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BACKGROUND: It is unknown whether dietary protein consumption can attenuate resistance exercise-induced muscle damage
(EIMD). Managing EIMD may accelerate muscle recovery and allow frequent, high-quality exercise to promote muscle adaptations.
This systematic review and meta-analysis examined the impact of peri-exercise protein supplementation on resistance EIMD.
METHODS: A literature search was conducted on PubMed, SPORTDiscus, and Web of Science up to March 2021 for relevant articles.
PEDro criteria were used to assess bias within included studies. A Hedges’ g effect size (ES) was calculated for indirect markers of
EIMD at h post-exercise. Weighted ESs were included in a random effects model to determine overall ESs over time.

RESULTS: Twenty-nine studies were included in the systematic review and 40 trials were included in =1 meta-analyses (16 total).
There were significant overall effects of protein for preserving isometric maximal voluntary contraction (MVC) at 96 h (0.563 [0.232,
0.894]) and isokinetic MVC at 24 h (0.639 [0.116, 1.162]), 48 h (0.447 [0.104, 0.790]), and 72 h (0.569 [0.136, 1.002]). Overall ESs were
large in favour of protein for attenuating creatine kinase concentration at 48 h (0.836 [—0.001, 1.673]) and 72 h (1.335 [0.294, 2.376]).
Protein supplementation had no effect on muscle soreness compared with the control.

CONCLUSION: Peri-exercise protein consumption could help maintain maximal strength and lower creatine kinase concentration
following resistance exercise but not reduce muscle soreness. Conflicting data may be due to methodological divergencies
between studies. Standardised methods and data reporting for EIMD research are needed.

European Journal of Clinical Nutrition (2023) 77:767-783; https://doi.org/10.1038/541430-022-01250-y

INTRODUCTION

The World Health Organisation physical activity guidelines
stipulate adults should perform resistance exercise >twice per
week to benefit general health, quality of life, and healthy weight
maintenance [1]. Resistance training can elicit improved skeletal
muscle mass, strength, stability, glucose tolerance, and bone
density [2-6]. Nevertheless, unaccustomed resistance exercise,
particularly involving eccentric contractions, can damage skeletal
muscle fibres [7] mediated by the combined disruption to both
sarcomeres and the excitation-contraction coupling system [8, 91.
Resistance exercise-induced muscle damage (EIMD) presents
physiological and mechanical consequences that may delay
exercise recovery and limit future exercise quality, owing to
reduced muscle function. For example, EIMD can induce muscle
soreness and swelling and reduce muscle force generating
capacity by 50% [10-12], which may persist for seven days post-
exercise [13, 14]. Subsequently, acute EIMD can dampen chronic
adaptations to resistance training [15]. Successive exposures to
comparable exercise stimuli attenuate EIMD owing to the
repeated bout effect (RBE) [16-18]. However, even mild symptoms
of muscle soreness and weakness could diminish personal
motivation to exercise and reduce the frequency and/or quality
of exercise sessions. Furthermore, in line with resistance training

guidelines, individuals frequently alter exercise load, repetition
range, or volume, thus imposing new exercise stimuli and
susceptibility to EIMD. Therefore, EIMD may obstruct the benefits
of regular (=twice weekly) and progressive resistance exercise.

EIMD severity can be assessed directly (i.e., through muscle
biopsy sampling and magnetic resonance imaging) or indirectly
(i.e., through tests of muscle function, subjective soreness, and
blood analysis of intramuscular proteins). While direct assessments
might seem the preferred option, muscle biopsy sampling is
invasive and presents two inherent assumptions: that damage is
inflicted by the intended intervention and not the biopsy
procedure itself; and that the damage measured within the
sample reflects the whole muscle [19, 20]. To this end, indirect
markers are preferentially employed to indicate EIMD [21], with
isometric and isokinetic tests of muscle function considered the
most valid and reliable [22]. Other indirect markers of EIMD,
including muscle soreness and blood creatine kinase concentra-
tion ([CK]) are limited by their high inter- and intra- individual
variability [23, 24] though are frequently assessed in research,
allowing for between-study comparisons.

