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Summary
Background For patients with early-stage breast cancers, neoadjuvant treatment is recommended for non-luminal
tumors instead of luminal tumors. Preoperative distinguish between luminal and non-luminal cancers at early
stages will facilitate treatment decisions making. However, the molecular immunohistochemical subtypes based
on biopsy specimens are not always consistent with final results based on surgical specimens due to the high
intra-tumoral heterogeneity. Given that, we aimed to develop and validate a deep learning radiopathomics (DLRP)
model to preoperatively distinguish between luminal and non-luminal breast cancers at early stages based on
preoperative ultrasound (US) images, and hematoxylin and eosin (H&E)-stained biopsy slides.

Methods This multicentre study included three cohorts from a prospective study conducted by our team and
registered on the Chinese Clinical Trial Registry (ChiCTR1900027497). Between January 2019 and August 2021, 1809
US images and 603 H&E-stained whole slide images (WSIs) from 603 patients with early-stage breast cancers were
obtained. A Resnet18 model pre-trained on ImageNet and a multi-instance learning based attention model were used
to extract the features of US and WSIs, respectively. An US-guided Co-Attention module (UCA) was designed for
feature fusion of US and WSIs. The DLRP model was constructed based on these three feature sets including
deep learning US feature, deep learning WSIs feature and UCA-fused feature from a training cohort (1467 US
images and 489 WSIs from 489 patients). The DLRP model’s diagnostic performance was validated in an internal
validation cohort (342 US images and 114 WSIs from 114 patients) and an external test cohort (279 US images
and 90 WSIs from 90 patients). We also compared diagnostic efficacy of the DLRP model with that of deep
learning radiomics model and deep learning pathomics model in the external test cohort.

Findings The DLRP yielded high performance with area under the curve (AUC) values of 0.929 (95% CI 0.865–0.968)
in the internal validation cohort, and 0.900 (95% CI 0.816–0.953) in the external test cohort. The DLRP also out-
performed deep learning radiomics model based on US images only (AUC 0.815 [0.719–0.889], p < 0.027) and deep
learning pathomics model based on WSIs only (AUC 0.802 [0.704–0.878], p < 0.013) in the external test cohort.

Interpretation The DLRP can effectively distinguish between luminal and non-luminal breast cancers at early stages
before surgery based on pretherapeutic US images and biopsy H&E-stained WSIs, providing a tool to facilitate
treatment decision making in early-stage breast cancers.
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Research in context

Evidence before this study
We searched PubMed for publications on artificial intelligence
strategies to distinguish between luminal and non-luminal
breast cancers using the search query (“deep learning” OR
“machine learning” OR “artificial intelligence” OR “radiomics”
OR “radiopathomics” OR “whole slide images” OR
“pathological images”) AND (“molecular subtype” OR
“luminal” OR “non-luminal” OR “hormonal”) AND “breast
cancer”), without date or language restrictions. Nineteen
original studies that either used radiomics- or pathomics-
based algorithms to classify luminal and non-luminal breast
cancers were found. Most of these studies targeted all stages
of breast cancer rather than early-stage disease only. Among
them, sixteen researches applied radiomics algorithms to
distinguish between luminal and non-luminal cancers, but
most of which were based on MRI with small sample size.
Three researches applied pathomics based on deep learning
algorithms and achieved good predictive performance in
distinguishing between luminal and non-luminal breast
cancers, with AUC of 0.90–0.92. However, none of these
studies employed HE-stained slides of biopsied tissue samples
to develop models for predicting final HR status based on IHC
staining of surgical specimens, which may limit the clinical
application of these model in aiding decision-making
preoperatively.

Added value of this study
The proposed deep learning radiopathomics (DLRP) model
had high performance in distinguishing between luminal and

non-luminal breast cancers at early stages, with AUCs of
0.929 and 0.900 in internal validation corhort and external
test corhort, respectively. The DLRP model outperformed
single-modality models (deep learning radiomics model based
on US images only and deep learning pathomics model based
on WSIs only). This work could lead to a reduction in
unnecessary neoadjuvant treatment of luminal breast cancer,
thereby potentially enhancing personalized medical decision
making and minimizing the burden of healthcare systems.

