
The return of the lesion for localization and 
therapy
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and Michael D. Fox3,8,11

Historically, pathological brain lesions provided the foundation for localization of symptoms and therapeutic lesions 
were used as a treatment for brain diseases. New medications, functional neuroimaging and deep brain stimulation 
have led to a decline in lesions in the past few decades. However, recent advances have improved our ability to local-
ize lesion-induced symptoms, including localization to brain circuits rather than individual brain regions. Improved 
localization can lead to more precise treatment targets, which may mitigate traditional advantages of deep brain 
stimulation over lesions such as reversibility and tunability. New tools for creating therapeutic brain lesions such 
as high intensity focused ultrasound allow for lesions to be placed without a skin incision and are already in clinical 
use for tremor. Although there are limitations, and caution is warranted, improvements in lesion-based localization 
are refining our therapeutic targets and improved technology is providing new ways to create therapeutic lesions, 
which together may facilitate the return of the lesion.
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Introduction
Historically, pathological lesions played a key role in localization 
and therapeutic lesions in treatment of neurological and psychi-
atric symptoms (Fig. 1). Over time, the number of lesion studies de-
clined as newer technologies emerged, including functional 
neuroimaging (for localization) and electrical neuromodulation 
(for treatment). Despite important limitations, lesions have recent-
ly begun to make a comeback, aiding localization for a variety of dif-
ferent symptoms and as a clinical therapy in movement disorders. 
Here, we provide a personal perspective on why lesions are making 
a comeback and why they could return as an important treatment 
option for brain disease.

History of brain lesions in neuroscience and 
medicine

Brain lesions have been used to localize and treat neurological and 
psychiatric symptoms for well over a century (Fig. 1). Early lesion- 
based localization was based on individual patients with pathologic-
al lesions such as Phineas Gage, Victor Leborgne (Tan) and Henry 
Gustav Molaison (patient H.M.). These case studies helped localize 
social inhibition to the prefrontal cortex, speech production to the 
inferior frontal lobe and memory to the hippocampi. Lesion-based 
studies increased in power and popularity with the advent of struc-
tural brain imaging in the 1970s, allowing for localization of 
lesion-induced deficits in vivo.5,6 However, by the 1980s, lesion-based 
studies were on the decline, in part due to functional neuroimaging 
technologies like PET and functional MRI (fMRI). These technologies 
allowed for localization of brain function in patients without brain 
lesions and helped overcome some of the challenges of lesion stud-
ies such as difficulty recruiting sufficient numbers of patients with 
similar symptoms or lesion locations, lack of statistical power and 
biological variability of spontaneous lesions in size and pathological 
process (e.g. lesion type, temporal evolution of the lesion and symp-
toms, perilesional effects and potential compensatory effects and 
plasticity). Owing to this added flexibility, functional neuroimaging 
studies soon became the dominant tool for localization of human 

brain function, greatly exceeding the number of lesion-based stud-
ies.7,8 Advances in invasive animal studies, including large consortia 
(such as the International Brain Laboratory) and new techniques 
(such as optogenetics), together with increasing use of computation-
al models (such as deep neural networks) may have further contrib-
uted to the decline in lesion studies.

Therapeutic lesions were also leveraged for treatment across 
psychiatric and neurological conditions (Supplementary Table 1). 
In the 1920s–40s, surgical lesions were used to treat many condi-
tions including epilepsy (temporal lobectomy),9 Parkinson’s dis-
ease (corticectomy, pedunculotomy, cordotomy) and psychiatric 
disorders (leucotomy or lobotomy).10 Many of these early 
procedures were limited in efficacy, associated with unacceptable 
side-effects, and led to ethical concerns, especially in the case of 
psychosurgery.10,11 Serendipitous findings, such as improvement 
in tremor following an accidental iatrogenic thalamic lesion,12

and adoption of the stereotactic frame led to more reproducible le-
sions with fewer side effects. Randomized controlled trials soon va-
lidated the efficacy of therapeutic lesions for movement 
disorders.13 However, by the 1980s, lesion-based treatments were 
on the decline, in part due to the development of better pharmaco-
logical treatments10,14,15 and the finding that similar therapeutic 
benefit could obtained by electrical stimulation of traditional lesion 
targets.16 The latter finding led to the development of deep brain 
stimulation (DBS), which had the advantage of reversibility and 
tunability with less side-effects compared to therapeutic lesions, 
especially for bilateral interventions.16 A head to head trial of DBS 
versus thalamotomy for tremor highlighted these advantages, 
and by 2010, the number of DBS procedures greatly exceeded the 
number of lesion procedures for movement disorders.17

Lesion-based localization of symptoms
Why consider returning to pathological lesions for 
localization?

