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Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of 
surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, 
mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of 
FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary 
insights into processes that predispose given cortical regions to harbour FCD.
We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then de
termined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas 
and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using 
the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organ
ization.
FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, 
large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal compo
nent related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a post
natal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level 
hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior 
axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with struc
tural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques.
Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that pre
natal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal 
lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that 
FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell 
growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development 
to FCD epileptogenicity.
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Introduction
Focal cortical dysplasia (FCD) type II is the most prevalent epi
leptogenic developmental brain malformation and a common 

cause of surgically amenable epilepsy.1 This lesion is character

ized by cortical dyslamination, cytomegaly and cortical thicken

ing,2 likely due to atypical neuroglial proliferation, growth and 

migration.3 At a molecular scale, studies in resected FCD tissue 

have established a causal role of somatic mutations in genes im

plicated in the mechanistic target of the rapamycin (mTOR) path

way4-7; mTOR hyperactivity disrupts neuronal migration and 

cortical lamination.7 A recent multiomic study of somatic muta

tions in hemimegalencephaly and FCD also implicated genes re

lated to calcium dynamics and synaptic function as potential 

contributors to epileptogenesis.8

Although FCD type II lesions may occur across the entire cortex, 
histopathological reports of surgically resected tissues in large co
horts1,9,10 as well as a recent atlas of lesion location11 suggest a pro
pensity for frontal lobe involvement. However, mechanisms 
underpinning this regional vulnerability remain unexplored. 
Notably, the developing cortex undergoes area-specific, genetically 
regulated neurogenesis, synaptogenesis and circuit development 
that give rise to variations in cytoarchitecture.12 Given the strong 
genetic influence on regional cytoarchitecture,13 it is conceivable 
that architectural features of the putative FCD-prone cortices may 
inform on the morphopathogenic characteristics of this malforma
tion.14 Likewise, given the substantial variability of gene expression 
profiles across the cortex,15 their relation to FCD topology may pro
vide insights into the molecular pathways contributing to the 
pathogenesis of this brain malformation. Furthermore, cortical or
ganization is thought to be governed by graded macroscale axes, 
emerging from gene expression,12,16,17 morphology and microstruc
ture18-21 as well as functional and structural connectivity.22,23

Specifically, the antero-posterior axis related to the prenatal time
table of neuroglial proliferation and growth24-26 results in a gradient 
of neuronal density, size and cortical thickness that persists 
throughout adulthood.13,20,27 Another increasingly recognized axis 

marks the transition from sensory to transmodal association cor
tices.17,21,23,28,29 Recapitulating classic accounts formulated in 
non-human primates,30 this axis has been thought to mature dur
ing late prenatal and early postnatal stages31 and reflect the hier
archical organization of neural function. In sum, cortex-wide 
spatial associations of FCD distribution with cortical cytoarchi
tecture, gene expression and organizational axes may offer 
complementary insights into the neurogenic processes that pre
dispose given cortical regions to harbour this developmental 
malformation.14,29

Whole-brain cross-modal associations are facilitated by the 
availability of human brain atlases based on histological fea
tures32-34 and spatiotemporal gene expression profiles.35,36 The 
overall purpose of this work was to investigate the intrinsic regional 
vulnerability of cortices harbouring FCD. To this end, we mapped 
the cortex-wide lesional distribution of a multicentric dataset col
lected from epilepsy centres worldwide, determined cellular and 
genetic factors based on post-mortem histology and transcrip
tomics and examined the embedding of FCD lesions within the 
axes of neurogenic patterning and structure–function hierarchy. 
Specifically, after creating a topographic map of FCD type II lesions 
on MRI-derived cortical surface models, we cross-referenced it 
against histological taxonomies32,33 and a 3D high-resolution hu
man brain histological model.34 In parallel, we performed spatial 
correlation with whole-brain gene expression data from the Allen 
Human Brain Atlas (AHBA)35 and examined spatiotemporal gene 
expression dynamics from prenatal to adulthood stages using the 
PsychENCODE BrainSpan, an independent development-targeted 
genetic dataset.36,37 Targeted gene enrichment analysis probed 
transcriptomic associations for previously known pathogenic FCD 
variants,3,38,39 as well as non-FCD epilepsies40 and other neuro
logical disorders. Finally, we contextualized the FCD distribution 
within the antero-posterior axis previously associated with genetic 
cortical patterning and timetable of neurogenesis,13,24-26 contrast
ing these findings with hierarchical cortical axes derived 
from myelin-sensitive MRI28 and resting-state MRI functional 
connectivity.23
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Materials and methods
Study design and participants

