Abstract
近年来,大量研究通过细胞内化或细胞膜结合的方式将生物大分子或小分子化学药物负载于间充质干细胞(MSC)上,利用其天然的肿瘤归巢特性实现药物的靶向递送,继而通过在靶部位药物的释放或基因表达,达到肿瘤治疗的目的。基因修饰MSC的研究较为成熟,而递送小分子化学药物的研究起步较晚。本文从MSC肿瘤迁移机制、细胞注射后体内分布特点入手,总结了MSC在小分子化学药物肿瘤靶向递送中的研究;同时介绍了MSC与原型药物、载药纳米粒构建的复合系统的载药、释药过程,展望了该系统遇到的挑战和应用前景。
Abstract
In recent years, a large number of studies have achieved tumor targeting by mesenchymal stem cells (MSC)-based delivery system attributed to the tumor tropism of MSCs. Biomacromolecules and antineoplastic drugs loaded on MSC via internalization or cell membrane anchoring can be released or expressed at tumor site to perform their antitumor effects. The genetically modified MSC are extensively studied, however, the applications of MSCs in targeted delivery of antineoplastic drug with small molecules are not well summarized. In this review, MSCs homing mechanism and the distribution of injected MSCs in vivo is introduced; the examples of antitumor drug-primed MSCs and drug loaded MSCs are presented; the drug loading and releasing process from MSCs is also illustrated; finally, challenges and future perspectives of MSCs-based drug delivery system on realizing its full potential are prospected.
Keywords: Neoplasms, Mesenchymal stem cells/cytology, Nanospheres, Antineoplastic agents, Drug delivery systems, Review
间充质干细胞(mesenchymal stem cells, MSC)是来源于中胚层的具有自我更新和多向分化潜能的成体干细胞,存在于骨髓、骨骼肌、脂肪组织、胚胎组织、脐带、脐血及外周血等多种组织中,在细胞治疗、组织再生医学和免疫治疗等方面显示出巨大的应用前景。近年研究发现,MSC具有天然的肿瘤归巢特点,肿瘤组织通过自分泌或旁分泌等方式产生的一系列炎症趋化因子和细胞因子可充当MSC配体 [ 1] 。借助基因修饰的MSC可将溶瘤病毒、免疫调节剂、凋亡诱导因子、化学药物等物质递送至肿瘤组织,发挥抗癌作用。但是,小分子化学药物在剂量较大时会影响MSC的生物学活性,因此使用MSC负载小分子化学药物的研究起步较晚。如何防止负载的抗肿瘤药物对MSC的杀伤作用、最大限度地保留MSC的肿瘤迁移活性、保证在靶组织中有足量的药物释放是基于MSC的小分子化学药物肿瘤靶向给药系统构建的难点。
本文从MSC肿瘤归巢原理及注射后体内分布特点入手,根据MSC的载药方式整理了近年来MSC递送小分子化学药物的手段和方法,总结了该靶向系统的载药、释药机制及注射安全性,并分析了基于MSC的肿瘤靶向给药系统所面临的挑战。
尽管MSC是通过受体-配体的方式实现肿瘤归巢,但其全身给药时,在各组织内的被动滞留现象不可忽视。MSC体积较大,直径为16~53 μm,当其通过小血管终末微动脉、毛细血管、毛细血管后微静脉时容易被机械截留 [ 2] 。虽然MSC可进行适当形变通过血管,但是通过静脉输注的大量MSC仍会被迅速清除。肺毛细血管丰富,直径为10~15 μm,80%的MSC在15 min后即出现在肺部毛细血管床中,形成“肺首过效应” [ 3] 。小鼠、家兔和食蟹猴等不同种属动物中均发现类似的分布情况 [ 4] 。MSC还能在肺部表达或者活化与肺表皮细胞相关的黏附分子,增强其肺靶向作用 [ 5] 。之后的数小时至数天,MSC逐渐从肺部清除,而在肝脏和脾脏聚集 [ 6- 7] 。从肺部向肝脏和脾脏再分布的过程可能与单核细胞非经典途径吞噬在肺部凋亡的MSC及其细胞碎片有关 [ 8- 9] 。未被截留的MSC在外周血中则可受趋化因子、细胞黏附分子、基质金属蛋白酶、细胞因子等吸引归巢至脑胶质瘤、骨髓瘤、乳腺癌、宫颈癌、前列腺癌等肿瘤组织。研究者通过放射性标记( 89Zr)MSC或质粒修饰MSC,在异位移植前列腺癌和原位胶质瘤组织中均发现了MSC的分布 [ 7, 10] 。MSC的肺截留为其向肺部肿瘤病灶或扩散转移区域归巢提供了方便,因此MSC在肺癌的靶向治疗中更具优势。动脉注射可在首次循环中避免肺部截留,提高外周肿瘤的靶向效率 [ 11] 。另外,使用血管扩张剂或调节细胞培养条件以减小MSC体积等手段也可以达到减少肺内分布的目的 [ 12- 13] 。