EIMD potentially hinders training adaptations [15] and hence
several strategies have been investigated to mitigate EIMD
including cryotherapy, massage, stretching, compression
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garments, electrostimulation [25, 26], and dietary manipulation.
Dietary strategies have received considerable recent attention,
especially regarding supplemental protein- and amino acid- based
products provided peri-exercise [27-33].

Peri-exercise protein consumption is a common strategy to
enhance post-exercise recovery and training adaptation, by
stimulating increased rates of muscle protein synthesis (MPS)
[34]. MPS is stimulated following exercise to repair damaged
muscle proteins and MPS rates are further augmented by peri-
exercise protein consumption [35]. Given that peri-exercise
protein consumption also may reduce muscle damage
[27, 28, 33], it follows that protein supplementation may co-
benefit muscle recovery by reducing EIMD and enhancing MPS
rates. Accordingly, several sources of protein including whey,
casein, soy, wheat, and milk have been investigated as nutritional
strategies for mitigating EIMD.

Despite extensive research, the evidence for peri-exercise
protein supplementation attenuating EIMD remains inconclusive.
Following resistance exercise, declines in maximal strength have
been attenuated with milk protein ingestion in some [36, 37], but
not all [38-40] studies. Recently, regular consumption of whey but
not pea protein during 96 h of exercise recovery lowered peak
elevations in serum [CK] relative to water ingestion [41]. However,
whey protein intake failed to ameliorate muscle soreness;
consistent with other observations, irrespective of feeding timing
[42, 43]. Moreover, the impact of whey protein supplementation
on EIMD is apparently influenced by whether hydrolysed or
isolated whey protein is provided, despite equivalent dosing
protocols [44, 45]. The variety of exercise protocols, protein dosing
and timing regimes, participant characteristics, dietary controls,
and measurement tools employed among studies likely contribute
to the diverse findings. Drawing conclusions on the efficacy of
dietary protein for managing EIMD requires a systematic approach
with account for methodological design.

The systematic reviewing of relevant literature has failed to
produce definitive conclusions, perhaps due to either overly broad
or narrow inclusion criteria [27, 31]. No review yet has explicitly
analysed studies whereby a variety of protein supplements were
consumed in conjunction with resistance exercise. Pasiakos and
colleagues [31] systematically reviewed studies that utilised varied
exercise protocols (resistance and endurance) and provided
protein- or amino acid- based supplements. Resistance exercise
typically causes more severe EIMD than endurance exercise,
although only five of the 27 included studies involved resistance
exercise alongside protein consumption [31]. Therefore, this
review cannot conclude the impact of protein supplementation
on resistance EIMD. Conversely, a systematic review (n=28) by
Davies and colleagues [27] assessed the impact of protein
supplementation on EIMD following resistance exercise. However,
the inclusion criteria were limited to studies exclusively examining
the response of muscle function to whey protein supplementa-
tion, without consideration for other protein sources and EIMD
markers. The accompanying meta-analysis revealed an overall
small-medium beneficial effect of whey protein in restoring
muscle function during exercise recovery. Nonetheless, the impact
of a range of protein sources on various EIMD markers is currently
unknown. Therefore, this systematic review and meta-analysis
focused on studies examining the impact of peri-exercise protein
supplementation on indirect markers of muscle damage following
acute resistance exercise. This review will inform protein intake
recommendations specifically for resistance exercise recovery.

METHODS

Inclusion criteria

The analysis was confined to studies published in English-
language journals that met the following criteria: (1) an
experimental trial involving acute (single-bout) resistance exercise;
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(2) includes =one indirect measure of muscle damage; (3) muscle
damage is measured for =24 h post-exercise; (4) includes peri-
exercise supplementation with protein versus control (including
carbohydrate); (5) involves adult participants with no known
clinical condition or musculoskeletal injury. Studies were excluded
if conducted in participants <18y, animals, or in vitro models, or
included another protein supplement as the control, supplements
containing therapeutic or ergogenic aids (e.g., polyphenols,
antioxidants), or physiotherapeutic/pharmaceutical methods tar-
geting muscle damage (e.g., massage, cryotherapy). Studies
involving endurance-type exercise, unloaded resistance exercise
(e.g., drop-jumps), concurrent exercise (if the dominant exercise
was not resistance-type), or chronic resistance training were
excluded, as these exercise modes induce varied severities of
EIMD. Therefore, it would be inappropriate for this meta-analysis
to group different modes of exercise, and further, this review
aimed to inform sport nutrition guidelines exclusively for
resistance exercise.