We studied a consecutive retrospective cohort of 337 patients (153 
females; mean ± SD age = 22.2 ± 12.7 years) with histologically veri
fied FCD lesions collected from 13 tertiary epilepsy centres world
wide. All patients had been investigated for drug-resistant 
epilepsy with a standard presurgical workup including assessment 
of seizure history, routine MRI and video-EEG recordings. 
Histological examination of the surgical specimen2 determined 
FCD type II as disrupted cortical lamination with dysmorphic neu
rons in isolation (IIA, n = 134) or together with balloon cells (IIB, n =  
203). Site-specific demographics are summarized in Table 1. The 
Ethics Committees and Institutional Review Boards at all partici
pating sites approved the study, and written informed consent 
was obtained from all patients.

MRI acquisition and processing

All patients had high-resolution 3D T1-weighted MRI acquired as a 
part of the clinical presurgical investigation, consisting of images 
with isotropic 1 × 1 × 1 mm voxel resolution.41 Data underwent in
tensity non-uniformity correction and normalization and linear 
registration to the ICBM MNI152 symmetric template. To generate 
cortical surface models, we applied the Constrained Laplacian 
Anatomic Segmentation using Proximity algorithm, yielding 
GM-WM and GM-CSF surfaces with 41k surface points (or vertices) 
per hemisphere.42 Surface-based registration, which aligns 
individual participants based on cortical folding, was performed 
to optimize vertex-wise anatomical correspondence across 
participants.43

Cortex-wide MRI mapping of focal cortical dysplasia 
lesions

Two experts (A.B., N.B.) independently segmented each FCD lesion 
on the 3D MRI registered onto the ICBM MNI152 template. The con
sensus labels (the union of the two segmentations; inter-rate Dice 
index: 0.94 ± 0.13) was intersected with the cortical surfaces to gen
erate surface-based FCD labels. To enhance regional sensitivity 
while retaining specificity, labels were minimally smoothed using 

a surface-based 4 mm full-width at half-maximum Gaussian kernel 
to maximize local specificity.44 We then calculated for each vertex 
the FCD probability, defined as the percentage of patients whose le
sion label coincided with that vertex. To assess within-sample reli
ability, we calculated bootstrap certainty at each vertex, defined by 
mean of lesion probability from the bootstrap subsamples divided 
by their standard deviation. Similarly, we assessed cross-site reli
ability as defined by the mean divided by the standard deviation 
from leave-one-site-out subsamples. We assessed the lobar distri
bution by counting the number of FCD lesions located within 
each lobe; to account for lobar size, we divided the lesion counts 
by the relative surface areas of each lobe, defined based on auto
mated anatomical labelling parcellation atlas.45

Association analyses

Histological atlases

To assess associations of regional FCD probability with histological 
markers, we used the von Economo–Koskinas MRI atlas (http:// 
dutchconnectomelab.nl) indexed with quantitative histological in
formation (cell size, cell density and cortical thickness) of 43 cor
tical regions per hemisphere.33 For independent validation, we 
leveraged the BigBrain atlas, a 3D reconstruction of a stained post- 
mortem human brain34; these histological data, mapped to intra
cortical surface models in standard space and to the Schaefer 400 
parcellations,46 were obtained from https://github.com/MICA- 
MNI/micaopen/tree/master/bigbrain.