MSC和抗肿瘤药物直接孵育后可有效摄取药物,实现药物的负载。与肿瘤细胞比较,MSC对抗肿瘤药物的敏感度较低,可在相对较大的浓度范围内表现出对化疗药物较好的耐受性 [ 14- 15] 。2011年,Pessina等 [ 16] 首次发现人骨髓MSC摄取紫杉醇后可在24 h内向培养液释放足量紫杉醇,表现出良好的抗肿瘤和抗血管生成活性。Bonomi等 [ 17] 进一步证实MSC内约60%的紫杉醇在120 h内释放。阿霉素、吉西他滨、顺铂、索拉非尼等化疗药物与不同来源的MSC组成的复合物系统也可以向培养液释放药物( 表 1) [ 18- 31] 。目前,MSC直接负载抗肿瘤药物系统释放药物的机制主要有两种:①通过被动扩散和MSC高表达的P糖蛋白(P-gp)排出细胞外 [ 32- 34] ;②通过MSC分泌的外泌体排出细胞外 [ 23- 24] 。外泌体作为MSC向胞外分泌内源性生物活性分子的载体,近年来倍受关注。直接对外泌体进行载药或表面修饰已成为目前靶向递药的研究方向。
药物 |
MSC来源 |
肿瘤模型 |
MSC给药途径 |
递送效果 |
文献 |
紫杉醇 |
人骨髓 |
人前列腺癌(DU145)NOD/SCID小鼠皮下移植瘤、人胶质瘤(U87MG)裸鼠皮下移植瘤 |
MSC与肿瘤细胞混合接种 |
DU145瘤重为对照组的1/3;U87MG瘤重为对照组的60% |
[ 16] |
人胸膜间皮瘤(NCI-H28)细胞系 |
— |
每个MSC释放0.15 pg紫杉醇 |
[ 18] |
||
人骨髓瘤(RPMI 8226)三维动态培养模型 |
— |
引起肿瘤细胞凋亡和坏死 |
[ 19] |
||
人急性T淋巴细胞白血病MOLT-4裸鼠皮下移植瘤 |
MSC与肿瘤细胞混合接种/MSC瘤内注射 |
混合接种2个月后未观察到肿瘤结节;瘤内注射后肿瘤体积是对照组的1/4 |
[ 20] |
||
人羊膜 |
人胰腺癌(CFPAC-1)细胞系 |
— |
MSC在48 h内释放59%胞内药物,每个MSC约释放紫杉醇0.51 pg |
[ 17] |
|
人牙龈 |
人胰腺癌(CFPAC-1)细胞系 |
— |
MSC释放紫杉醇,释放液具细胞毒性 |
[ 21] |
|
人口腔鳞状细胞癌(SCC154)细胞系 |
— |
MSC在24 h内释放63%胞内药物,10 6个MSC约释放150 ng紫杉醇 |
[ 22] |
||
hTERT/SV40永生化人脂肪 |
人胰腺癌(CFPAC-1)细胞系 |
— |
MSC通过微泡结构释放紫杉醇 |
[ 23] |
|
BDF/1小鼠骨髓 |
人胰腺癌(CFPAC-1)细胞系 |
— |
紫杉醇通过外泌体结构被MSC排出,每个MSC释放0.1 pg紫杉醇 |
[ 24] |
|
鼠黑色素瘤(B16)C57BL16小鼠皮下移植瘤 |
MSC与肿瘤细胞混合接种 |
瘤重约为对照组的1/4 |
[ 16] |
||
鼠黑色素瘤(B16)C57BL16小鼠肺转移模型 |
尾静脉注射 |
注射3次后转移瘤被治愈,MSC优先分布于结节周围血管 |
[ 25] |
||
鼠淋巴细胞白血病(L1210) BDF/1小鼠原位瘤 |
腹腔注射 |
生存时间延长1倍 |
[ 20] |
||
人胶质瘤(U87MG)免疫抑制Wistar大鼠原位移植瘤 |
颅内注射,MSC与肿瘤细胞同时接种于同侧半球,注射部位间距2~3 mm |
具肿瘤归巢能力,胶质瘤细胞核发生紫杉醇诱发的典型变化,星形胶质细胞和周围神经元形态无显著变化 |
[ 26] |
||
犬骨髓/犬脂肪 |
犬胶质瘤(J3T)细胞系、人胶质瘤(T98G/U87MG)细胞系 |
— |
每个MSC释放0.09 pg紫杉醇,有效抑制肿瘤细胞增殖 |
[ 27] |
|
阿霉素 |
人牙龈 |
人口腔鳞状细胞癌(SCC154)细胞系 |
— |
MSC可在24 h内释放100%胞内药物,10 6个MSC可释放669 ng阿霉素 |
[ 22] |
人骨髓 |
人乳腺癌(MDA-MB-231/Rluc)裸鼠皮下移植瘤、人甲状腺癌(CAL62/Rluc)裸鼠皮下移植瘤 |
尾静脉注射 |
与5 μmol/L阿霉素孵育得到的载药MSC可迁移至肿瘤组织,肿瘤内药物浓度高于对照组 |
[ 28] |
|
吉西他滨 |
人骨髓/人胰腺 |
人胰腺癌(CFPAC-1)细胞系 |
— |
与2 μg/mL吉西他滨孵育后的载药MSC可抑制肿瘤细胞增殖 |
[ 29] |
人牙龈 |
人口腔鳞状细胞癌(SCC154)细胞系 |
— |
MSC在24 h内释放92%胞内药物,10 6个MSC释放75 ng吉西他滨 |
[ 22] |
|
顺铂、铂(Ⅱ)配合物 |
人脂肪 |
人胶质瘤(U87MG)细胞系、人胸膜间皮瘤(NCI-H28)细胞系 |
— |
MSC分别释放胞内36%的铂(Ⅱ)配合物和95%顺铂 |
[ 30] |
索拉非尼 |
人骨髓 |
人胶质瘤(U87MG)裸鼠原位移植瘤 |
鼻腔给药 |
48 h释放60%药物, MSC广泛分布于肿瘤组织内,切片中细胞密度达403个/mm 2,但无明显抑制肿瘤生长作用 |
[ 31] |
“—”:无相关资料; hTERT:人端粒酶逆转录酶.