Search strategy

The literature search was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [46] on PubMed, SPORTDiscus, and Web of
Science databases for studies published up to March 2021 using
the following syntax: (muscle damage OR muscle injury OR muscle
soreness OR exercise recovery OR exercise-induced muscle
damage OR EIMD) AND (protein OR “milk*” OR whey OR soy OR
casein OR wheat OR beef) NOT (running OR cycling OR rats OR
mice). Articles were assessed for eligibility by two independent
reviewers using the Rayyan software [47]. The reference lists of
eligible articles were also screened.

Coding of studies and data extraction

Studies were read and individually coded by two independent
reviewers (AP and LM) for the following variables: (1) author, title,
and year of publication: (2) participant demographic (sex, age
(categorised as per Schoenfeld et al. [48]) training status, and
sample size); (3) resistance exercise protocol, including exercise
mode, load, set and repetition number, and inter-set rest duration;
(4) type of protein and control supplement used; (5) total daily
protein intake; (6) protein dose and timing protocol; (7)
assessment methods of muscle damage; (8) measurement time-
points in relation to exercise; and (9) significant findings. For
analyses, mean and standard deviation (SD) (absolute or change
from baseline), and sample size data were extracted for each
variable and time-point for treatment and control groups. Study
authors were contacted to provide raw data and if not received,
these data were extracted from reported figures using
WebPlotDigitizer.

Methodological quality

Study quality was assessed by two independent reviewers (AP and
LM) based on the 11-point Physiotherapy Evidence Database
(PEDro) scale, which is considered reliable and valid for quality-
assessing randomised controlled trials [49, 50]. Ratings were
categorised as: 0-3='poor; 4-5='fair; 6-8 ‘good’; and
9-10 = ‘excellent’.

Meta-analyses

Each within-study comparator group (protein vs control) was
treated as an independent trial. A meta-analysis was conducted if
the total number of trials (k) was >3 to generate k independent
effect sizes (ESs). Separate meta-analyses (16 total) were
conducted at each post-exercise time-point (<24, 24, 48, 72, and
96 h) for the most measured variables: isometric MVC, isokinetic
MVC, serum/plasma [CK], and muscle soreness visual analogue/
rating scale (VAS/VRS) score. If multiple measures of these
variables were obtained, e.g., leg extension and flexion MVC or
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Fig. 1 PRISMA flow diagram. Flow diagram of the literature search
process.

active and passive muscle soreness, the mean of these values was
used in the analysis.

For each trial, a Hedges’ g ES with correction for small positive
bias was calculated due to dissimilar within-study group sample
sizes [51]. For MVC and [CK], ESs were calculated from mean and
SD values as a percent change from baseline. For muscle soreness,
there were insufficient data to use percent change from baselines
values, due to muscle soreness being either not measured or
reported as 0 at baseline. Therefore, muscle soreness ESs were
calculated using the absolute mean and SD at each time-point.
Weighted ESs were calculated using the standard error of the
effect and adjusted with Tau squared (7.

Trial heterogeneity within each meta-analysis was assessed
using Cochran’s Q (Q) and  [52]. Due to the moderate-substantial
heterogeneity detected, a random-effect model was used to
calculate pooled ESs, which are reported with 95% confidence
intervals [51]. ESs are interpreted as 0.2 = ‘small’; 0.5 = ‘medium’;
and 0.8 ='large’ with statistical significance determined by zero
overlap of the 95% confidence interval range [53]. To identify
potentially influential trials, a sensitivity analysis was conducted by
performing meta-analyses with removal of each trial one at a time.
Trials were considered influential if their removal resulted in the
pooled ES changing from significant to non-significant, or vice
versa. Pooled ESs with removal of influential trials are reported in
the manuscript text and forest plots display all trials.