Since the introduction of functional neuroimaging techniques such 
as PET18 and fMRI,19 these tools have dominated efforts to map 

Figure 1 Timeline of selected events illustrating the role of lesions in neuroscience and medicine. Top: Spontaneously occurring lesions played a de-
fining role in mapping human brain function, including localization of neurological and psychiatric symptoms. The role of lesions declined with the 
advent of functional imaging techniques such as PET and functional MRI (fMRI) but is now on the rise due to modern lesion mapping techniques. Bottom: 
Brain lesions have been used to treat neurological and psychiatric symptoms for nearly one and a half centuries. The therapeutic role of lesions de-
creased with the development of effective medications and deep brain stimulation (DBS) but is now on the rise due to modern lesioning technologies 
such as magnetic resonance-guided focused ultrasound (MRgFUS). Note that this timeline is not intended to be comprehensive, but to illustrate the 
rise, fall and return of lesions. There are exceptions to these historical trends, including DBS treatments explored in 1950s,1,2 subthalamic nucleus le-
sions in 1990,3 and many lesion studies that occurred during the epoch of functional neuroimaging.4 DTI = diffusion tensor imaging; PD = Parkinson’s 
disease.
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symptoms to human neuroanatomy. The number of studies utiliz-
ing these technologies has dwarfed the number of lesion-based 
studies in the past few decades.

However, lesion studies have one important advantage over 
functional neuroimaging in that they can allow for causal links be-
tween the location of the lesion and the resulting symptoms.20 This 
weakness of functional neuroimaging has been referred to as the 
‘causality gap’ and may limit the ability to translate neuroimaging 
findings into therapeutic targets.21-23 A return to lesion-based local-
ization may help address this weakness, allowing for stronger cau-
sal inference in symptom localization.20 For example, finding that a 
lesion of structure X impairs process Y shows that lesioning X is 
sufficient to cause impairment of Y. However, it should be noted 
that this does not mean that lesion of X is necessary for causing def-
icits of Y.20

Lesions are also valuable to critically test and validate neuroi-
maging findings, and vice versa.24,25 If the results do not align be-
tween these two complementary approaches, we need to rethink 
the data and its interpretation. However, these two approaches 
provide complementary information as lesion studies can identify 
brain regions essential to function whereas neuroimaging studies 
identify regions that are involved in, but not necessarily essential 
to, a particular brain function.

Recent advances in lesion mapping

The causal inference allowed by lesion studies is bolstered by re-
cent advances in lesion mapping. While early lesion-based localiza-
tion was based on individual patients, modern lesion studies often 
include hundreds of patients, enabled by the interconnected age of 
information technology, and the use of advanced statistics to better 
map lesion-induced deficits to neuroanatomy.26,27 For example, a 
recent study of nearly 500 stroke patients showed that language 
deficits could be linked to damage of specific locations in the right 
hemisphere, not just the left hemisphere.28 As methods and sam-
ple sizes have improved, it has become clear that lesion-induced 
deficits often fail to map onto single brain regions. For example, 
amnesia can be caused by lesions outside the hippocampus, hemi-
chorea by lesions outside the subthalamic nucleus, and hemipar-
kinsonism by lesions outside the nigrostriatal tract.20,29 In these 
cases, lesion-based localization can benefit from incorporating in-
formation about brain connectivity.29

Atlases of human brain connectivity are now available, built 
from thousands of subjects scanned with techniques such as rest-
ing state functional connectivity MRI and diffusion tensor im-
aging.30-32 Using these circuit maps, one can map lesion-induced 
effects to specific white matter connections or functionally con-
nected brain networks, rather than individual brain regions. 
Referred to as lesion network mapping29 or disconnection map-
ping,33,34 this approach has proven valuable across a wide range 
of neurological and psychiatric symptoms. For example, lesions 
causing amnesia, hemichorea and parkinsonism all fail to map to 
single brain regions but do map to specific brain networks.20,29