受MSC分布限制,体内药效学研究多采用瘤内注射、瘤旁注射、与肿瘤细胞混合后接种的方式增加瘤区药物分布。静脉注射则适合肺部肿瘤的治疗,也有研究使用全身给药治疗异位移植瘤,并获得一定的抗肿瘤效果。目前,仍需解决的问题包括如何降低药物对MSC的毒性、提高MSC摄取负载药物的水平以及保证肿瘤组织药物的有效治疗浓度。
未经表面修饰的纳米粒主要依赖网格蛋白介导的内吞入胞,最终定位于溶酶体进一步降解和消化。MSC高表达网格蛋白,因此对纳米粒有良好的摄取能力 [ 4] 。纳米粒在MSC纯化及体内示踪、基于MSC的疾病诊断和基因治疗中有广泛应用。载药纳米粒减少了化疗药物与MSC的直接接触,降低了药物对MSC生物学活性的影响。近期研究发现,聚乳酸-羟基乙酸(PLGA)纳米粒和介孔硅纳米粒均可被细胞通过胞吐外排 [ 35- 36] 。载药纳米粒胞吞后,溶酶体膜可进一步与细胞膜融合,将内容物排出细胞,这一过程在肝细胞、成纤维细胞、上皮细胞、肿瘤细胞、胚胎干细胞中均广泛存在,与细胞膜的修复、抗细胞自噬、维持细胞稳态等密切相关 [ 37] 。因此,在溶酶体酶系作用下仍能保持结构完整的部分纳米粒可随溶酶体排泄出胞。通过特殊受体入胞的纳米粒则可通过转胞吞作用出胞。在此过程中,受体和配体由小窝体递送 [ 38] ,可高效地从细胞外一侧穿越到另一侧外环境 [ 39] 。带有配体修饰的纳米粒通过此途径可在MSC与肿瘤细胞间以内吞-转胞吞-内吞的方式传递。同时,通过细胞表面特殊受体介导的溶酶体胞吐作用在配体回收过程中也可增强 [ 40] 。
另外,载药纳米粒在胞内释放的药物以游离形式通过P-gp、被动扩散或外泌体途径从MSC中释放。实际上,MSC的药物释放通常同时包含游离药物和载药纳米粒的外排过程。游离药物的外排速度较快(数分钟),而载药纳米粒胞吐或转胞吞速度较慢,通常需要数天。因此,MSC负载PLGA紫杉醇纳米粒的药物释放中可观察到先快后慢的双相释放曲线 [ 35] 。
纳米粒易于修饰、释放曲线可调、载体可选种类丰富,其材料组成、粒径、电位、几何形状、内吞途径等因素均可影响MSC的内吞和胞吐动力学。目前MSC胞内负载纳米粒的研究主要从增加MSC的药物摄取、提高药物从MSC中的释放效率、载药纳米粒和化疗药物联合治疗三个环节入手。MSC负载载药纳米粒在肿瘤靶向递送中的应用见 表 2 [ 4, 31, 34- 35, 41- 52] 。
载体类型 |
载体 |
载体修饰 |
药物 |
MSC来源 |
肿瘤模型 |
MSC给药途径 |
递送效果 |
文献 |
高分子纳米粒 |
PLGA纳米粒 |
壳聚糖吸附 |
紫杉醇 |
大鼠骨髓 |
人结肠癌(HT-29)细胞系、人卵巢癌(Skov-3)细胞系、鼠肺癌(Lewis)细胞系 |
— |
Transwell系统中,向肿瘤细胞迁移效率HT-29> Skov-3>Lewis |
[ 33] |
— |
鼠胶质瘤(C6)大鼠原位移植瘤 |
颅内注射,对侧半球 |
生存期为MSC直接包载紫杉醇组及紫杉醇纳米粒组的1.5倍 |
[ 35] |
||||
人骨髓 |
人肺癌(A549)裸鼠原位移植瘤 |
尾静脉注射 |
较纳米组显著增加肺内分布,2 d后仍可测得荧光探针信号;AUC为溶液组或纳米粒组9倍,生存期为纳米粒组1.4倍 |
|||||
鼠Lewis肺腺癌C57BL/6小鼠原位移植瘤 |
尾静脉注射 |
纳米粒组或溶液组剂量的1/48可获得相同的抗肿瘤效果 |
[ 42] |
|||||
阿霉素 |
C57BL6小鼠脂肪 |
鼠黑色素瘤(B16F10) C57BL/6小鼠肺转移模型 |
尾静脉注射 |
肺重量和肺内节结数显著显著低于MSC直接包载阿霉素组 |
[ 43] |
|||
多烯紫杉醇 |
人胎盘 |
Kras LSL-G12D肺癌小鼠 |
尾静脉注射 |
纳米粒组剂量的1/8可获得相同的抗肿瘤效果 |
[ 4] |
|||
PLA纳米粒 |
— |
6-香豆素 |
人骨髓 |
人胶质瘤(U87MG)裸鼠原位移植瘤 |
瘤内注射 |
注射7 d后,MSC和药物分布在肿瘤周围 |
[ 41] |
|
PAMAM |
RGD偶联 |
阿霉素 |
大鼠骨髓 |
鼠胶质瘤(C6)ICR小鼠原位移植瘤 |
瘤内注射 |
较RGD偶联纳米粒生存期延长了46.8% |
[ 44] |
|
PMMA纳米粒 |
— |
TPPS |
人骨髓 |
人骨肉瘤(U2OS)细胞系 |
— |
混合共培养,光触发产生活性氧杀灭肿瘤细胞 |
[ 45] |
|
白蛋白纳米粒 |
铁离子螯合 |
阿霉素 |
人脐带 |
人乳腺癌(MCF-7)裸鼠皮下移植瘤 |
尾静脉注射 |
主要分布于肿瘤,瘤重及肿瘤体积显著低于溶液组或纳米粒组 |
[ 46] |
|
无机纳米粒 |
介孔硅 |
— |
阿霉素 |
人胎盘 |
N-甲基亚硝基脲诱发的大鼠乳腺癌模型 |
尾静脉注射 |
注射后3 d可在肿瘤组织内发现纳米粒 |
[ 47] |
有序介孔有机硅纳米球 |
— |
紫杉醇 |
Balb/C小鼠 |
人乳腺癌(MCF-7)裸鼠皮下移植瘤 |
瘤内注射 |
有效抑制肿瘤生长,但与纳米粒对照组差异无统计学意义 |
[ 48] |
|
金纳米粒 |
柠康酰胺酸碱度敏感基团 |
— |
人来源 |
人纤维瘤(HT-1080)裸鼠皮下移植瘤 |
尾静脉注射 |
肿瘤靶向效率比普通金纳米粒高37倍、瘤区温度高8.3 ℃,肿瘤几乎不可见 |
[ 49] |
|
四氧化三铁/三氧化二铁磁性纳米粒 |
棕榈酸/棕榈酸钠 |
米托蒽醌 |
人脂肪 |
人骨肉瘤三维组织样结构 |
— |
每细胞含1.22 pg米托蒽醌和9 pg磁性材料 |
[ 50] |
|
脂质颗粒 |
类脂纳米囊 |
— |
莫昔芬的二茂铁衍生物 |
人骨髓 |
人胶质瘤(U87MG)裸鼠皮下移植瘤 |
瘤内注射 |
可抑制肿瘤生长,但效果较弱 |
[ 51] |
膜融合长循环超声纳米泡 |
— |
喜树碱 |
C57BL/ 6JNarl小鼠脂肪 |
鼠黑色素瘤(B16F0) C57BL/6JNarl小鼠皮下移植瘤 |
瘤内注射 |
纳米泡可在肿瘤区域被示踪,可杀伤肿瘤细胞 |
[ 52] |
“—”:无相关资料.PLGA:聚乳酸-羟基乙酸; PLA:聚乳酸;PAMAM:聚酰胺-胺型树枝状聚合物; PMMA:聚甲基丙烯酸甲酯;TPPS:四苯基卟啉磺酸盐.