Cortex-wide gene expression

To investigate the molecular properties of cortical vulnerability, we 
related the FCD distribution with the anatomically comprehensive 
gene expression data from the AHBA (six post-mortem adult brains; 
one female; age = 42.5 ± 13.4 years; https://human.brain-map.org),35

which was mapped onto the 308 parcels of the Desikan–Killiany atlas 
(DKA).47 The microarray data of these donors were acquired using 
∼500 samples per hemisphere, with each sample indexed with ex
pression levels for ∼60 000 genes from at least two probes. Following 
an established procedure,48 the Maybrain package (https://github. 
com/rittman/maybrain) matched the closest AHBA sample in each 
donor to the centroids of 308 parcels of equal area (500 mm2) averaged 
across donors. Notably, data were averaged across probes corre
sponding to the same gene, excluding those not matched to gene sym
bols in the AHBA data. To reduce inter-donor variability, expression 
data for each probe were normalized through z-transformations 
across the 308 DKA parcels within each donor. The final output was 
a matrix of z-scored expression values for each of 20 737 genes 
mapped onto the 308 DKA parcels.

Spatiotemporal gene expression

We determined how genes associated with the FCD distribution are 
spatially and temporally regulated throughout pre- and postnatal 
development. To this end, we used PsychENCODE BrainSpan 
(http://development.psychencode.org),36 a dataset including 
tissue-level mRNA-sequencing of 607 samples across 16 anatomic
al brain regions of 41 post-mortem human brains ranging from 
eight postconceptional weeks to 40 postnatal years (18 females; 
post-mortem interval = 12.9 ± 10.4 h; tissue pH = 6.5 ± 0.3; RNA in
tegrity number = 8.8 ± 1). After bulk tissue mRNA-sequencing, this 
dataset has yielded expression levels for 60 154 genes. The final out
put consisted of a matrix of reads per kilobase million transcript 

Table 1 Site-specific demographics

Sample 
size (n)

FCD IIA/ 
IIB

Age 
(years)

Sex 
(female/ 

male)

Age at 
onset 
(years)

All 337 134/203 22.2 ± 12.7 153/184 7.6 ± 6.7
S1 114 55/59 24.8 ± 10.5 56/58 9.1 ± 7.1
S2 8 3/5 10.5 ± 6.4 2/6 5.5 ± 4.2
S3 10 2/8 25.3 ± 14.2 5/5 7.2 ± 7.4
S4 43 6/37 24.3 ± 14.4 20/23 7.3 ± 7.6
S5 18 9/9 6.8 ± 5.6 8/10 5.6 ± 4.1
S6 22 13/9 17.4 ± 13.5 8/14 5.0 ± 4.8
S7 11 4/7 30.8 ± 14.0 7/4 4.1 ± 3.1
S8 14 3/11 29.1 ± 11.8 5/9 7.5 ± 5.6
S9 8 0/8 31.9 ± 15.3 3/5 8.9 ± 4.7
S10 14 7/7 25.3 ± 7.5 6/8 9.9 ± 5.6
S11 11 6/5 20.8 ± 6.8 7/4 6.8 ± 8.2
S12 42 17/25 17.0 ± 10.7 17/25 6.6 ± 5.8
S13 22 9/13 20.9 ± 15.5 9/13 7.1 ± 8.6

Data for age and age at onset are presented as mean ± standard deviation.
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expression level for each of 17 584 genes overlapping with the 
20 737 genes from the AHBA atlas.

Developmental axes of cortical network organization

Gradient axes of cortical structural and functional network organiza
tion are shaped by gene expression and cytoarchitecture during the 
pre- and postnatal development. The antero-posterior axis relates to 
the prenatal timetable of neurogenesis and growth24-26; we derived 
this axis from a heritability analysis of structural covariance net
works13 mapped on the Schaefer 400 parcellations.46 Structural and 
functional hierarchical axes are thought to mature during late prenatal 
and early postnatal circuit development31; we derived these axes from 
MRI-based covariance of microstructural profiles28 and resting-state 
functional connectivity,23 which we mapped to the Schaefer 400 par
cellations using the BrainSpace toolbox (https://github.com/MICA- 
MNI/BrainSpace).49 The FCD distribution and developmental axes 
were mapped to Schaefer 400 parcellations prior to correlation ana
lysis to achieve anatomical correspondence between them.