Translating advances in lesion-based localization 
into treatment

Advances in lesion-based symptom localization may translate into 
better therapeutic targets for neuromodulation or lesion-based 
treatments. Perhaps the most straight-forward example for such 
translation is localizing symptom improvement after spontaneous 
brain lesions.35 Although rare, spontaneous brain lesions have been 

reported to improve drug addiction,36 movement disorders,35,37

stuttering,38 pain,39 tinnitus40 and even foreign accent syndrome.41

These spontaneous but beneficial brain lesions might help identify 
lesion-based treatment targets.35 For example, a proof-of-concept 
study examined eleven lesion locations resulting in tremor im-
provement. These lesions occurred in different brain locations, 
but they were all part of a single connected brain circuit with a 
hub in the ventral intermediate nucleus of thalamus. This hub 
aligned perfectly with the primary lesion and DBS target for treating 
tremor (Fig. 2A).35 A recent study used this same approach to iden-
tify a brain circuit mediating smoking addiction remission 
(Fig. 2B).42 This circuit generalized to other substances of abuse 
and aligned with prior therapeutic targets from both surgical le-
sions and non-invasive brain stimulation. Future work will deter-
mine if the refined therapeutic targets identified in this study 
lead to improved efficacy for treatment of addiction.

Improved localization of lesion-based symptoms may also help 
to avoid side effects of lesion-based treatments. For example, le-
sions that cause depression map to a specific brain circuit with a 
hub in the left dorsolateral prefrontal cortex and lesions that cause 
memory impairment map to the circuit of Papez, including the 
hippocampus.43,44 DBS sites that cause depression or cognitive im-
pairment in patients with Parkinson’s disease are connected to 
these same circuits.45,46 As such, avoiding these circuits could 
help guide DBS programming, but could be even more important 
in lesion-based treatments where side effects may be irreversible.

Finally, lesions that cause a symptom could help identify or re-
fine therapeutic targets for relief of that symptom. Lesion locations 
causing parkinsonism, dystonia and Holmes tremor each map to 
distinct brain circuits. In each case, DBS sites that improve these 
symptoms are connected to the same brain circuit as lesions that 
caused these symptoms.47-49

There remain important challenges for translating advances in 
lesion-based localization into therapeutic targets. First, there is no 
guarantee that lesions ‘causing’ a symptom will identify the best 
neuroanatomical target for ‘improving’ that symptom.29 For ex-
ample, brain functions lost due to brain damage may not be revers-
ible and treatment should instead target brain circuits that could 
help compensate for the loss of function. Second, if seeking to 
map lesion locations to brain circuits, it remains unknown if one 
should use an atlas of anatomical connectivity, functional connect-
ivity, or some combination of the two.33,50,51 Finally, if lesions local-
ize to a brain circuit, it is unclear whether one should target a 
specific node in that circuit or a tract connecting multiple nodes 
of the circuit, such as the cerebellothalamic pathway in essential 
tremor.52,53

Lesion-based treatment
Why consider returning to lesions for treatment?

Although therapeutic lesions have been used as a treatment for a 
variety of neurological and psychiatric conditions (Supplementary 
Table 1), many early lesion interventions raised valid safety, effi-
cacy and ethical concerns. As such, lesions have almost always 
been considered a treatment of ‘last resort’ and their use has de-
creased whenever alternative treatments have become available 
(Fig. 1). For example, the introduction of antipsychotics led to the 
decline of frontal lobotomy and limbic leucotomy for psychiatric 
disease while the introduction of L-DOPA led to the decline of le-
sions for Parkinson’s disease.54-56 Similarly, the development of 
modern DBS, which could reversibly modulate traditional lesion 
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targets with similar therapeutic benefit, led to a major decline in 
lesion-based interventions.54 A prominent randomized trial that 
directly compared ventral intermediate nucleus of thalamus 
(VIM)-DBS to thalamotomy for treatment of tremor found that 
both are similarly effective, but VIM-DBS resulted in fewer 
side-effects.17

Despite the advantages and major benefits of medications and 
DBS, they are not without their own drawbacks. Antipsychotics 
can cause extrapyramidal side effects and L-DOPA can cause dyski-
nesias.56,57 DBS is relatively expensive, requires specialized cen-
tres, and includes frequent doctor visits, permanent indwelling 
hardware, battery charging or surgical battery replacements, and 
risks of intracranial haemorrhage, infection and device malfunc-
tions, which can even lead to severe and sudden clinical deteoriora-
tion.58 Ethical considerations include possible future financial 
issues preventing/delaying replacement of the pulse generator 
and a lifelong reliance on individuals in the companies producing 
the devices.59 Although DBS is currently the dominant technique 
in functional neurosurgery and the risk/benefit ratio of DBS is ex-
pected to continue improving, lesions have remained an option 
for selected patients and has motivated ongoing research into 
lesion-based treatments.60,61 Use of traditional therapeutic 

lesioning where DBS is not available or logistically or financially 
feasible might also allow more patients to benefit from functional 
neurosurgery.