Implications of all the available evidence
Due to sampling errors in the context of intratumoral
heterogeneity, inconsistent results may be found between
immunohistochemical staining of biopsied samples and
surgical resection specimens. By using deep learning strategies
analysing preoperative gray-scale US images and H&E-stained
tissue sections to distinguish between luminal and non-
luminal breast cancers at early stages, a more accurate
classification system can be established. In clinical practice, the
DLRP has the potential to tailor neoadjuvant treatment for
patients with early breast cancer. For patients predicted to
have non-luminal breast cancer, neoadjuvant treatment
should be considered according to the NCCN guideline. In
contrast, for patients predicted to have luminal breast cancer,
neoadjuvant treatment may not be necessary due to its
typically good prognosis and relatively low rate of achieving a
pathologic complete response after treatment.
Introduction
Breast cancer causes the leading cancer-related death in
women worldwide.1 It is a biologically heterogeneous
disease, with several recognized molecular subtypes
corresponding to different responses to treatments and
prognoses. Luminal subtypes are characterized by high
expression of estrogen receptors (ER) and progesterone
receptors (PR), which can be effectively treated with
hormone therapy.2 Compared with luminal subtypes,
non-luminal tumors including human epidermal
growth factor receptor type 2 (HER2)-enriched and
triple-negative subtypes, appear to be more aggressive
with poorer prognoses.3,4 Fortunately, non-luminal tu-
mors are more sensitive to neoadjuvant treatment, with
a pathological complete response (pCR) rate of
20–40%5,6; patients who achieve pCR have a better
prognosis.7 Thus, current guidelines of National
Comprehensive Cancer Network for breast cancer
recommend neoadjuvant therapy for clinical T1 and T2
non-luminal breast cancers to acquire the treatment
response and pCR status.8 Therefore, preoperatively
identifying luminal from non-luminal tumors for pa-
tients with early-stage breast cancer will facilitate treat-
ment decision.

Currently, immunohistochemical (IHC) staining of
breast cancer tissues acquired via preoperative core
needle biopsy (CNB) is widely used for molecular sub-
typing of breast cancer. However, this process remains
some limitations, including being time-consuming and
expensive. Samples with poor quality may affect
assessment of ER and PR levels.9,10 Besides, biopsy
specimens fail to reflect the high intra-tumoral hetero-
geneity, which may result in inaccurate classification of
IHC-based molecular subtypes preoperatively.11 Chen
et al. reported moderate concordance rates for immu-
nohistochemical results of ER (kappa values 0.52) and
PR (kappa values 0.44) between the CNB and the sur-
gical specimens.12 Thus, a more reliable approach is
www.thelancet.com Vol 94 August, 2023
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urgently required to identify molecular subtypes
preoperatively.

Ultrasound (US) is widely used to characterize breast
lesions preoperatively. Previous studies have demon-
strated that certain ultrasonographic features on gray-
scale images, such as margins and posterior acoustic
features, were valuable for predicting molecular subtype
of breast cancer.13,14 However, there is high inter- and
intra-observer variability in radiologists’ visual inter-
pretation of US images for breast lesions.15 Deep
learning method is an emerging technique for auto-
matically extracting high-throughput phenotype (radio-
mics quantitative features) from medical images.16

Previous studies have shown that deep learning based
on grey-scale US images can predict molecular subtyp-
ing of breast cancer preoperatively.17,18 But the area un-
der the curve (AUC) for distinguishing between luminal
and non-luminal tumors was only 0.83 and 0.8717, which
is still insufficient in clinical application.

Morphological characteristics of breast cancer
captured in the routine hematoxylin and eosin (H&E)
staining may reflect the underlying molecular or genetic
information.19,20 Digital pathology allows quantitative
analysis of digitized whole slide imaging (WSI) of his-
tological specimens using machine learning. Previous
studies have shown that morphological features of H&E-
stained WSI extracted by machine learning approaches
can predict the expression of several single biomarkers,
such as ER and HER2, in breast cancer.10,21 However,
few studies have been conducted for molecular subtyp-
ing using biopsy WSI before surgery.

Emerging evidence suggested that integrating
multimodal data could complement tumor heterogene-
ity at multiple scales and enhance the predictive power
of existing models.22,23 A recent study showed that
radiopathomics, combining the radiological information
of the whole tumor at the macroscale and morphological
features of local lesion at the microscale, could achieve
better performance than that of the monomodal models
based on radiological or pathological data in predicting
the response of rectal cancer to neoadjuvant therapy.24

Thus, we hypothesized that combining breast US and
biopsy WSI analysis might yield a promising efficiency
in preoperatively distinguishing between luminal and
non-luminal breast cancers at early stages. In this study,
we aimed to develop and validate a deep learning radi-
opathomics model using pretreatment US images and
H&E-stained WSI of biopsy specimens for distinguish-
ing between luminal and non-luminal tumors in pa-
tients with early-stage breast cancer.
Methods
Ethics
This study population consisted of patients with early
breast cancer from an ongoing, prospective study con-
ducted by our research team and registered on the
www.thelancet.com Vol 94 August, 2023
Chinese Clinical Trial Registry (ChiCTR1900027497).
This study was approved by Sun Yat-sen University
Cancer Center’s Institutional Review Board (reference
number: SL-G2022-193-02). Verbal informed consent
was obtained from all patients and their families.

Study population
The same inclusion and exclusion criteria were used for
all institutions. All eligible patients from the Sun Yat-
Sen University Cancer Center (SYSUCC), between
January 2019 and August 2021, were included as the
training set and internal validation sets. From
September 2020 to August 2021, the eligible patients
from Peking University Shenzhen Hospital (PUSZH)
and the First People’s Hospital of Foshan (FPHFS),
were included as the external test set.