Statistical analysis

Multivariate analysis

Cortex-wide linear models assessed associations of regional FCD 
probability with histological markers and neurodevelopmental 
axes. For the gene expression analysis, given the high dimensional
ity of AHBA data, we used partial least squares (PLS) regression, a 
multivariate linear model, to uncover weighted combinations of 
genes (or PLS components) that best explained the regional vari
ance in FCD probability. The statistical significance of the variance 
explained by the PLS components was tested based on 10 000 spin 
permutations of the FCD distribution, accounting for spatial auto
correlations.50 The regional expression profile of each PLS compo
nent was defined as the average of the spatial expression profile 
of 20 757 genes, adjusted by their PLS weight; weight stability was 
estimated by dividing the PLS weight by the bootstrap SD.

Enrichment analysis

A web-based gene set analysis toolkit (https://webgestalt.org)51 was 
utilized to uncover biological processes enriched in the list of genes 
whose bootstrap weights (absolute value) were ranked within the 
top 10 percentile of 20 757 genes. In other words, this analysis quanti
fied the significance and enrichment ratio, namely the number of 
PLS-derived genes overlapping with each biological process divided 
by the number of genes expected to overlap by random permutations.

Spatiotemporal gene expression profiles

Using the PsychENCODE BrainSpan dataset, we calculated the 
spatiotemporal profile for each PLS component obtained in the 
gene expression analysis. This profile, defined as the regional aver
age of each gene’s expression level weighted by its bootstrap 
weight, was obtained across 16 cortical regions and time points 
based on major neurodevelopmental milestones derived from 
whole-brain transcriptomic signatures.52 Student’s t-tests com
pared the expression levels between time windows, and between 
different regions within time windows.

Specificity analysis

We assessed whether known genes of the pathways causing FCD 
via somatic mutations were enriched in the PLS components, 

including the PI3K–AKT–mTOR pathway,5,6,38,53,54 the PI3K–PTEN– 
AKT–TSC–RHEB pathway,6,53,55-57 the TSC1–TSC2 complex,58-61 the 
GATOR1 complex6,55,57,59,62-65 and other reported variants (IRS1, 
RAB6B, ZNF337, RALA and HTR6).61 These genes are listed in 
Supplementary Table 1. We also assessed associations with risk 
genes of focal epilepsy with hippocampal sclerosis, generalized epi
lepsy and all epilepsies as determined by a recent genome-wide as
sociation study (GWAS),40 neurodevelopmental conditions, namely 
autism66 and bipolar spectrum.67 Finally, our specificity analysis in
cluded frontotemporal dementia68 due to the preferential involve
ment of the frontal lobe.

For each PLS component, we quantified the enrichment ratio 
(ER; defined as the difference between the mean bootstrap weight 
of the candidate genes and the mean bootstrap weight of the 
same number of randomly permuted genes), which was then di
vided by the standard deviation weight of the permutated genes. 
Significance was determined by percentile of the bootstrap weight 
of the candidate genes relative to the bootstrap weights of random
ly selected genes from 10 000 permutations. Positive/negative ER of 
a given condition indicates that the risk genes are expressed to a 
higher/lower degree relative to the baseline expression level. In 
addition, the function of the risk genes needs to be considered 
when interpreting ER. For example, the FCD candidate genes are in
hibitory regulators of mTOR pathway; thus, negative ER for these 
genes indicates activation of mTOR pathway.

Corrections for multiple comparisons

For all spatial correlation analyses, findings were corrected using 
spin permutation tests at Pspin = 0.05.50 Remaining results were cor
rected for multiple comparisons using false discovery rate (FDR) at 
0.05.69

Data availability

The data supporting findings of this study are available from the 
corresponding author upon request. The datasets are not publicly 
available as they contain information that could compromise the 
privacy of the research participants.

Results
Cortex-wide MRI distribution of focal cortical 
dysplasia

The vertex-wise MRI mapping of FCD lesions across the cortex 
(Fig. 1) showed aggregation within the frontal lobe, particularly in 
prefrontal (dorsolateral, ventrolateral, dorsomedial and medial 
frontopolar; Brodmann areas 4, 9, 10, 44, 45, 46, 57) and cingulate 
(anterior-mid and pre-genual; Brodmann areas 24, 32, 33) cortices. 
The reliability of these areas was supported by higher within- 
sample and cross-site certainty as compared to the other regions. 
Lobar mapping also confirmed higher occurrence in the frontal 
lobe compared to other areas, even after normalizing for lobar sur
face area.