Recent advances in therapeutic lesions

Therapeutic lesions have evolved over time to be smaller and more 
accurate with the goal of improving benefit while reducing off- 
target side-effects (Fig. 3A). Technical advances have improved 
our accuracy of reaching lesion targets, including stereotactic 
frames, real-time MRI and robotic technology.63 These latter ad-
vances are a major improvement over ventriculography, the target-
ing technology used in the landmark head-to-head trial of DBS 
versus lesion therapy.17 More refined surgical tools to create lesions 
such as radiofrequency (RF) ablations, laser ablations and gamma 
knife can help minimize tissue damage and the invasiveness of 
lesion-based procedures.64-66 A recent advance in lesion treat-
ments is magnetic resonance-guided focused ultrasound 
(MRgFUS), which may have advantages relative to other lesion- 
based therapies.67 Unlike RF ablations, MRgFUS can be used to cre-
ate lesions under direct MRI guidance without skin incision or 
opening the skull.68,69 This leads to reduced risk of infection or 

Figure 2 Using brain circuit data to improve lesion-based localization and treatment. (A) Lesions resulting in essential tremor relief (left). Using nor-
mative connectome data, functional connectivity between each lesion location and the rest of the brain can be computed (middle). Brain regions con-
nected to all lesion locations disrupting tremor can then be identified, identifying peaks in the ventral intermediate nucleus (VIM) of the thalamus (the 
current main therapeutic target for tremor; right). Modified with permission from Joutsa et al.35 (B) Examples of lesions that did or did not result in re-
mission of smoking addiction (left) with their corresponding connectivity profiles (middle). Brain voxels best representing the connectivity difference 
between lesion locations disrupting addiction versus lesion locations in patients who continued smoking included the insula/opercular region and 
paracingulate cortex (right). Figure modified from Joutsa et al.42 Image distributed under a Attribution 4.0 International (CC BY 4.0) license.
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bleeding, reduced pain, and more rapid surgical recovery.68,69

MRgFUS can also be used to create a transient test lesion with im-
mediate clinical effects, an advantage compared to gamma knife 
in which clinical effects may not appear until months after the 
treatment.67 As such, there has been a consistent increase in the 
number of MRgFUS operations for each of the past 7 years (Fig. 3B).68

Focused ultrasound: current state

MRgFUS is based on the use of multiple ultrasound beams using a 
hemispheric distribution of phased arrays combined with real-time 
MRI-based targeting and thermometry. Lesioning is achieved via 
ultrasonic energy absorption in brain tissue which in turn reaches 
critical temperatures that cause neuronal cell death, resulting in 
controlled thermo-ablation of the target. When using lower energy, 
MRgFUS is also capable of creating a temporary lesion which can 
help to probe for an optimal target in a patient, for example, detect-
ing tremor arrest and avoiding side-effects during a thalamot-
omy.68,69 Currently, MRgFUS is clinically used to target VIM for 
treatment of tremor in essential tremor and Parkinson’s disease 
as an alternative to DBS.

The efficacy of MRgFUS thermoablation of the VIM to treat es-
sential tremor has been confirmed in a large prospective rando-
mized controlled trial (RCT).70,71 The most common adverse 
effects MRgFUS were contralateral paraesthesia and ataxia, each 

affecting approximately one-third of the patients, persisting at 12 
months follow up in 9% and 14% of patients, respectively. 
Follow-up data for VIM MRgFUS at 3–5 years is reassuring, without 
major loss of benefit or the appearance of new side effects.72,73

Smaller RCTs have confirmed that MRgFUS can also be used for 
treatment of parkinsonian tremor (VIM thalamotomy).74