The magnitude of EIMD was determined for trials included in
the meta-analyses based on the relative peak reduction from
baseline in MVC as per Paulsen et al. [54]: mild = <20%, moderate
= 20-50%, and severe = >50% reduction. For studies providing
insufficient data to be meta-analysed (i.e., do not report mean
change and variation), or when k < 3, the mean percent change
values were calculated.

RESULTS

Study quality and overview

The literature search yielded 586 articles, of which 38 potentially
met the inclusion criteria based on abstract screening (Fig. 1).
After full-text screening, 29 studies were confirmed to meet the
inclusion criteria and were included in the systematic review
(Table 1).

The 29 studies consisted of 45 trials, of which 26 studies and 40
trials were included in =1 meta-analyses. Three studies were not
included in any meta-analysis [55-57], due to insufficient data and
the mean percent change values are reported in Table 2.
Methodological quality ratings are included in Table 1. The mean
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and median rating of study quality were 7 and 8, respectively,
indicative of good quality. Only one study was categorised as poor
and 13 as excellent.

In total, 763 participants (94% young males) were included.
Fourteen studies were conducted with trained individuals and 15
with untrained. The muscle-damaging resistance exercise was
restricted to lower-body muscle groups in most studies; upper-
body in one study [42], and whole-body in 9 studies. Muscle
contractions were concentric-eccentric (n=16 studies) or
eccentric-only (n=13 studies). The magnitude of EIMD was
predominantly mild or moderate, with only one study reporting
severe EIMD [42]. EIMD magnitude seemingly did not influence
the response to protein supplementation (Supplementary Table
S1).

Protein was provided pre-exercise (n=1) [58], post-exercise
(n =16 studies), or pre- and post- exercise (n=12), including
3 studies that investigated supplementation timing [38, 42, 43].
Whey protein (including hydrolysed and isolated forms) was the
most common protein source used, either alone (n = 10 studies)
or combined with carbohydrate (n=10 studies). Eight studies
provided milk-based protein and 4 studies included other protein
sources (whey, casein, and collagen blend [59], pea protein [41],
rice and pea protein [60], egg white and soy protein [58]). The
control group supplements were either carbohydrate-based
(n=9), a non-isoenergetic liquid (e.g., artificially-sweetened water)
(n=11), both (n=15), or no supplement provided (n = 3). Except
for one study [61], all supplements were liquid. Daily protein
intake with exclusion of the supplement was adequate in all trials
in the protein groups (0.8-2.1 g kgBM™") and the control groups
(0.8-2.0 g kgBM ™). With inclusion of the supplement, absolute
daily protein intake ranged 70-277 and 50-193 g in protein and
control groups, respectively with a mean between-group differ-
ence of 56 g. Sixteen studies did not report daily nutrient intake.

Isometric maximal voluntary contraction

Baseline isometric MVC ranged 133.7-292.4 and 125.3-314.0 Nm
in protein and control groups, respectively. Three trials did not
report baseline data [13, 42, 62]. Meta-analyses for isometric MVC
change from baseline between protein and control groups were
conducted at <24 h (k=8),24h (k=11),48h (k=8),72h (k=38),
and 96h (k=6). Overall ESs were small and insignificant at
<24-72 h (Fig. 2a-d). An influential trial was detected at 48 h [45],,
and its removal resulted in significant medium positive effects of
protein (pooled ES =0.564 [0.049, 1.080]). There was an overall
beneficial effect of protein at 96 h (ES=0.563 [0.232, 0.894])
(Fig. 2e).