Association between focal cortical dysplasia 
distribution and cytoarchitecture

With respect to the von Economo and Koskinas data (Fig. 2), map
ping 43 regions per hemisphere, we found a positive correlation be
tween FCD distribution and cortical thickness (R = 0.35, Pspin < 0.05) 
and cell size (R = 0.46, Pspin < 0.05) and a negative correlation with 
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Figure 1 Cortex-wide FCD distribution. (A) For each patient, the FCD lesion was manually segmented on MRI and mapped onto its cortical surface. (B) 
Map of FCD distribution. (C) Reliability analysis. Within-sample and cross-site robustness of regional FCD probability is high where the FCD probability 
is high. (D) Lobar distribution. The spider plot of the FCD distribution across lobes demonstrates remarkable preference towards the frontal lobe, which 
holds after normalizing for the surface area of each lobe (dotted line).

Figure 2 Associations between FCD distribution and histological measures. Plots show correlations between FCD probability and cortical thickness, 
cell size and cell density derived from the von Economo–Koskinas atlas (A), as well as cell density (in arbitrary units, a.u.) indexed by optical density of 
silver-stained cells in the BigBrain atlas (B). In the scatterplots, x- and y-axes represent FCD probability (in %) and histological quantities, respectively; 
dots indicate 308 parcels of the DKA. Colour-coding is identical for brain maps and dots; Pspin indicates P-value after adjusting for spatial 
autocorrelation.
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Figure 3 Cortex-wide association between FCD topography and gene expression. (A) PLS regression identified weighted combinations of genes, or PLS 
components, and their spatial expression profiles that best explained the regional variance in FCD distribution, or per cent variance explained; Pspin 

indicates P-value after adjusting for spatial autocorrelation). Inputs to PLS include the whole-brain gene expression data matrix (parcels by genes) 
and FCD distribution across parcels (in %). Outputs include gene weights (genes by components), gene spatial profiles (parcels by components) and 
per cent variance explained by PLS components. (B) Maps of gene expression. The colour scale indicates the score for PLS-1 and -2, namely the weighted 
average expression level of 20 737. (C) Gene enrichment analysis. Genes associated with PLS-1 were enriched for epigenetic, RNA and post-translational                                                                                                                                                                                                                                                 

(Continued) 
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cell density (R = −0.52, Pspin < 0.001). We also found a negative cor
relation with cell density obtained from the BigBrain atlas (R =  
−0.34, Pspin < 0.01). In other words, frontal lobe areas with the high
est probability of lesions were those displaying lower neuronal 
density, larger neurons and higher cortical thickness.

Transcriptomic associations and relation to 
spatiotemporal gene expression

Two PLS components explained 25% (PLS-1: Pspin < 0.001) and 27% 
(PLS-2: Pspin = 0.03) of the covariance between the FCD probability 
and AHBA gene expression (Fig. 3). As shown by the gene enrich
ment analysis, PLS-1 reflected regulation at epigenetic, RNA and 
post-translational levels, as well as covalent chromatin modifica
tion and chromosome organization (FDR < 0.05), both critical for 
mitotic cell division and differentiation. Conversely, PLS-2 was 
mainly characterized by general synaptic organization and activity 
(FDR < 0.05) and marginally by glutamate receptor signalling (FDR <  
0.1).

Evaluating the developmental spatiotemporal trajectories, the 
expression of genes associated with PLS-1 sharply increased from 
early to late foetal stages (FDR < 0.05), plateaued during infancy 
and childhood and decreased thereafter (FDR < 0.05). Conversely, 
the expression of genes associated with PLS-2 showed a monotonic 
increase from early foetal stage to adulthood (FDR < 0.05). 
Expressions were more marked in the frontal lobe, with a 
fronto-occipital gradient for PLS-1 and a fronto-temporal gradient 
for PLS-2. We did not find differential associations between early 
and late-onset lesional distribution and the PLS components.