There are several ongoing lines of research aiming to expand the 
clinical indications for MRgFUS. Recent studies have just led to US 
Food and Drug Administration (FDA) approval of bilateral thala-
motomy in essential tremor and suggested benefit of unilateral le-
sions for motor symptoms in Parkinson’s disease patients who 
were not eligible for DBS (subthalamotomy).74-78 There also are on-
going studies investigating MRgFUS in dystonic tremor (VIM thala-
motomy), dystonia (ventro-oral thalamotomy), Parkinson’s 
dyskinesias (pallidotomy), obsessive-compulsive disorder (anterior 
capsulotomy), epilepsy (thalamotomy), depression (anterior capsu-
lotomy) and chronic pain (centrolateral thalamotomy) 
(Supplementary Table 1).68

Focused ultrasound: current unknowns and 
limitations

To date, there have been no head-to-head trials comparing MRgFUS 
to RF ablations, gamma knife or DBS.67,79 Comparing response rates 
between different trials targeting VIM, tremor improvement may be 

Figure 3 Evolution of therapeutic lesions in functional neurosurgery. (A) Examples of lesions from different time points in history. Early ablative le-
sions such those resulting from prefrontal leucotomy (left) were large and spanned multiple brain regions.62 After introduction of stereotactic frames 
around 1947, lesions became more precise, such as those generated by stereotactic cingulotomy (middle). Current lesions generated by modern ablative 
surgery are small, precise, and even barely visible on MRI just 3 months after the procedure, such as lesions created by magnetic resonance-guided 
focused ultrasound (MRgFUS) (right). Frontal lobotomy: Image distributed under a CC-BY-3.0 license, courtesy to Frank Gaillard. Cingulotomy: Image 
distributed under a CC Attribution-Share Alike 4.0 license, courtesy of operativeneurosurgery.com. (B) The number of MRgFUS procedures for tremor 
have increased rapidly over the past few years. Data provided by InSightec for the commercial neuro-exablate system.
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less robust and side effects may be more common following 
MRgFUS versus DBS.80 As such, MRgFUS has so far been only offered 
unilaterally and often for patients who have contraindications for 
DBS, do not want DBS, or for whom repeated DBS tuning visits or 
hardware/battery maintenance could prove challenging.68,69,79

However, trials of bilateral lesioning using MRgFUS are already 
being conducted and staged bilateral thalamotomy has just re-
ceived approval from the US FDA for treatment of essential 
tremor.77,78

While MRgFUS can achieve high accuracy in placing lesions, it 
has technical restrictions that currently limit its use.68 Skull thick-
ness and morphology prevent use of MRgFUS in approximately one 
fifth of patients with a low skull density ratio because of not reach-
ing high enough temperatures at the target, tissue heating related 
side-effects and a higher risk of complications.81,82 In addition, 
MRgFUS can currently only be used to lesion structures near the 
centre of the brain, as efficiency and accuracy diminishes the fur-
ther one gets from the centre of the brain.68 MRgFUS generates an 
ellipsoid lesion, but there is limited ability to rotate, refine or shape 
this ellipse to best match the surgical target.68 Currently, MRgFUS is 
still limited in reaching sufficient accuracy to target specific parts of 
small nuclei, such as the subthalamic nucleus (STN), where sen-
sorimotor or somatotopic representation of the targeted circuits 
are located.83 Similarly, optimal control of the expansion of the 
thermal lesion is still an ongoing challenge.68

MRgFUS is currently available only in specialized centres and 
expensive compared to RF ablations and gamma knife, which are 
more available worldwide. These techniques provide an important 
alternative for MRgFUS, reaching larger populations and allowing 
more patients to benefit from functional neurosurgery. As such, 
RF ablation also has regained scientific interest with recent papers 
showing e.g. clinical benefit with bilateral thalamotomy in essen-
tial tremor and unilateral pallidotomy in dystonia.84,85

The future of brain lesions in medicine
Moving forward, we expect that therapeutic targets will continue to 
become more precise. First, ongoing efforts to collect large, pro-
spective datasets of spontaneously occurring brain lesions or iatro-
genic lesions86 should allow us to better map lesion-induced effects 
to brain regions and brain circuits. The latter will benefit from im-
proved atlases of brain connectivity.30,87-89 Second, therapeutic tar-
gets may become more precise as we shift from diagnosis-based 
targets to symptom-specific targets. For example, different targets 
are already used for different symptoms of Parkinson’s disease 
such as tremor (VIM), rigidity [STN or globus pallidus interna 
(GPi)] or dyskinesias (GPi),90 while new targets are being investi-
gated for refractory symptoms such as freezing of gait.91 Similar 
symptom-specific targets may prove valuable in other diseases 
such as depression.92 Third, we may be able to reduce side effects 
as we identify brain circuits to be avoided (Fig. 4A).93 For example, 
one may need to avoid certain connections near the VIM to avoid 
inducing dysarthria or near the STN to avoid inducing depression, 
connections which may be distinct from the connections mediating 
symptom improvement.16,95 Finally, therapeutic targets may be-
come more individualized based on individual differences in 
neuroanatomy. Ongoing advances in neuroimaging (e.g. moving 
from landmark-based targeting to directly identifying the target 
structure, facilitated by increasing MRI field strengths, tractogra-
phy, specialized MRI sequences, etc.) may improve our ability to 
identify therapeutic targets in individual patients.96-98