高分子材料主要分为合成/半合成材料和天然高分子材料两大类。合成材料中研究最多的是可生物降解的聚乳酸(PLA)及其类似物。MSC靶向递送载药PLA纳米粒的研究始于2001年。Roger等 [ 41] 将MSC与高剂量荧光探针6-香豆素标记的PLA纳米粒(200 μg/mL)共培养发现,MSC体外分化和肿瘤迁移能力无显著变化,同时在体内可将荧光探针递送到裸鼠原位脑瘤组织。MSC负载的载药PLGA纳米粒多用于肺原位或肺转移模型。MSC静脉注射后可携带纳米粒高浓度且长时间(7 d)停留于肺部,其在肺部的曲线下面积相比溶液或PLGA纳米粒大9倍左右 [ 42] ,因此仅需纳米制剂剂量的1/8即可获得相同的抗肿瘤效果,从而降低紫杉醇治疗引起的白细胞减少症的发生概率 [ 4, 42] 。原位脑胶质瘤的治疗研究中发现,脑半球对侧给药后48 h紫杉醇广泛分布于肿瘤组织深部,载有PLGA纳米粒的MSC向肿瘤组织的迁移率为45%,仅1 μg/kg的剂量即可显著延长大鼠生存时间 [ 35] 。除了通过载体材料与药物间的相互作用力如范德华力、氢键等手段负载药物,聚合物载体表面活泼基团也是药物或功能分子的常用化学修饰位点。聚酰胺-胺型树枝状聚合物(PAMAM)末端氨基可连接肿瘤靶向RDG肽和阿霉素,延长药物释放时间、增强药物入胞能力 [ 44] 。另外,聚合物纳米粒亦可通过静电作用吸附药物,带有正电荷的聚甲基丙烯酸甲酯(PMMA)纳米粒与带负电的光敏剂四苯基卟啉磺酸盐(TPPS)结合,实现基于MSC引导的光动力学肿瘤靶向治疗 [ 45] 。
天然高分子为载体的纳米粒中,白蛋白纳米粒研究最为深入,目前已有白蛋白纳米抗肿瘤制剂上市。Cao等 [ 46] 模仿生理条件下转铁蛋白酸碱度依赖性释放铁离子的原理,构建出以铁离子为中心离子,配位键结合阿霉素和组胺修饰的白蛋白纳米复合物。该纳米粒被MSC摄取后,可在胞内有效释放药物,并通过体循环聚集到乳腺癌异位移植瘤区域,显著减小肿瘤体积和质量。
与有机纳米粒相比,无机纳米粒尺寸小、粒径可控性好、分布均一,目前在影像、诊断、药物递送、光热治疗等方面均有应用。金纳米粒有良好的光热转化效应,在近红外线激发下产生的局部高温可用于肿瘤治疗。Kang等 [ 49] 利用柠康酰胺酸碱度敏感基团修饰金纳米粒表面,制备了具有电荷翻转能力的酸碱度敏感颗粒。当金纳米粒通过MSC内吞作用进入体内后,由于酸碱度值降低,原本带有负电荷的颗粒表面部分电荷发生逆转,导致分散良好的金纳米粒聚集。聚集后的纳米粒光热转化效率更高,且不易被MSC胞吐,减少了体内靶向过程中的丢失。研究者进一步结合了金纳米棒光热效应和介孔硅药物高负载能力的优点,构建了载有紫杉醇的Yolk-Shell结构有序介孔有机硅纳米球金纳米棒,将该纳米粒负载于MSC内,实现了肿瘤靶向的化疗-光热联合治疗 [ 47- 48] 。负载磁性载药纳米粒的MSC则可同时获得化疗、造影和磁热疗的功能 [ 50] 。
脂质颗粒生物相容性好,其亲脂环境便于疏水性药物的负载,主要有固体脂质纳米粒、纳米结构脂质载体、脂质体等。目前联合脂质颗粒和MSC的研究不多。Roger等 [ 51] 探索性使用MSC靶向递送荧光探针后,进一步将莫昔芬二茂铁衍生物的类脂纳米囊负载于MSC,用于治疗脑胶质瘤,并使用抗肿瘤药物进行药效学评价。超声微泡类造影剂能够显著增强医学超声检测信号的诊断试剂,其携带氟碳类气体,可产生强烈的回波信号。Ho等 [ 52] 制备了一种膜融合载药脂质纳米泡,在MSC胞内可发生纳米泡融合,导致粒径增大(从80 nm至1000 nm)而形成微泡,利于显影。同时,在外界声波的作用下,微泡的“空化效应”可破坏微泡结构,触发药物释放,实现药物靶向输送和超声影像诊断的目的。
将抗肿瘤药物修饰至MSC表面可以提高MSC的载药能力,解决载药纳米粒细胞内化不足的问题,同时固定在细胞膜表面的药物对MSC毒性低,药物对MSC的影响减小 [ 53] 。
Cheng等 [ 54] 首次成功将偶联亲和素的聚苯乙烯荧光纳米粒与细胞膜生物素化的MSC结合,使其黏附于细胞表面2 d,并很好地保留了MSC向三维肿瘤球极化的能力。Li等 [ 55] 将载有阿霉素的夹心二氧化硅纳米粒通过抗原-抗体反应结合至表达CD90的骨髓间充质干细胞表面(1500个纳米粒/细胞)。载药后的MSC体外迁移能力和细胞存活率几乎不受影响,瘤内注射MSC-二氧化硅纳米粒可将阿霉素有效递送至皮下肿瘤深部,并延长胞外滞留时间(48 h以上),促进人神经胶质瘤U251细胞凋亡。Suryaprakash等 [ 56] 则利用了氧化石墨烯与细胞膜表面的吸附力递送阿霉素或米托葱醌,载药后的MSC体外迁移能力和细胞存活率同样几乎不受影响,体外具有良好的抗胶质瘤(LN18)活性。Zhang等 [ 44] 通过生物素-亲和素系统将载药聚合物结合在MSC细胞膜上,利用细胞对颗粒的内吞作用实现了MSC胞内外的双重载药,提高了MSC对阿霉素-PAMAM树枝状聚合物的携载量 [ 18] 。在药物释放方面,由于连接阿霉素和PAMAM的化学键对低酸碱度敏感,当MSC抵达肿瘤区域附近时,游离药物可从固定在细胞膜表面的聚合物中释放。同时,乳腺癌细胞4T1表面高表达的生物素受体可与MSC竞争,从而与阿霉素-PAMAM结合。对于胞内阿霉素-PAMAM物而言,降解主要发生在溶酶体内,游离药物主要通过被动扩散或P-gp排出MSC。该载药系统主要滞留在肺组织,可显著延长乳腺癌肺转移小鼠的生存时间。
MSC作为药物载体,其安全性需要重点关注。目前关于MSC在肿瘤的发生和发展过程中的作用尚存在争议。一方面,MSC可通过激活不同的信号通路抑制肿瘤生长 [ 57] ;另一方面,MSC在肿瘤微环境中可募集更多免疫细胞,促进肿瘤血管生成,促进肿瘤生长 [ 58] 。Zhang等 [ 59] 发现少量(10 4个)MSC对黑色素瘤肺转移小鼠有抑瘤作用,但注射数量超过10 5个时存在促瘤风险。人脂肪来源MSC(2×10 5个)可抑制新生血管增生,缩小大鼠原位脑胶质瘤体积,延长荷瘤鼠生存期 [ 60] 。Bexell等 [ 61] 却指出骨髓来源MSC在大鼠脑胶质瘤发展过程中没有明显的促进或抑制作用。因此,从MSC不同来源、输给途径和剂量、靶向肿瘤类型等进行MSC小分子化学药物肿瘤靶向递送系统的安全性评价对构建安全、有效的靶向系统十分重要。
MSC递送小分子化学药物是细胞治疗中的一个新兴领域,目前尚存在许多问题。化学药物可影响MSC的存活率、增殖活性、分化能力、肿瘤归巢能力等,因此开发基于MSC的化学药物靶向递送系统前,需要全面了解药物对MSC的影响。同时,MSC可能影响药物的代谢途径,酶促、水解反应会导致药物失活或引起机体免疫应答。游离药物和载药纳米粒的出胞途径、药物释放的影响因素,以及在这过程中需要克服的生物屏障等都需要在今后的研究中进一步明确。
Funding Statement
国家自然科学基金(81402872);浙江省自然科学基金(LY17H160002)
References
- 1.CHULPANOVA D S, KITAEVA K V, TAZETDINOVA L G, et al. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol. 2018;9:259. doi: 10.3389/fphar.2018.00259. [CHULPANOVA D S, KITAEVA K V, TAZETDINOVA L G, et al. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment[J]. Front Pharmacol, 2018, 9:259.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.FURLANI D, UGURLUCAN M, ONG L, et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009;77(3):370–376. doi: 10.1016/j.mvr.2009.02.001. [FURLANI D, UGURLUCAN M, ONG L, et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy[J]. Microvasc Res, 2009, 77(3):370-376.] [DOI] [PubMed] [Google Scholar]
- 3.LEE R H, PULIN A A, SEO M J, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63. doi: 10.1016/j.stem.2009.05.003. [LEE R H, PULIN A A, SEO M J, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6[J]. Cell Stem Cell, 2009, 5(1):54-63.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.WANG X, CHEN H, ZENG X, et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin B. 2018:in press. doi: 10.1016/j.apsb.2018.08.006. [WANG X, CHEN H, ZENG X, et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system[J]. Acta Pharm Sin B, 2018, in press.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.NYSTEDT J, ANDERSON H, TIKKANEN J, et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells. 2013;31(2):317–326. doi: 10.1002/stem.v31.2. [NYSTEDT J, ANDERSON H, TIKKANEN J, et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells[J]. Stem Cells, 2013, 31(2):317-326.] [DOI] [PubMed] [Google Scholar]
- 6.GHOLAMREZANEZHAD A, MIRPOUR S, BAGHERI M, et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis . Nucl Med Biol. 2011;38(7):961–967. doi: 10.1016/j.nucmedbio.2011.03.008. [GHOLAMREZANEZHAD A, MIRPOUR S, BAGHERI M, et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol, 2011, 38(7):961-967. ] [DOI] [PubMed] [Google Scholar]