The inclusion criteria included: (a) Women who had
suspicious breast cancer that can be detected by US; (b)
Underwent US-guided CNB within one day after breast
US examination; (c) Underwent breast surgery within
1–2 weeks after CNB. The exclusion criteria included:
(a) Patients who had a history of the ipsilateral breast
cancer, underwent preoperatively systemic therapy or
radiotherapy; (b) The maximum tumor diameter excee-
ded the measurable range of US transducers (clinical
T3-4 tumors); (c) Benign lesions or carcinoma in situ
diagnosed by CNB or surgical pathology; (d) Lymphoma
or metastatic tumor; (e) Lack of immunohistochemical
results for the surgical specimen’s ER/PR status; (f)
Missing US images or WSI. The flowchart of patients’
selection and process of dataset construction are shown
in Fig. 1.

US examination
One of six experienced radiologists performed breast US
examination following the standard practice protocol.
Several ultrasound equipment from manufacturers
including GE Healthcare, Mindray, Siemens, Philips,
Samsung, Canon, HITACHI, and Supersonic Aixplorer,
all equipped with a linear transducer (with a frequency
range of 10–18 MHz), were used to generate breast US
images. To ensure that the model was robust to subtle
differences in the position among lesions, three grey-
scale US images, including an unmarked image at the
largest long–axis plane of the breast lesion and two
unmarked parallel images with a distance of 2–10 mm
from the largest long–axis plane, were obtained for each
lesion by using one of the above US equipment. Tumor
size was determined as the maximum diameter
measured in the long axis of the lesion. All images were
stored in DICOM format for subsequent analysis.

Biopsy and WSI acquisition
US-guided CNB was performed by using a 16-gauge
core needle. Biopsy materials with two or three cores
were obtained for the diagnosis of each lesion and
immediately fixed in 10% neutral buffered formalin for
3
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Fig. 1: The flowchart of patients’ selection. In total, 603 patients with 603 breast cancers were included as training set (489 lesions) and
independent validation set (114 lesions), and 90 patients with 90 breast cancers were included as independent test set.
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6–72 h. Samples were embedded in paraffin and then
were sliced at 5 mm intervals. Each slide was stained
with H&E. For each patient, all H&E-stained slides were
evaluated by one senior breast pathologist and one slide
with the maximum number of tumor-rich areas was
chose for digital scanning using the Zeiss AxioScan Z1
(Carl Zeiss AG, Oberkochen, Germany) with a 20X or
40X objective to acquire WSI for analysis. A total of 304
WSIs were scanned by using 20X objectives, and the
remainder were scanned by using 40X objectives.

Data analysis and annotation
Clinical data including patients’ age, tumor size,
menopausal status and breast imaging reporting and
data system (BI-RADS) category were recorded. Histo-
pathologic data including histologic type and IHC re-
sults of ER status, PR status, HER2 status, and Ki-67
based on the whole tumor surgical specimen were also
recorded. All breast tumors were classified into luminal
and non-luminal subtypes according to the IHC results
of hormonal receptor (HR) status based on the whole
tumor surgical specimen. HR was deemed positive
if ≥1% of tumor cells were stained for ER or PR. All
tumors were identified as luminal subtype if HR was
positive and as non-luminal subtype if HR was negative.
All US images and WSI images of each tumor were
assigned labels consistent with the tumor classification.

Data preprocessing
Before being input into the deep learning model, the
paired US and WSI data of each case needs to be pre-
processed. The region of interest (ROI) of US image is
manually annotated by experienced radiologists, which is
the minimum bounding rectangle covering the tumor
area. The ROI was cropped from the original US image
according to the annotation, and the minimum bounding
rectangle expanded by 20% to include richer margins and
posterior acoustic features. To avoid overfitting, online data
augmentation pipeline was applied for each image during
training, including resize, random crop, random hori-
zontal flip, random brightness adjusting and normalize.

The preprocessing steps of WSI images include tis-
sue segmentation, image patches extraction and feature
extraction. Typical regions of invasive cancer on WSI
www.thelancet.com Vol 94 August, 2023
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were manually delineated by a trained doctor using the
QuPath software (version 0.2.0) and rechecked by a se-
nior breast pathologist. We performed automated seg-
mentation of tissue using public CLAM repository for
WSI analysis.25 As a comparison, an experienced
pathologist simultaneously performed manual annota-
tion to extract tissue area. Following segmentation, py-
ramidal multi-scale features were extracted by
integrating WSI features from different magnifications.
Specifically, a patch with a size of 256*256 at 5X
magnification contains 4 256*256 sub-patches at 10X
magnification and 16 256*256 sub-patches at 20X
magnification (Supplementary Fig. S1). Subsequently,
following the idea of transfer learning, the pre-trained
ResNet50 model was used to extract feature embed-
ding of image patches, via spatial average pooling after
3rd residual block. Thus, for each 5X patch, we then
concatenate the 5X feature vector (1024 dimensions)
with each of the 10X features and 20X features and
obtain 16 feature vectors with 3096 dimensions. After
data preprocessing, each WSI image is converted into a
bag of 3096-dimensional feature vectors. The dataset
yields 0.78 million patches at 20X magnification with in
average about 1124 patches per bag (Supplementary
Methods 1 and Supplementary Table S1).