We also expect that our ability to accurately lesion a target any-
where in the brain will also continue to improve. New advances in 
MRgFUS design are underway to enlarge the workspace in which le-
sions can be generated.68 Other technological advances may allow 
for lesioning of specific cell types or specific projections, as well as 
novel approaches to lesioning in general, such as delivery of cyto-
toxic agents across the temporarily permeabilized blood–brain bar-
rier.68 Finally, ongoing research aims to improve our ability to 
create transient lesions using hyperthermia, mechanosensitive 
ion channels, cell membrane capacitance or blood–brain barrier 
disruption.68,99 The ability to create a transient lesion and control 
the duration of the lesion could allow one to pilot clinical effects 
prior to a permanent lesion, which would greatly facilitate experi-
mental lesions for new indications.

Given recent advances in lesion mapping, identifying thera-
peutic targets, and accurately placing lesions at these targets, we 
are likely to see a continued increase in the use of lesion-based 
therapies moving forward. These advances may change the 
benefit-risk ratio of therapeutic lesions relative to competing tech-
nologies such as DBS (Fig. 4B). If a precise therapeutic target is 
known and can be accurately lesioned, traditional advantages of 
DBS over lesions such as reversibility and tunability could become 
less important. Conversely, the advantages of lesions such as con-
venience, lack of indwelling hardware, fewer doctor visits, and re-
duced infection risk (especially in the case of MRgFUS) may lead 
to lesions becoming a preferred alternative to DBS in the future. 
These advantages could prove particularly important in emerging 
indications such as psychiatric disease, where a lesion may be bet-
ter tolerated by patients than DBS electrodes, or in geographic areas 
where DBS and DBS programming are unavailable.

Cautions for the use of lesions in the future

Although lesions appear to be making a comeback, caution is war-
ranted, especially when using irreversible lesions that could be as-
sociated with side effects, or when pursuing psychiatric 
indications.79,100 With permanent lesions, it is important to ac-
knowledge that brain structure and functional organization have 
interindividual variability and, therefore, a group-level optimal 
target may not be suitable for all patients.101 We also need to learn 
from the history of lesion-based therapies to avoid repeating the 
same mistakes.11 First, we need to ensure our lesion-based targets 
are as precise as possible.100 Although MRgFUS of the VIM is a US 
FDA approved therapy for tremor, targeting is usually only based 
on anatomical landmarks to approximate the location of VIM, 
and there is debate regarding whether VIM or a different structure 
near VIM is the ideal target for tremor.52 Tunable technologies 
such as DBS can compensate for some of this uncertainty post 
operatively, while lesion-based treatments cannot. Second, we 
need to ensure that we are minimizing lesion-based side effects. 
Although acute side effects are often readily apparent, 
delayed-onset side effects can occur years after surgery. For ex-
ample, delayed onset ataxia can occur following VIM DBS,102,103

and delayed onset cognitive decline can occur following STN 
DBS.104 Both of these side effects can be alleviated with 
DBS-reprogramming. If these side-effects are associated with 
the therapeutic target, they might also occur following therapeut-
ic lesions where adjustment is not possible. Finally, informed con-
sent for lesion-based therapies, especially experimental 
therapies, is critical and should only be conducted under the guid-
ance of independent review panels.
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Summary
Lesion-based localization has sometimes been considered a relic of 
the past,8 but it has re-emerged as a tool for causal localization of 
symptoms and identification of therapeutic targets. Although there 
are limitations to lesion-based treatments, new technologies are 
improving the accuracy, safety, and convenience of therapeutic le-
sioning. Combined, these developments may facilitate the return of 
the lesion, complementing the currently available neuroimaging 
and brain stimulation techniques for localization and therapy.
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