- 7.KIM S M, JEONG C H, WOO J S, et al. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells:tropism for brain tumors and biodistribution . Int J Nanomedicine. 2016;11:13–23. doi: 10.2147/IJN.S97073. [KIM S M, JEONG C H, WOO J S, et al. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells:tropism for brain tumors and biodistribution[J]. Int J Nanomedicine, 2016, 11:13-23. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.DE WITTE S F H, LUK F, SIERRA P J M, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018;36(4):602–615. doi: 10.1002/stem.v36.4. [DE WITTE S F H, LUK F, SIERRA P J M, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 36(4):602-615.] [DOI] [PubMed] [Google Scholar]
- 9.GALLEU A, RIFFO-VASQUEZ Y, TRENTO C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation . Sci Transl Med. 2017;9(416):eaam7828. doi: 10.1126/scitranslmed.aam7828. [GALLEU A, RIFFO-VASQUEZ Y, TRENTO C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation[J]. Sci Transl Med, 2017, 9(416):eaam7828. ] [DOI] [PubMed] [Google Scholar]
- 10.TEG K, DLJ T, DENMEADE S R, et al. Concise review:mesenchymal stem cell-based drug delivery:the good, the bad, the ugly, and the promise. Stem Cells Transl Med. 2018;7(9):651–663. doi: 10.1002/sctm.18-0024. [TEG K, DLJ T, DENMEADE S R, et al. Concise review:mesenchymal stem cell-based drug delivery:the good, the bad, the ugly, and the promise[J]. Stem Cells Transl Med, 2018, 7(9):651-663.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.TOMA C, WAGNER W R, BOWRY S, et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics . Circ Res. 2009;104(3):398–402. doi: 10.1161/CIRCRESAHA.108.187724. [TOMA C, WAGNER W R, BOWRY S, et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics[J]. Circ Res, 2009, 104(3):398-402. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.FISCHER U M, HARTING M T, JIMENEZ F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery:the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–692. doi: 10.1089/scd.2008.0253. [FISCHER U M, HARTING M T, JIMENEZ F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery:the pulmonary first-pass effect[J]. Stem Cells Dev, 2009, 18(5):683-692.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.ZANETTI A, GRATA M, ETLING E B, et al. Suspension-expansion of bone marrow results in small mesenchymal stem cells exhibiting increased transpulmonary passage following intravenous administration. Tissue Eng Part C Methods. 2015;21(7):683–692. doi: 10.1089/ten.tec.2014.0344. [ZANETTI A, GRATA M, ETLING E B, et al. Suspension-expansion of bone marrow results in small mesenchymal stem cells exhibiting increased transpulmonary passage following intravenous administration[J]. Tissue Eng Part C Methods, 2015, 21(7):683-692.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.GILAZIEVA Z, TAZETDINOVA L, ARKHIPOVA S, et al. Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e8bd6a70fa692ea88dce46e55c750fa. Bio Nano Science. 2016;6(4):534–539. [GILAZIEVA Z, TAZETDINOVA L, ARKHIPOVA S, et al. Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells[J]. Bio Nano Science, 2016, 6(4):534-539.] [Google Scholar]
- 15.NICOLAY N H, LOPEZ P R, RVHLE A, et al. Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Sci Rep. 2016;6:20035. doi: 10.1038/srep20035. [NICOLAY N H, LOPEZ P R, RVHLE A, et al. Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin[J]. Sci Rep, 2016, 6:20035.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.PESSINA A, BONOMI A, COCCÈ V, et al. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy[J/OL]. PLoS One, 2011, 6(12): e28321. [DOI] [PMC free article] [PubMed]
- 17.BONOMI A, SILINI A, VERTUA E, et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy:an in vitro study . Stem Cell Res Ther. 2015;6(1):155. doi: 10.1186/s13287-015-0140-z. [BONOMI A, SILINI A, VERTUA E, et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy:an in vitro study[J]. Stem Cell Res Ther, 2015, 6(1):155. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.PETRELLA F, COCCÈ V, MASIA C, et al. Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells . Biomed Pharmacother. 2017;87:755–758. doi: 10.1016/j.biopha.2017.01.118. [PETRELLA F, COCCÈ V, MASIA C, et al. Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells[J]. Biomed Pharmacother, 2017, 87:755-758. ] [DOI] [PubMed] [Google Scholar]
- 19.BONOMI A, STEIMBERG N, BENETTI A, et al. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematol Oncol. 2017;35(4):693–702. doi: 10.1002/hon.v35.4. [BONOMI A, STEIMBERG N, BENETTI A, et al. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system[J]. Hematol Oncol, 2017, 35(4):693-702.] [DOI] [PubMed] [Google Scholar]
- 20.PESSINA A, COCCÈ V, PASCUCCI L, et al. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br J Haematol. 2013;160(6):766–778. doi: 10.1111/bjh.12196. [PESSINA A, COCCÈ V, PASCUCCI L, et al. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice[J]. Br J Haematol, 2013, 160(6):766-778.] [DOI] [PubMed] [Google Scholar]