Model development
We randomly divided the development set into a
training set and a validation set in the ratio of 8:2. All
models were developed in the training set and were
validated in an independent internal set and tested in an
independent external set. The deep learning radio-
pathomics (DLRP) model that contains two pathways to
process US images and pathology images in parallel was
designed, and the features of both pathways were fused
through a co-attention module. The overall architecture
of the model is shown in Fig. 2. The inputs of the DLRP
model are three view US images and WSI, and the
output is the prediction of the luminal status. The in-
formation of the two modalities was separately encoded
by their respective pathways to obtain feature vectors,
while in the co-attention module, the two modal features
interact with each other through attention to obtain the
fused feature vector. Finally, the three features are input
to the classifier by concatenating to obtain the final
classification results. For comparison, a deep learning
radiomics (DLR) model was generated with US features
alone. A deep learning pathomics trained on automated
segmentation of tissue (DLP) and a deep-learning based
pathomics trained on manually annotated ROI (DLP-
manual) were also generated with WSI features alone.

In the pathway of processing US images, we used the
idea of transfer learning to encode US images using
Resnet18 model pre-trained on ImageNet (Supplementary
Methods 2 and Supplementary Table S2). Three US im-
ages from one patient were treated as a multi-view fusion
www.thelancet.com Vol 94 August, 2023
problem and Resnet18 model with shared parameters was
used as a feature extractor to extract features from each of
them. The fully connected (FC) layer was discarded to
adapt to our task. In particular, a multiresolution archi-
tecture was adopted to simulate the visual system of the
human eye, which contained a context stream and a fovea
stream that processed the raw US image and the center
region of US image, respectively.

In the pathological pathway, a multi-instance learning
based attention model was adopted for processing WSI
images. Under the multi-instance learning framework,
each WSI image was tiled in to a large number of
patches, all of which as a whole had a slide-level label.
The attention pool operation was used to aggregate the
features of all patches into slide-level representation and
perform supervised training with labels.26 This was a self-
attention operation performed on the WSI image and the
attention score as was computed by:

as =
exp {Wa(tanh (VahTs )⊙ sigm(UahTs )}

∑S
s=1exp {Wa(tanh (VahTs )⊙ sigm(UahTs )}

where Va, Ua and Wa are the learnable weights of FC
layers. Thus, the slide-level representation was calculated
by weighted average of all image patch features by the
attention score as:

hslide =∑S

s=1ashs

Due to the heterogeneity gap between the WSI repre-
sentation and US features, it was limited to only incor-
porating late-fusion to fuse US and WSI features because
it lacked the interaction between macroscopic US features
and microscopic pathological features. We introduced an
US-guided Co-Attention (UCA) module for feature fusion,
which was analogous to the standard Transformer for
cross-modal information interaction in VQA system.27 As
shown in Fig. 2, the UCA uses US features to guide the
aggregation of WSI features, where the US feature vectors
Fus are used as queries and the WSI features (Hbag , Hbag )
are used as key–value pairs. We keep each patch features
as a Value, whose corresponding Key is computed by the
patch features through a FC layer with trainable weights.
The mapping function was defined by:

CoAttnF→G(F,H) = softmax(WqFHTWT
k̅̅̅̅̅

dk
√ )WvH→Acoattn

WvH→Ĥ

where Wq, Wk, Wv are trainable weights of FC layer and
Acoattn is the co-attention vector for computing weighted
average of WSI features.
5
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Fig. 2: Workflow in developing DLRP model for distinguishing between luminal and non-luminal breast cancers at early stages. The DLRP model
contains two pathways to process US images and pathology images in parallel, and the features of both pathways were fused through a co-
attention module.
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Finally, we concatenate US features, self-attention
pathological features and US-guided pathological fea-
tures and input them into the FC layer for classification.

Heat map generation
US interpretability. Regions of US images were inter-
preted from spatial location that are relevant to molec-
ular prediction. GradCAM algorithm was utilized to
produce heat maps, which reflected the importance of
different spatial locations on the US images for pre-
dicting results.28

WSI interpretability. The visual interpretation of the
relative importance of different tissue regions for mo-
lecular prediction was performed by visualizing atten-
tion score. In the inference process, the model
generated two attention scores for each 256*256 patch
during forward propagation, one was the pathological
self-attention score, and the other is the US-guided co-
attention score. For visualization, the attention scores
were first normalized to 0 (low attention) to 1 (high
attention), and spatially registered onto the corre-
sponding patches. Then the normalized attention values
were mapped to the RGB space using colormap and
overlayed on the original WSIs with a transparency of
0.5.

Statistical analysis
The Kruskal-Wallis rank sum test and Chi-square test
were used to compare the difference in non-normal
continuous variables and categorical variables, respec-
tively. Area under the receiver operating characteristic
(ROC) curve (AUC) was used to estimate the probability
of correctly distinguishing between luminal and non-
luminal breast cancers at early stages. Difference be-
tween AUCs were compared using the Delong test.
More comprehensive metrics including sensitivity,
specificity, positive predictive values and negative pre-
dictive values were calculated. All statistics were two
sided and p-values less than 0.05 indicate significant
differences. SPSS software (V.21.0) and MedCalc soft-
ware (V.11.4.2.0) were used for statistical calculations.

