulated in the DYNC1H1+CD8+ T−C2,

ADORA2A was upregulated in the UBE2V1+CD8+ T−C3,

BTN3A1, BTN3A2, CD274, CD247, SLAMF7, LAG3, and
A
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FIGURE 7

Immunotherapy analysis of the aggrephagy-related cell clusters for AML based on public dataset. (A) Comparison for the response status of immune
checkpoint blockade therapy for patients with AML among the aggrephagy-related cell clusters. (B) Kaplan-Meier curve for TUBA1A+Mac-C3. (C)
The TUBA1A mRNA expression is upregulated in bone marrow cells of AML patient. The levels of TUBA1A mRNA and GAPDH mRNA as control in
bone marrow cells of five AML patients and four health people by real-time PCR. Data are expressed as mean ± SD. (**** P <0.0001). (D) The
TUBA1A protein expression is upregulated in bone marrow cells of AML patient. The levels of TUBA1A protein in bone marrow cells of five AML
patients and four health people as control by Western-blot. *P < 0.05; **P < 0.01; ****P < 0.0001.
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PDCD1 were upregulated in the UBE2N+CD8+ T−C4, BTN2A2

and LAIR1 were upregulated in the Non−Aggre−CD8+ T−C6. AML

is a highly heterogeneous and aggressive hematological malignancy

resulting from clonal expansion of malignant hematopoietic

progenitor cells in the bone marrow. Its incidence increases with

age and its prognosis is poor. A variety of cytogenetic and molecular

genetic abnormalities affect signaling pathways, transcription, and

epigenetic regulators that induce AML. Studies have shown that

various recurrent gene mutations can directly affect the expression

of TFs or indirectly change the binding of TFs to regulatory regions,

resulting in abnormalities of transcriptional regulatory networks

(TRNs), leading to a large number of cloning and proliferation of

myeloid precursor cells and stagnating in different stages of

hematopoietic differentiation. The fine regulation of TFs such as

TIGIT (69), BTLA (70), CTLA4 (71), IL10 (72), CD274 (73) is

crucial in hematopoietic regulation and cell fate determination.

Abnormal expression of these TFs can interfere with normal

hematopoietic differentiation and cause the occurrence of AML.

Our study provided new insights into the regulatory mechanisms of

related TFs in cell subtypes of AML.
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SUPPLEMENTARY FIGURE 1

Dimensionality reduction of single cell for acute myeloid leukemia. (A, B) The
sequencing depth and the number of genes for single cell from three normal

samples and ten patients with acute myeloid leukemia. (C) Detection of the
highly variable genes across the cells in volcano plot, the top 10 genes were

marked out. (D) PCA plot of scRNA-seq samples from 13 samples and the
Standard Deviation of 1-20 PCs using ElbowPlot algorithm. (E) t-SNE and

UMAP dimension reduction analysis identifying a total of 18 cell subsets.

SUPPLEMENTARY FIGURE 2

Dot plot showing the average and percentage expression of well-defined
marker genes in different cell subsets. The color represented the average

expression level of the marker genes. The diameter of the dots denoted the
fractional expression.

SUPPLEMENTARY FIGURE 3

UMAP reduction analysis and cell–cell communication analysis for

aggrephagy-mediated T cells.

SUPPLEMENTARY FIGURE 4

UMAP reduction analysis and cell–cell communication analysis for

aggrephagy-mediated NK cells.

SUPPLEMENTARY FIGURE 5

UMAP reduction analysis and cell–cell communication analysis for
aggrephagy-mediated Myeloid cells.

SUPPLEMENTARY FIGURE 6

Immunotherapy analysis of the aggrephagy-related cell clusters for acute

myeloid leukemia using TIDE algorithm.
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14. Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor
microenvironment. Cancer Discov (2021) 11:933–59. doi: 10.1158/2159-8290.Cd-20-1808

15. Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, et al. Applications of single-cell
sequencing in cancer research: progress and perspectives. J Hematol Oncol (2021)
14:91. doi: 10.1186/s13045-021-01105-2

16. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell
heterogeneity. Nat Rev Immunol (2018) 18:35–45. doi: 10.1038/nri.2017.76

17. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and
bioinformatics pipelines. Exp Mol Med (2018) 50:1–14. doi: 10.1038/s12276-018-0071-8

18. Whitmarsh-Everiss T, Laraia L. Small molecule probes for targeting autophagy.
Nat Chem Biol (2021) 17:653–64. doi: 10.1038/s41589-021-00768-9

19. Chmurska A, Matczak K, Marczak A. Two faces of autophagy in the struggle
against cancer. Int J Mol Sci (2021) 22:2981. doi: 10.3390/ijms22062981

20. Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, et al. The role of autophagy in
targeted therapy for acute myeloid leukemia. Autophagy (2021) 17:2665–79.
doi: 10.1080/15548627.2020.1822628

21. Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K.
Clearance of misfolded and aggregated proteins by aggrephagy and implications for
aggregation diseases. Ageing Res Rev (2014) 18:16–28. doi: 10.1016/j.arr.2014.07.002

22. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res (2013)
41:D991–995. doi: 10.1093/nar/gks1193

23. Li F, Cai J, Liu J, Yu SC, Zhang X, Su Y, et al. Construction of a solid cox model
for AML patients based on multiomics bioinformatic analysis. Front Oncol (2022)
12:925615. doi: 10.3389/fonc.2022.925615

24. Dai C, Chen M, Wang C, Hao X. Deconvolution of bulk gene expression profiles
with single-cell transcriptomics to develop a cell type composition-based prognostic
model for acute myeloid leukemia. Front Cell Dev Biol (2021) 9:762260. doi: 10.3389/
fcell.2021.762260

25. van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia
S, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression
and immunity. Cell (2019) 176:1265–1281.e1224. doi: 10.1016/j.cell.2019.01.031

26. Jung N, Dai B, Gentles AJ, Majeti R, Feinberg AP. An LSC epigenetic signature is
largely mutation independent and implicates the HOXA cluster in AML pathogenesis.
Nat Commun (2015) 6:8489. doi: 10.1038/ncomms9489

27. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland
MC, et al. An 86-probe-set gene-expression signature predicts survival in
cytogenetically normal acute myeloid leukemia. Blood (2008) 112:4193–201.
doi: 10.1182/blood-2008-02-134411

28. Wang YH, Lin CC, Hsu CL, Hung SY, Yao CY, Lee SH, et al. Distinct clinical
and biological characteristics of acute myeloid leukemia with higher expression of long
noncoding RNA KIAA0125. Ann Hematol (2021) 100:487–98. doi: 10.1007/s00277-
020-04358-y

29. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al.
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