- 21.BRINI A T, COCCÈ V, FERREIRA L M, et al. Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel. Expert Opin Drug Deliv. 2016;13(6):789–798. doi: 10.1517/17425247.2016.1167037. [BRINI A T, COCCÈ V, FERREIRA L M, et al. Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel[J]. Expert Opin Drug Deliv, 2016, 13(6):789-798.] [DOI] [PubMed] [Google Scholar]
- 22.COCCÈ V, FARRONATO D, BRINI A T, et al. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma . Sci Rep. 2017;7(1):9376. doi: 10.1038/s41598-017-09175-4. [COCCÈ V, FARRONATO D, BRINI A T, et al. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma[J]. Sci Rep, 2017, 7(1):9376. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.COCCE V, BALDUCCI L, FALCHETTI M L, et al. Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP +) for studying cell drug delivery mediated by microvesicles . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=412ce19e1df89259f8dd0b8102f88b6a. Anticancer Agents Med Chem. 2017;17(11):1578–1585. doi: 10.2174/1871520617666170327113932. [COCCE V, BALDUCCI L, FALCHETTI M L, et al. Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP +) for studying cell drug delivery mediated by microvesicles[J]. Anticancer Agents Med Chem, 2017, 17(11):1578-1585. ] [DOI] [PubMed] [Google Scholar]
- 24.PASCUCCI L, COCCÈ V, BONOMI A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth:a new approach for drug delivery . J Control Release. 2014;192:262–270. doi: 10.1016/j.jconrel.2014.07.042. [PASCUCCI L, COCCÈ V, BONOMI A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth:a new approach for drug delivery[J]. J Control Release, 2014, 192:262-270. ] [DOI] [PubMed] [Google Scholar]
- 25.PESSINA A, LEONETTI C, ARTUSO S, et al. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model. J Exp Clin Cancer Res. 2015;34:82. doi: 10.1186/s13046-015-0200-3. [PESSINA A, LEONETTI C, ARTUSO S, et al. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model[J]. J Exp Clin Cancer Res, 2015, 34:82.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.PACIONI S, D'ALESSANDRIS Q G, GIANNETTI S, et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Res Ther. 2015;6:194. doi: 10.1186/s13287-015-0185-z. [PACIONI S, D'ALESSANDRIS Q G, GIANNETTI S, et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts[J]. Stem Cell Res Ther, 2015, 6:194.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.BONOMI A, GHEZZI E, PASCUCCI L, et al. Effect of canine mesenchymal stromal cells loaded with paclitaxel on growth of canine glioma and human glioblastoma cell lines. Vet J. 2017;223:41–47. doi: 10.1016/j.tvjl.2017.05.005. [BONOMI A, GHEZZI E, PASCUCCI L, et al. Effect of canine mesenchymal stromal cells loaded with paclitaxel on growth of canine glioma and human glioblastoma cell lines[J]. Vet J, 2017, 223:41-47.] [DOI] [PubMed] [Google Scholar]
- 28.KALIMUTHU S, ZHU L, OH J M, et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin . Int J Med Sci. 2018;15(10):1051–1061. doi: 10.7150/ijms.25760. [KALIMUTHU S, ZHU L, OH J M, et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin[J]. Int J Med Sci, 2018, 15(10):1051-1061. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.BONOMI A, SORDI V, DUGNANI E, et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells . Cytotherapy. 2015;17(12):1687–1695. doi: 10.1016/j.jcyt.2015.09.005. [BONOMI A, SORDI V, DUGNANI E, et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells[J]. Cytotherapy, 2015, 17(12):1687-1695. ] [DOI] [PubMed] [Google Scholar]
- 30.RIMOLDI I, COCCÈ V, FACCHETTI G, et al. Uptake-release by MSCs of a cationic platinum(Ⅱ) complex active in vitro on human malignant cancer cell lines . Biomed Pharmacother. 2018;108:111–118. doi: 10.1016/j.biopha.2018.09.040. [RIMOLDI I, COCCÈ V, FACCHETTI G, et al. Uptake-release by MSCs of a cationic platinum(Ⅱ) complex active in vitro on human malignant cancer cell lines[J]. Biomed Pharmacother, 2018, 108:111-118. ] [DOI] [PubMed] [Google Scholar]
- 31.CLAVREUL A, POURBAGHI-MASOULEH M, ROGER E, et al. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy:a good deal? J Exp Clin Cancer Res. 2017;36(1):135. doi: 10.1186/s13046-017-0605-2. [CLAVREUL A, POURBAGHI-MASOULEH M, ROGER E, et al. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy:a good deal?[J]. J Exp Clin Cancer Res, 2017, 36(1):135.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.YAO S, LI X, LIU J, et al. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv. 2017;24(1):1372–1383. doi: 10.1080/10717544.2017.1375580. [YAO S, LI X, LIU J, et al. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer[J]. Drug Deliv, 2017, 24(1):1372-1383.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.DAI T, YANG E, SUN Y, et al. Preparation and drug release mechanism of CTS-TAX-NP-MSCs drug delivery system. Int J Pharm. 2013;456(1):186–194. doi: 10.1016/j.ijpharm.2013.07.070. [DAI T, YANG E, SUN Y, et al. Preparation and drug release mechanism of CTS-TAX-NP-MSCs drug delivery system[J]. Int J Pharm, 2013, 456(1):186-194.] [DOI] [PubMed] [Google Scholar]