Role of the funding source
The funder of the study provided the financial support,
but had no role in study design, data collection, data
analysis, data interpretation, or writing of the report. All
authors had full access to all the data and approved the
final manuscript for submission.
Results
Baseline characters
A total of 1809 US images and 603 WSIs from 603
women (median age, 51 years; range, 27–83 years) in
SYSUCC were finally obtained for model development.
There were 1467 US images and 489 WSIs from 489
women (median age, 51; range, 27–83) in the training
set and 342 US images and 114 WSIs from 114 women
(median age, 52; range, 33–77) in the internal validation
set. A total of 279 US images and 90 WSIs were ob-
tained from 90 women (median age: 52 years; range:
26–73 years) in the PUSZH and FPHFS to form an
independent test set. The median tumor size on US was
21 mm (range: 6–49 mm), 23 mm (range: 6–50 mm)
www.thelancet.com Vol 94 August, 2023
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and 20 mm (range: 7–48 mm) in training set, internal
validation set, and independent test set, respectively.

All images have a mask that segments the tumor re-
gion. The baseline characteristics of all patients and breast
cancers are provided in Table 1. No significant differences
were found in the distribution of luminal and non-
luminal breast cancers (p = 0.298) among the training
set, internal validation set, and independent test set.

Performance of DLRP and comparison with DLR and
DLP
The DLRP model accurately distinguished between
luminal and non-luminal breast cancers at early stages in
Characteristics Training set Vali

No. patients 489 114

Age (y) 51 (27–83) 52

Tumor size on US (mm) 21 (6–49) 23

Clinical T stage

T1 (<2 cm) 220 (45.0%) 40

T2 (2–5 cm) 269 (55.0%) 74

Menopausal status

premenopausal 235 (48.1%) 53

postmenopausal 254 (51.9%) 61

BI-RADS

4A 6 (1.2%) 1

4B 93 (19.0%) 15

4C 226 (46.2%) 55

5 164 (33.5%) 43

Histologic type

IDC 428 (87.5%) 98

ILC 20 (4.1%) 2

Mixed 29 (5.9%) 10

Other 12 (2.5%) 4

ER status

positive 410 (83.8%) 95

negative 79 (16.2%) 19

PR status

positive 404 (82.6%) 87

negative 85 (17.4%) 27

HER2 status

positive 123 (25.2%) 35

negative 366 (74.8%) 79

Ki-67

≥20% 344 (70.3%) 81

＜20% 145 (29.7%) 33

Molecular subtypes

Luminal 431 (88.1%) 100

Non-luminal 58 (11.9%) 14

Note: Age and tumor size on US were presented as median (range). Other data were pr
compare the difference in age, tumor size on US, clinical T stage and BI-RADS. Chi-square
and molecular subtypes. US, ultrasound; BI-RADS, breast imaging reporting and data sys
histologic type in one tumor; Other, just one histologic type other than the IDC or ILC;
factor receptor 2.

Table 1: Baseline characteristics of patients and breast cancer.

www.thelancet.com Vol 94 August, 2023
both the internal validation set (AUC 0.929 [95% CI
0.865–0.968]; ACC 0.904) and independent external test
set (AUC 0.900 [0.819–0.953]; ACC 0.878). The sensitivity
of DLRP was extremely high in internal validation set
(0.940 [0.874–0.978]) but dropped slightly to 0.892
[0.798–0.952] in independent external test set. The spec-
ificity of DLRP was relatively low (0.643 [0.351–0.872]) in
internal validation set but could reach to 0.812
[0.544–0.960] in independent external test set. The PPV
of DLRP was markedly high (0.949–0.957) in both sets,
whereas the NPV was around 0.600.

The DLRP model has superior performance in dis-
tinguishing between luminal and non-luminal breast
dation set External test set P value

90

(33–77) 53 (26–84) 0.162

(6–50) 20 (7–48) 0.003

0.144

(35.1%) 41 (45.6%)

(64.9%) 49 (54.4%)

0.804

(46.5%) 40 (44.4%)

(53.5%) 50 (55.6%)

0.260

(0.9%) 1 (1.1%)

(13.2%) 23 (25.6%)

(48.2%) 23 (25.6%)

(37.7%) 43 (47.8%)

0.206

(86.0%) 76 (84.4%)

(1.8%) 5 (5.6%)

(8.8%) 3 (3.3%)

(3.5%) 6 (6.7%)

0.814

(83.3%) 73 (81.1%)

(16.7%) 17 (18.9%)

0.130

(76.3%) 68 (75.6%)

(23.7%) 22 (24.4%)

0.343

(30.7%) 20 (22.2%)

(69.3%) 70 (77.8%)

0.863

(71.1%) 61 (67.8%)

(28.9%) 29 (32.2%)

0.298

(87.7%) 74 (82.2%)

(12.3%) 16 (17.8%)

esented as number and percentages. The Kruskal–Wallis rank sum test was used to
test was used to compare the difference in menopausal status, ER, PR, HER2, Ki-67
tem; IDC, Invasive ductal cancer; ILC, Invasive lobular cancer; Mixed, more than one
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth

7
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cancers at early stages compared with all single-modality
models (Table 2). The AUC (0.90 [0.819–0.953]) of the
DLRP model was significantly higher than DLR (AUC
0.815 [0.719–0.889], p < 0.027), DLP (AUC 0.802
[0.704–0.878], p < 0.013) and DLP-manual (AUC 0.834
[0.740–0.904], p < 0.023) models in independent external
test set. The ROCs showed that DLRP significantly
improved AUC for distinguishing between luminal and
non-luminal breast cancers at early stages compared
with the three single-modality models (Fig. 3). The
normalized confusion matrix of all models was showed
in Fig. 4. The sensitivity of DLRP model (0.892
[0.798–0.952]) was similar to that of DLR model (0.878
[0.782–0.943], p = 1.00) and significantly higher than
that of DLP model (0.419 [0.305–0.539], p < 0.0001) and
DLP-manual model (0.405 [0.293–0.526], p < 0.0001) in
independent external test set. Although the specificity of
DLRP model (0.812 [0.544–0.960]) was lower than that
of DLP-manual model (0.937 [0.698–0.998]) in inde-
pendent external test set, but no significant difference
was found between these two groups (p = 0.50). The
DLRP, DLP, and DLP-manual models displayed an
excellent PPV exceeded 0.9. The NPV of DLRP model
was much higher than that of all single-modality
models.

Ablation analysis for DLRP
The feature pyramid and co-attention module in the
DLRP model were investigated to illustrate their effects.
models AUC Sensitivity (%)

DLR model

Training set (n = 489) 0.909 (0.879, 0.933) 0.895 (0.862, 0.923)

Validation set (n = 114) 0.830 (0.748, 0.894) 0.770 (0.675, 0.848)

Test set (n = 90) 0.815a (0.719, 0.889) 0.878 (0.782, 0.943)

DLP model

Training set (n = 489) 0.882 (0.850, 0.909) 0.730 (0.686, 0.772)

Validation set (n = 114) 0.827 (0.745, 0.892) 0.660 (0.558, 0.752)

Test set (n = 90) 0.802b,d (0.704, 0.878) 0.419 (0.305, 0.539)

DLP-manual model

Training set (n = 489) 0.889 (0.857, 0.915) 0.754 (0.710, 0.794)

Validation set (n = 114) 0.872 (0.797, 0.927) 0.660 (0.558, 0.752)

Test set (n = 90) 0.834c (0.740, 0.904) 0.405 (0.293, 0.526)

DLRP model

Training set (n = 489) 0.975 (0.956, 0.987) 0.907 (0.875, 0.933)

Validation set (n = 114) 0.929 (0.865, 0.968) 0.940 (0.874, 0.978)

Test set (n = 90) 0.900 (0.819, 0.953) 0.892 (0.798, 0.952)

Note: data in parentheses are 95% confidence intervals. DLR, deep learning radiomics;
manually annotated WSI; DLRP, deep learning radiopathomics; AUC, area under the rec
predictive value. aIndicates P = 0.027, Delong et al. in comparison with DLRP model in
model in independent test set. cIndicates P = 0.023, Delong et al. in comparison with DL
with DLP-manual model in independent test set.

Table 2: Performance and Comparison of DLR, DLP, DLP-manual and DLRP fo
stages.
The results of the ablation study are summarized in
Table 3. Without the pyramidal feature and co-attention
module, the baseline1 model achieved an AUC of 0.849
[0.769–0.909] in predicting luminal and non-luminal
breast cancers, which was significantly lower than the
DLRP model (AUC 0.929 [0.865–0.968], p = 0.016). The
baseline2 model (AUC 0.863 [0.786–0.920], p = 0.356)
has a slight performance improvement compared to the
baseline1 model after using the pyramidal feature. The
baseline3 model (AUC 0.899 [0.828–0.947], p = 0.041)
uses the co-attention module on the basis of the base-
line1 model, and the performance has been greatly
improved compared with the baseline1 model.

Visual interpretation of the DLRP model
The corresponding heat maps of multiple greyscale US
images and WSI visualized the most predictive areas
and image features that the DLRP model focus on by
displaying different color distributions, as shown in
Fig. 5. The most valuable locations on US images for
distinguishing between luminal and non-luminal breast
cancers at early stages were the boundary of the tumor
and low echo area inside the tumor. The US images
from different views have complementary contributions
to the differentiate results for each lesion. The areas on
WSI that were most valuable in distinguishing between
luminal and non-luminal tumors were those that had
both apparently invasive carcinoma and abundant
collagenous stroma.
Specificity (%) PPV (%) NPV (%)

0.763 (0.634, 0.864) 0.965 (0.942, 0.981) 0.500 (0.392, 0.608)

0.786 (0.492, 0.953) 0.962 (0.894, 0.992) 0.324 (0.174, 0.505)

0.500 (0.247, 0.753) 0.890 (0.795, 0.951) 0.471 (0.230, 0.722)

0.915 (0.813, 0.972) 0.984 (0.964, 0.995) 0.318 (0.248, 0.394)