Supplementary Table 1 lists the risk genes used for each condi
tion. Specificity analysis revealed that PLS-1 and PLS-2 were 

enriched for the risk genes of all epilepsies (PLS-1: FDR = 0.08; 
ER = −2.60; PLS-2: FDR < 0.001, ER = −3.01), with PLS-1 additionally 
enriched for genes causing FCD via somatic mutations (P < 0.05, 
ER = −1.99) and risk genes of generalized epilepsy (FDR = 0.08, 
ER = −2.6). Neither PLS showed associations to genes for focal epi
lepsy with hippocampal sclerosis, frontotemporal dementia, bipo
lar or autism spectrum disorders; Supplementary Table 2
provides uncorrected P-values for the enrichment of the GWAS 
risk genes.

Relation to developmental axes of cortical 
organization

The multisite-derived FCD distribution showed a strong positive as
sociation with the anterior region of the antero-posterior axis de
rived from heritability analysis of interregional structural 
covariance of cortical thickness (R = 0.51, Pspin < 0.001), but not 
with structural (R = 0.12, P = 0.37) and functional (R = −0.07, P =  
0.92) hierarchical axes (Fig. 4).

Discussion
We systematically investigated the cellular, genetic and organiza
tional features of cortices harbouring FCD. Mapping the cortex- 
wide MRI distribution of 337 histologically verified lesions collected 
from 13 sites worldwide, we found a propensity for the frontal lobe. 
Associations with histological markers derived from Von Economo 
and Koskinas and BigBrain atlases showed that in the healthy brain 
these areas display lower neuronal density, larger neurons and 
thicker cortices. Using whole-brain and spatiotemporal gene ex
pression datasets, we identified two genetic factors related to FCD 

Figure 3 Continued 
levels as well as covalent chromatin modification and chromosome organization; and PLS-2 for general synapse organization and activity. In the vol
cano plots, the x-axis indicates log2 of enrichment ratio and the y-axis indicates -log10 of FDR. Colour codes indicate the number of genes related to the 
biological processes that overlap with the input list of top 10 percentile genes; upper/lower dotted lines indicate FDR = 0.05/0.1. (D) Developmental 
spatiotemporal trajectory. The expression of genes associated with PLS-1 sharply increased from early to late foetal stages, plateaued during infancy 
and childhood, and decreased thereafter. Conversely, PLS-2 showed monotonic increase from early foetal stage to adulthood. In both instances, ex
pressions were more marked in the frontal lobe. Dots represent cortical samples at a given time point colour-coded by lobes; dotted lines connecting 
dots correspond to the same region of interest. Thick coloured lines connect the average of samples within each time window, thereby showing the 
overall trajectory. Asterisks indicate FDR < 0.05. (E) Specificity analysis. PLS-1 was significantly enriched for FCD pathogenic genes; the histogram 
shows bootstrap weights of 10 000 permutations; the dotted line indicates the bootstrap weight of the candidate genes. In relation to GWAS-risk genes, 
PLS-2 (blue) was enriched for genes associated with all epilepsies, while PLS-1 (red) was marginally enriched for those associated with all and general
ized epilepsies. Top dotted line indicates FDR = 0.05; bottom dotted line indicates FDR = 0.1.

Figure 3 Continued
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distribution: one defined by prenatal regulation of gene expression 
and chromosome organization and another related to postnatal 
synapse organization and activity driving neural circuits.70 At 
macroscale, FCD distribution was associated with the antero- 
posterior organizational axis reflective of the timetable of neuro
genesis. Concordant with a causal role of atypical neuroglial 
proliferation and growth, our results indicate that FCD-vulnerable 
cortices display cytoarchitectural, molecular and organizational 
properties indicative of earlier termination of neurogenesis and ini
tiation of cell growth. Our findings also suggest a potential contri
bution of postnatal synaptogenesis and circuit development to 
FCD epileptogenicity.