- 34.SADHUKHA T, O'BRIEN T D, PRABHA S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J Control Release. 2014;196:243–251. doi: 10.1016/j.jconrel.2014.10.015. [SADHUKHA T, O'BRIEN T D, PRABHA S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers[J]. J Control Release, 2014, 196:243-251.] [DOI] [PubMed] [Google Scholar]
- 35.WANG X, GAO J, OUYANG X, et al. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine. 2018;13:5231–5248. doi: 10.2147/IJN. [WANG X, GAO J, OUYANG X, et al. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy[J]. Int J Nanomedicine, 2018, 13:5231-5248.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.YANES R E, TARN D, HWANG A A, et al. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small. 2013;9(5):697–704. doi: 10.1002/smll.v9.5. [YANES R E, TARN D, HWANG A A, et al. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition[J]. Small, 2013, 9(5):697-704.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.OH N, PARK J H. Endocytosis and exocytosis of nanoparticles in mammalian cells. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003579368. Int J Nanomedicine. 2014;9(Suppl 1):51–63. doi: 10.2147/IJN.S26592. [OH N, PARK J H. Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. Int J Nanomedicine, 2014, 9 Suppl 1:51-63.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.SAKHTIANCHI R, MINCHIN R F, LEE K B, et al. Exocytosis of nanoparticles from cells:role in cellular retention and toxicity. Adv Colloid Interface Sci. 2013;201-202:18–29. doi: 10.1016/j.cis.2013.10.013. [SAKHTIANCHI R, MINCHIN R F, LEE K B, et al. Exocytosis of nanoparticles from cells:role in cellular retention and toxicity[J]. Adv Colloid Interface Sci, 2013, 201-202:18-29.] [DOI] [PubMed] [Google Scholar]
- 39.EL-DAKDOUKI M H, PURÉ E, HUANG X. Development of drug loaded nanoparticles for tumor targeting. Part 2:Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models. Nanoscale. 2013;5(9):3904–3911. doi: 10.1039/c3nr90022c. [EL-DAKDOUKI M H, PURÉ E, HUANG X. Development of drug loaded nanoparticles for tumor targeting. Part 2:Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models[J]. Nanoscale, 2013, 5(9):3904-3911.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.LIU S L, ZHANG Z L, SUN E Z, et al. Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials. 2011;32(30):7616–7624. doi: 10.1016/j.biomaterials.2011.06.046. [LIU S L, ZHANG Z L, SUN E Z, et al. Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking[J]. Biomaterials, 2011, 32(30):7616-7624.] [DOI] [PubMed] [Google Scholar]
- 41.ROGER M, CLAVREUL A, VENIER-JULIENNE M C, et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials. 2010;31(32):8393–8401. doi: 10.1016/j.biomaterials.2010.07.048. [ROGER M, CLAVREUL A, VENIER-JULIENNE M C, et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors[J]. Biomaterials, 2010, 31(32):8393-8401.] [DOI] [PubMed] [Google Scholar]
- 42.LAYEK B, SADHUKHA T, PANYAM J, et al. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther. 2018;17(6):1196–1206. doi: 10.1158/1535-7163.MCT-17-0682. [LAYEK B, SADHUKHA T, PANYAM J, et al. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting[J]. Mol Cancer Ther, 2018, 17(6):1196-1206.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.ZHAO Y, TANG S, GUO J, et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci Rep. 2017;7:44758. doi: 10.1038/srep44758. [ZHAO Y, TANG S, GUO J, et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy[J]. Sci Rep, 2017, 7:44758.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.ZHANG X, YAO S, LIU C, et al. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy. Biomaterials. 2015;39:269–281. doi: 10.1016/j.biomaterials.2014.11.003. [ZHANG X, YAO S, LIU C, et al. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy[J]. Biomaterials, 2015, 39:269-281.] [DOI] [PubMed] [Google Scholar]
- 45.DUCHI S, SOTGIU G, LUCARELLI E, et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles:effective photoinduced in vitro killing of osteosarcoma . J Control Release. 2013;168(2):225–237. doi: 10.1016/j.jconrel.2013.03.012. [DUCHI S, SOTGIU G, LUCARELLI E, et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles:effective photoinduced in vitro killing of osteosarcoma[J]. J Control Release, 2013, 168(2):225-237. ] [DOI] [PubMed] [Google Scholar]
- 46.CAO S, GUO J, HE Y, et al. Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy. Artif Cells Nanomed Biotechnol. 2018:1–11. doi: 10.1080/21691401.2018.1434185. [CAO S, GUO J, HE Y, et al. Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy[J]. Artif Cells Nanomed Biotechnol, 2018:1-11.] [DOI] [PubMed] [Google Scholar]
- 47.PARIS J L, DE LA TORRE P, MANZANO M, et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors . Acta Biomater. 2016;33:275–282. doi: 10.1016/j.actbio.2016.01.017. [PARIS J L, DE LA TORRE P, MANZANO M, et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors[J]. Acta Biomater, 2016, 33:275-282. ] [DOI] [PubMed] [Google Scholar]