0.857 (0.572, 0.982) 0.971 (0.898, 0.996) 0.261 (0.143, 0.411)

0.875 (0.617, 0.984) 0.939 (0.798, 0.993) 0.246 (0.141, 0.378)

0.881 (0.771, 0.951) 0.979 (0.957, 0.991) 0.329 (0.257, 0.408)

0.929 (0.661, 0.998) 0.985 (0.920, 1.000) 0.277 (0.156, 0.426)

0.937 (0.698, 0.998) 0.968 (0.833, 0.999) 0.254 (0.150, 0.384)

1.000 (0.939, 1.000) 1.000 (0.991, 1.000) 0.596 (0.493, 0.693)

0.643 (0.351, 0.872) 0.949 (0.886, 0.984) 0.600 (0.323, 0.837)

0.812 (0.544, 0.960) 0.957 (0.878, 0.991) 0.619 (0.384, 0.819)

DLP, deep learning pathomics; DLP-manual, deep learning pathomics trained on
eiver operating characteristic curve; PPV, positive predictive value; NPV, Negative
independent test set. bIndicates P = 0.013, Delong et al. in comparison with DLRP
RP model in independent test set. dIndicates P = 0.352, Delong et al. in comparison

r distinguish between luminal and non-luminal breast cancers at early
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Fig. 3: Comparison of receiver operating characteristic (ROC) curves between different models for distinguishing between luminal and non-
luminal breast cancers at early stages in (a) the internal validation set and (b) the external test set. Data in parentheses are areas under
the receiver operating characteristic curves (AUCs).

Fig. 4: Normalized confusion matrix of models with the validation set (A–D) and test set (E–H). (A, E) DLR model. (B, F) DLP model. (C, G) DLP-
manual model. (D, H) DLRP model. True and predicted subtype classifications are shown on the y- and x-axes, respectively, such that the correct
predictions are shown on the diagonal from the top left to the bottom right of each matrix. The blue gradient color represents the model
accuracy for detecting each subtype. The darker the blue color, the better the model performance.

Articles
Discussion
In this study, we established a DLRP model to preop-
eratively distinguish between luminal and non-luminal
breast cancers at early stages by incorporating prether-
apeutic quantitative radiomics and pathomics features.
The DLRP model accurately distinguished between
luminal and non-luminal breast cancers at early stages
with favorable AUC, high sensitivity, and high PPV in
the independent internal and external test sets. The
DLRP model proposed in this study also had superior
www.thelancet.com Vol 94 August, 2023
performance to the radiomics model based on US fea-
tures only and the pathomics model based on histo-
morphological features only. The superior performance
of our DLRP model highlighted the potential for appli-
cation in distinguishing between luminal and non-
luminal cancers preoperatively. Since patients with the
non-luminal lesions were recommended to undergo
neoadjuvant treatment, our model may be capable of
tailoring neoadjuvant treatment for patients with early
breast cancer.
9
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Pyramid feature Co-attention AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Baseline 1 0.849 (0.769, 0.909) 0.930 (0.861, 0.971) 0.571 (0.289, 0.823) 0.940 (0.874, 0.978) 0.571 (0.289, 0.823)

Baseline 2 √ 0.863 (0.786, 0.920) 0.920 (0.848, 0.965) 0.643 (0.351, 0.872) 0.941 (0.875, 0.978) 0.583 (0.277, 0.848)

Baseline 3 √ 0.899 (0.828, 0.947) 0.930 (0.861, 0.971) 0.643 (0.351, 0.872) 0.922 (0.852, 0.966) 0.615 (0.316, 0.861)

DLRP √ √ 0.929 (0.865,0.968) 0.940 (0.874, 0.978) 0.643 (0.351, 0.872) 0.949 (0.886, 0.984) 0.600 (0.323, 0.837)

Table 3: The performance of modules utilized in the ablation study on the internal validation set.
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Many efforts have been put into predicting molecular
subtypes of breast cancer using pretherapeutic radio-
graphic images because the immunohistochemical re-
sults from the preoperative biopsy are not sufficiently
accurate.29,30 Ma et al. constructed a radiomics model
Fig. 5: Visualization of two patient examples. The corresponding heat m
tumor from a 48-year-old woman with invasive ductal carcinoma. And
WSIs (d) in a luminal tumor from a 55-year-old woman with invasive du
valuable locations on US images were the boundary of the tumor and lo
provided complementary information which contributed to differentiate
most valuable were the ones containing both apparently invasive carcino
based on conventional machine learning to distinguish
between luminal and non-luminal cancers using
mammography images but only achieved a moderate
AUC of 0.752.31 Radiomics model based on the con-
volutional neural network with transfer learning to
aps of three greyscale US (a) and biopsy WSIs (c) in a non-luminal
the corresponding heat maps of three greyscale US (b) and biopsy
ctal carcinoma mixed with 15% micropapillary carcinoma. The most
w echo area inside the tumor. The US images from different views
results for each lesion. In terms of WSIs, the areas that were deemed
ma and abundant collagenous stroma.
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extract high-dimensional features related to molecular
classification using MRI images improved the accuracy
with an AUC of 0.836 in distinguishing between
luminal and non-luminal breast cancers.32 Nevertheless,
this study was limited by its relatively small sample size
and lack of external validation, thus leading to potential
over-fitting and uncertain generalizability of these find-
ings. Besides, breast MRI is expensive and time-
consuming. More importantly, it is not commonly
used for preoperative evaluation of early breast cancer.
In this study, we developed a DLR model to distinguish
between luminal and non-luminal breast cancers at
early stages. The AUC for validation and independent
external test sets were 0.830 and 0.815 respectively,
which was similar to a previous study.17 The US images
in this study were acquired in multiple institutions us-
ing various devices, establishing the breadth and gen-
erality of these results. However, the performance of
DLR model is insufficient (AUC <0.90), suggesting that
combining radiomic-derived features with additional
features is necessary for achieving a higher predictive
value.