While propensity for frontal lobe involvement is in keeping with 
previous observations,1,9-11 our multisite dataset refined this 
knowledge by demonstrating locoregional vulnerability of pre
frontal and fronto-limbic cortices, the consistency of which was 
supported by high within-sample and cross-site reliability. 
Notably, normalizing for lobar surface did not modify results, at
testing that such susceptibility is not merely due to the frontal 
lobe’s larger size, but rather linked to intrinsic developmental, like
ly multifactorial vulnerability. With respect to cytoarchitectural 
markers, frontal cortices are typified by lower neuronal density, lar
ger cell soma and thicker grey matter. Given that these are also key 
histopathological traits of FCD,2,71 the association we found may 
hint at potential pathophysiological developmental processes 
linked to intrinsic anatomical characteristics of the prefrontal 
and fronto-limbic cortices. In this context, the timetables of neuro
genesis and synaptogenesis of the prefrontal cortices are distinct 
from other cortices,72 as they undergo earlier initiation of prolifer
ation, transition from symmetric (cloning) to asymmetric (differen
tiation) division, reduction of cell cycle rates and termination of 
neurogenesis, resulting in lower neuronal density. This is followed 
by early initiation of neuronal growth leading to larger soma and 
more complex dendritic arborization of frontal relative to occipital 
cortices.24-26 Hence, although subtle somatic mutations can occur 
randomly throughout the developing cortex,73 this tighter regula
tion of neurogenesis in the frontal cortex may explain its heigh
tened susceptibility to harbouring FCD. This longer period of cell 
growth sets the basis for the frontal neurons to undergo a longer 

period of synaptogenesis,72,74-76 resulting in the overproduction of 
synapses and a protracted period of pruning.74,75,77,78 Similarly, 
limbic cortices, marked by agranular or dysgranular laminar pat
terns, develop earlier and undergo longer period of synaptic plasti
city through adulthood relative to the isocortex.79,80 Fronto-limbic 
cortices have shown vulnerability for other developmental disor
ders, such as schizophrenia81,82 and autism,83-86 while temporo- 
limbic cortices preferentially harbour neurodegenerative disorders, 
namely Alzheimer’s and Parkinson’s diseases.87-90 Interestingly, 
tau pathology has been suggested to mediate premature neurode
generation and cell injury in FCD.91,92 The frontal and limbic re
gions have been shown to become central hubs in the mature 
cortical network architecture, which also render themselves vul
nerable to structural pathology in numerous lesional and degenera
tive conditions.93,94

Contextualizing lesional distribution within axes of develop
mental cortical organization revealed that FCD preferentially oc
curs in the rostral portion of the anterior–posterior axis defined 
by genetically determined interregional synchrony of cortical de
velopment.13,95,96 Given that this axis reflects the prenatal time
table of neurogenesis and cell growth, the rostral concentration of 
FCD supports the predisposing roles of aberrant neurogenesis and 
cell growth as contributors to the histopathological make up of 
FCD. In contrast, FCD distribution was disassociated from the 
sensory-association axis established during late prenatal and post
natal neural circuit development,31 a finding consistent with the 
prenatal occurrence of this malformation.3 A potential genetic 
underpinning of FCD distribution was also suggested assessing as
sociations to whole-brain gene expression. Indeed, transcriptomic 
associations based on data-driven PLS regression uncovered a com
ponent (PLS-1) reflecting regulation of gene expression at epigenet
ic, RNA and post-translational levels, as well as covalent chromatin 
modification and chromosome organization. Chromatin architec
ture is tightly coupled to mitotic cell cycle and fate. As such, its 
modification regulated by epigenetic, transcriptional and post- 
transcriptional mechanisms plays a key role in cell division97 and 
differentiation.98 Chromosome organization, which involves as
sembly, arrangement or disassembly of chromosomes, is the pro
cess that allows the parent cell to replicate its DNA such that 