- 48.WU J, LIU Y, TANG Y, et al. Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk-shell GNR@HPMO-PTX nanospheres. ACS Appl Mater Interfaces. 2016;8(28):17927–17935. doi: 10.1021/acsami.6b05677. [WU J, LIU Y, TANG Y, et al. Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk-shell GNR@HPMO-PTX nanospheres[J]. ACS Appl Mater Interfaces, 2016, 8(28):17927-17935.] [DOI] [PubMed] [Google Scholar]
- 49.KANG S, BHANG S H, HWANG S, et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano. 2015;9(10):9678–9690. doi: 10.1021/acsnano.5b02207. [KANG S, BHANG S H, HWANG S, et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy[J]. ACS Nano, 2015, 9(10):9678-9690.] [DOI] [PubMed] [Google Scholar]
- 50.HEREA D D, LABUSCA L, RADU E, et al. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting . Mater Sci Eng C Mater Biol Appl. 2019;94:666–676. doi: 10.1016/j.msec.2018.10.019. [HEREA D D, LABUSCA L, RADU E, et al. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94:666-676. ] [DOI] [PubMed] [Google Scholar]
- 51.ROGER M, CLAVREUL A, HUYNH N T, et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49af92aac96cfebb4f22099ec489f48f. Int J Pharm. 2012;423(1):63–68. doi: 10.1016/j.ijpharm.2011.04.058. [ROGER M, CLAVREUL A, HUYNH N T, et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy[J]. Int J Pharm, 2012, 423(1):63-68.] [DOI] [PubMed] [Google Scholar]
- 52.HO Y J, CHIANG Y J, KANG S T, et al. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system. J Control Release. 2018;278:100–109. doi: 10.1016/j.jconrel.2018.04.001. [HO Y J, CHIANG Y J, KANG S T, et al. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system[J]. J Control Release, 2018, 278:100-109.] [DOI] [PubMed] [Google Scholar]
- 53.WANG Q, CHENG H, PENG H, et al. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv Drug Deliv Rev. 2015;91:125–140. doi: 10.1016/j.addr.2014.12.003. [WANG Q, CHENG H, PENG H, et al. Non-genetic engineering of cells for drug delivery and cell-based therapy[J]. Adv Drug Deliv Rev, 2015, 91:125-140.] [DOI] [PubMed] [Google Scholar]
- 54.CHENG H, KASTRUP C J, RAMANATHAN R, et al. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery. ACS nano. 2010;4(2):625–631. doi: 10.1021/nn901319y. [CHENG H, KASTRUP C J, RAMANATHAN R, et al. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery[J]. ACS nano, 2010, 4(2):625-631.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.LI L, GUAN Y, LIU H, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano. 2011;5(9):7462–7470. doi: 10.1021/nn202399w. [LI L, GUAN Y, LIU H, et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy[J]. ACS Nano, 2011, 5(9):7462-7470.] [DOI] [PubMed] [Google Scholar]
- 56.SURYAPRAKASH S, LI M, LAO Y H, et al. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy. Carbon. 2018;129:863–868. doi: 10.1016/j.carbon.2017.12.031. [SURYAPRAKASH S, LI M, LAO Y H, et al. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy[J]. Carbon, 2018, 129:863-868.] [DOI] [Google Scholar]
- 57.KLOPP A H, GUPTA A, SPAETH E, et al. Concise review:dissecting a discrepancy in the literature:do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29(1):11–19. doi: 10.1002/stem.559. [KLOPP A H, GUPTA A, SPAETH E, et al. Concise review:dissecting a discrepancy in the literature:do mesenchymal stem cells support or suppress tumor growth?[J]. Stem Cells, 2011, 29(1):11-19.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.SHI Y, DU L, LIN L, et al. Tumour-associated mesenchymal stem/stromal cells:emerging therapeutic targets. Nat Rev Drug Discov. 2017;16(1):35–52. doi: 10.1038/nrd.2016.193. [SHI Y, DU L, LIN L, et al. Tumour-associated mesenchymal stem/stromal cells:emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16(1):35-52.] [DOI] [PubMed] [Google Scholar]
- 59.ZHANG T Y, HUANG B, WU H B, et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. J Control Release. 2015;209:260–271. doi: 10.1016/j.jconrel.2015.05.007. [ZHANG T Y, HUANG B, WU H B, et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice[J]. J Control Release, 2015, 209:260-271.] [DOI] [PubMed] [Google Scholar]
- 60.PACIONI S, D'ALESSANDRIS Q G, GIANNETTI S, et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Res Ther. 2017;8(1):53. doi: 10.1186/s13287-017-0516-3. [PACIONI S, D'ALESSANDRIS Q G, GIANNETTI S, et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts[J]. Stem Cell Res Ther, 2017, 8(1):53.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.BEXELL D, GUNNARSSON S, TORMIN A, et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther. 2009;17(1):183–190. doi: 10.1038/mt.2008.229. [BEXELL D, GUNNARSSON S, TORMIN A, et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas[J]. Mol Ther, 2009, 17(1):183-190.] [DOI] [PMC free article] [PubMed] [Google Scholar]