Unlike radiographic images that can provide the
spatial macrostructure information of the tumor and
its adjacent tissue, histopathological images capture
morphology information at the microscale. The
morphological-based features of H&E-stained images
extracted using deep learning algorithms have been
shown to be valuable for assessing ER status, achieving
the accuracy of 0.80–0.92.10,19,33 These results were
noninferiority to that of traditional IHC for ER status
(0.82–0.88).9,34 In this study, we used a multiple-
instance learning approach to explore morphological
features on H&E-stained WSI of biopsy that were
valuable for predicting the HR expression. Although
the AUC reached 0.834, the performance of DLP-
manual model developed in this study is still inferior
to that of a previous model (AUC, 0.92).10 The under-
lying reasons might be that Naik Nikhil et al.10 devel-
oped their model using H&E images and IHC-based
labels from the same tumor tissue blocks, while we
used H&E-stained WSI of biopsied tissue to predict
HR status determined by IHC based on surgical
specimen. Although the core biopsy may not be
morphologically representative of the whole resected
tumor in some cases, the use of CNB images that are
routinely available before treatment enables the clinical
application of our model in aiding decision-making for
neoadjuvant chemotherapy. The study of Greer et al.
showed that concordance rates of IHC results for CNB
and surgical specimens increased with increasing
numbers of core biopsies.35 Shamai Gil et al. also re-
ported that using multiple H&E-stained images yielded
better results than using a single image for one patient
in the training model to assess ER status.19 In the
future, we may be able to further improve the
www.thelancet.com Vol 94 August, 2023
prediction performance by using multiple WSIs to
train the model.

The biopsy can provide insights into specific sub-
regions or areas with unique characteristics of the tu-
mor tissue such as cellular composition and the
morphological features under a microscope. By fusing
biopsy data with imaging, complementary information
from both the microscopic and macroscopic levels
representative of the tumor’s heterogeneity can be pro-
vided. The superior performance of our DLRP model is
likely due to the integration of heterogeneous radiomics
and pathomics features, suggesting that the compre-
hensive capture of microstructural and macrostructural
features can effectively predict the HR expression of
breast cancer.

The DLRP model can assist clinicians to classify
luminal and non-luminal lesions rapidly. Input the
routinely available images of breast US and biopsies to
the DLRP model would obtain a prediction result
(luminal vs. non-luminal). Current NCCN guidelines
recommend preoperative systemic treatment for pa-
tients with non-luminal T1 and T2 cancers.11 The
addition of neoadjuvant therapy to surgery is associ-
ated with benefit for patients with non-luminal tu-
mors; however, little benefit is evident for patients
with luminal tumors. We do note that the established
DLRP model yielded extremely high PPV, meaning
that luminal cases were filtered out to avoid ineffective
(or at least redundant) treatments when applying the
model. In this study, about 89.2% (66/74) early-stage
luminal breast cancers can be identified by DLRP in
test cohort, potentially avoiding the need for neo-
adjuvant therapy, while about 81.2% (13/16) non-
luminal tumors were identified by DLRP in test
cohort and would be benefited from neoadjuvant
chemotherapy. Therefore, decisions regarding
whether neoadjuvant therapy should be given can be
at the discretion of the model.

Our study still has some limitations. Firstly, the
training and testing data are both highly imbalanced.
The reason for this may be that non-luminal subtypes
(HER2-enriched and TNBC) take up only a small pro-
portion of breast cancer, and only clinical T1 and T2
tumors were included in this study. Given that, we
handled class imbalance by oversampling non-luminal
cases or by using focal loss to train the models in this
study. Secondly, all the slides were scanned by using a
digital scanner. The influence of different scanners with
different parameters on model building should be
investigated in future studies. Thirdly, deep learning
models still exhibited some overfitting. For this phe-
nomenon, several measures have been taken in the
various links to reduce the risk of overfitting. Although
the model performance in external test cohort was
reduced compared to the training set, it was still in a
satisfactory range overall.
11
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In conclusion, a DLRP model was developed and
validated to distinguish between luminal and non-
luminal breast cancers at early stages by integrating
pretherapeutic grey-scale US images and biopsy whole
slide images. The superior performance of the DLRP
model showed the potential for application in tailoring
neoadjuvant treatment for patients with early breast
cancer.
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