Figure 4 Relation to developmental axes of cortical organization. FCD distribution showed a strong association with the anterior region of the antero- 
posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness (A), but not with structural (B) and functional 
(C) hierarchical axes; x- and y-axes represent the FCD probability (in %) and the rank along the gradient axes, also represented as maps. The colour scale 
represents the percentage of patients in whom the FCD is located at a given vertex.
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each daughter cell receives a copy during mitosis.99 Therefore, 
within the cortex, PLS-1 likely represents molecular mechanisms 
underpinning neuroglial proliferation and differentiation. On the 
other hand, PLS-2 was related to general synaptic organization 
and activity, circuit organization,37 as well as glutamate receptor 
signalling. Evaluating the developmental spatiotemporal trajector
ies, PLS-1 expression sharply increased from the early foetal stage 
to late foetal stage, while PLS-2 expression showed steady increase 
from foetal stages to adulthood. The relevance of these PLS compo
nents was supported by the disease specificity analysis. Indeed, 
while PLS-1 and -2 were both associated with risk genes for all epi
lepsies, PLS-1 was additionally associated with genes causing FCD 
via somatic mutations and risk genes of generalized seizures. 
Therefore, on one hand, it is conceivable that PLS-1 may indicate 
early cortical vulnerability to aberrant neurogenesis and cell 
growth, ultimately resulting in a dysplastic lesion. On the other 
hand, PLS-2 may account for the susceptibility to aberrant synapto
genesis and neurotransmitter systems for hyperexcitable circuits 
during a latent period following the precipitating lesion,100 thereby 
promoting epileptogenesis. Although synaptic and white matter 
maturation have been postulated to contribute to FCD occur
rence,101 the presented work is the first to provide evidence for 
the role of postnatal synaptogenesis and circuit development for 
FCD epileptogenesis.

Associations with cytoarchitecture, whole-brain and spatio
temporal gene expression, as well as macroscale organizational 
axes, collectively suggest a vulnerability continuum spanning from 
prenatal neurogenesis and cell growth to postnatal synaptogenesis. 
Although age at epilepsy onset has been postulated to account at least 
partly to variability in FCD histological features,102 the link to molecu
lar or cellular pathogenic processes remains still unclear. In our study, 
while we did not find differential associations between early and late 
disease onset lesional distribution with the PLS components, our find
ings clearly establish developmental underpinnings of FCD occur
rence. To date, a plethora of molecular studies of resected FCD 
tissues have established a causal role of somatic variants that lead 
to hyperactivity of the mTOR pathway.5,38,39,57,59,61,103-105 A recent 
large-scale multiomic study of somatic mutations suggested genes 
implicated in calcium dynamics and synaptic function as potential 
causes for epileptogenesis.8 Nevertheless, given that the variant alle
lic frequency is typically below 5% in FCD, uncovering variants dis
tinct from mTOR pathway may be difficult, even with a large 
sample of resected lesions.59 Notably, the present study circumvents 
this logistical and statistical burdens by identifying the genetic finger
prints of the FCD-prone cortices based on non-invasive imaging and 
offers novel insights that may be difficult to obtain otherwise. It has 
been shown that somatic activating mutations in the mTOR pathway 
cause a continuum of malformations, spanning from hemimegaloen
cephaly to posterior quadrantic dysplasia. Although these malforma
tions share some of the genetic determinants with FCD, the time of 
molecular insult, as well as additional genetic mutations, may lead 
to varying phenotypes, as suggested by the two-hit germline and som
atic mechanisms in hemimegaloencephaly.57 As for the posterior 
quadrantic dysplasia, prolonged neurogenesis in the posterior isocor
tex involving higher number and rate of proliferation cycles translates 
to a greater amplification of abnormal founder cells lesion.106 Subtle 
structural, possibly neurodevelopmental anomalies have been re
ported in generalized genetic epilepsy (GGE) and have been described 
as microdysgenesis in neuropathological studies107,108 that share 
histological similarity with FCD type IA.109 However, such reports 
have been sparse, as GGE patients generally do not undergo surgery. 
Furthermore, the replicability of identifying microdysgenesis in GGE 

has been limited, thereby not establishing it as a common feature of 
this condition.110 In terms of genotype–phenotype associations, while 
the cellular mechanisms that drive the histopathological features of 
dysplasia are being elucidated,7 those underlying circuit-level altera
tions that drive recurrent seizures in this condition remain elusive. 
Conceivably, mitigating the circuit-level alterations precipitated by 
FCD may reduce seizures.100 Hence, future work should elucidate 
the molecular and cellular mechanisms of aberrant postnatal synap
togenesis that drive circuit hyperexcitability and identify novel thera
peutic targets, possibly combined with mTOR inhibitors, for improved 
seizure control.
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