Skip to main content
. 2023 Jul 19;94:104706. doi: 10.1016/j.ebiom.2023.104706

Table 2.

Performance and Comparison of DLR, DLP, DLP-manual and DLRP for distinguish between luminal and non-luminal breast cancers at early stages.

models AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)
DLR model
 Training set (n = 489) 0.909 (0.879, 0.933) 0.895 (0.862, 0.923) 0.763 (0.634, 0.864) 0.965 (0.942, 0.981) 0.500 (0.392, 0.608)
 Validation set (n = 114) 0.830 (0.748, 0.894) 0.770 (0.675, 0.848) 0.786 (0.492, 0.953) 0.962 (0.894, 0.992) 0.324 (0.174, 0.505)
 Test set (n = 90) 0.815a (0.719, 0.889) 0.878 (0.782, 0.943) 0.500 (0.247, 0.753) 0.890 (0.795, 0.951) 0.471 (0.230, 0.722)
DLP model
 Training set (n = 489) 0.882 (0.850, 0.909) 0.730 (0.686, 0.772) 0.915 (0.813, 0.972) 0.984 (0.964, 0.995) 0.318 (0.248, 0.394)
 Validation set (n = 114) 0.827 (0.745, 0.892) 0.660 (0.558, 0.752) 0.857 (0.572, 0.982) 0.971 (0.898, 0.996) 0.261 (0.143, 0.411)
 Test set (n = 90) 0.802b,d (0.704, 0.878) 0.419 (0.305, 0.539) 0.875 (0.617, 0.984) 0.939 (0.798, 0.993) 0.246 (0.141, 0.378)
DLP-manual model
 Training set (n = 489) 0.889 (0.857, 0.915) 0.754 (0.710, 0.794) 0.881 (0.771, 0.951) 0.979 (0.957, 0.991) 0.329 (0.257, 0.408)
 Validation set (n = 114) 0.872 (0.797, 0.927) 0.660 (0.558, 0.752) 0.929 (0.661, 0.998) 0.985 (0.920, 1.000) 0.277 (0.156, 0.426)
 Test set (n = 90) 0.834c (0.740, 0.904) 0.405 (0.293, 0.526) 0.937 (0.698, 0.998) 0.968 (0.833, 0.999) 0.254 (0.150, 0.384)
DLRP model
 Training set (n = 489) 0.975 (0.956, 0.987) 0.907 (0.875, 0.933) 1.000 (0.939, 1.000) 1.000 (0.991, 1.000) 0.596 (0.493, 0.693)
 Validation set (n = 114) 0.929 (0.865, 0.968) 0.940 (0.874, 0.978) 0.643 (0.351, 0.872) 0.949 (0.886, 0.984) 0.600 (0.323, 0.837)
 Test set (n = 90) 0.900 (0.819, 0.953) 0.892 (0.798, 0.952) 0.812 (0.544, 0.960) 0.957 (0.878, 0.991) 0.619 (0.384, 0.819)

Note: data in parentheses are 95% confidence intervals. DLR, deep learning radiomics; DLP, deep learning pathomics; DLP-manual, deep learning pathomics trained on manually annotated WSI; DLRP, deep learning radiopathomics; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, Negative predictive value.

a

Indicates P = 0.027, Delong et al. in comparison with DLRP model in independent test set.

b

Indicates P = 0.013, Delong et al. in comparison with DLRP model in independent test set.

c

Indicates P = 0.023, Delong et al. in comparison with DLRP model in independent test set.

d

Indicates P = 0.352, Delong et al. in comparison with DLP-manual model in independent test set.