Isokinetic maximal voluntary contraction

Isokinetic MVC at baseline ranged 74.5-188.0 and 72.1-183.0 Nm
in protein and control groups, respectively, and was not reported
in 2 studies [38, 63]. Meta-analyses were conducted at 24 h (k= 3),
48 h (k=8), and 72 h (k= 8). Overall ESs were small-medium in
favour of protein and reached statistical significance at all time-
points (Fig. 3a—c). Philpott et al. [63] was identified as influential
and its removal resulted in insignificant overall ESs at 48 (0.319
[—0.036, 0.675]) and 72 h (0.371 [—0.08, 0.822]). There was no clear
impact of protein type, time or duration of supplementation,
muscle group exercised, contraction type, or the training status of
participants on the change in isometric and isokinetic MVC at 24 h
(supplementary Fig. S1a).

Creatine kinase

Baseline [CK] ranged 33.7-307.0 and 43.5-540.5 [UL™" in protein
and control groups, respectively. There were insufficient data to
meta-analyse trials at <24, 24, and 96 h. At 48 h, 6 trials produced
significant medium-large positive effects of protein and the overall
effect was borderline significant (ES = 0.836 [—0.001, 1.673]). One
influential trial [64] produced large negative effects (—1.88 [—2.59,
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Table 2.

Mean percent change (range)

Mean percent change values from trials not included in the meta-analyses.

Variable Group Pre-Post Pre-24 h Pre-48 h Pre-72 h Pre-96 h

Isometric MVC Protein —29.9--24 —31.9-0.0 —323--0.7 —27.3-24 —23.0-6.1
Control —36.7-—2.6 —38.0-—3.2 —32.1-—-3.8 —32.6-—2.6 —22.2-3.8

Isokinetic MVC Protein —24.2--1.5 —26.2-0.6 —42.1--3.2 - -
Control —20.0-0.7 —25.5--8.38 —33.7--2.1 - -

CK Protein 2.0-166 29.8-1660.2 15.9-7532.3 152.0-18769.1 166.6-33222.0
Control —7.9-283.7 37.1-1605.7 42.7-3770.8 363.8-10471.4 325.3-13907.6

Time is in relation to the exercise bout; MVC maximal voluntary contraction, CK creatine kinase

—1.16]) and, once removed, the overall effect became large in
favour of protein (1.252 [0.354, 2.151]). There were large positive
effects of protein at 72h (overall ES=1.335 [0.294, 2.376]).
Removal of one influential trial [40] resulted in insignificant overall
effects (0.952 [—0.170, 2.075]).

Muscle soreness

Baseline muscle soreness ranged 0.0-27.9 and —0.5-31.4 mm in
protein and control groups, respectively, and was not reported in
one study [38]. Meta-analyses were conducted at baseline (k = 23),
<24h (k=13),24h (k=32),48h (k=29), 72h (k=22), and 96 h
(k=11). There was no overall effect of supplement group on
muscle soreness at any time-point (Fig. 4a-f). At 72h, one
influential trial was identified [63] and, upon removal, a significant
positive effect of protein was found (overall ES =0.230 [0.054,
0.406]). Protein supplementation appears more beneficial for
muscle soreness in untrained individuals, following concentric
exercise, and with a single day of supplementation (supplemen-
tary Fig. S1b).

DISCUSSION

Peri-exercise protein consumption has beneficial effects on
preserving acute muscle strength and blunting [CK] following
muscle damaging resistance exercise in young males. Reductions
in isokinetic MVC were significantly attenuated by protein in all 8
trials at =1 time-point, with no negative effects of protein
consumption. Nine out of 11 trials were in favour of consuming
protein for reducing isometric strength loss compared to control
products at >1 time-point. Likewise, only one trial failed to
demonstrate a positive effect of protein for attenuating post-
exercise [CK] elevations. Protein consumption is unlikely beneficial
for reducing post-exercise muscle soreness in young males, as
zero-small effects were observed (ES range = 0.004-0.195). This
review could not establish the impact of protein supplementation
on EIMD in females due to a lack of studies conducted with
females or both sexes.

Despite its frequent assessment, the efficacy of protein
consumption for muscle soreness management is confounding.
Less than half of trials reviewed reported a benefit of protein for
reducing post-exercise muscle soreness at 48 h. These conflicting
data reflect the existing limited understanding of the mechanisms
of exercise-induced muscle soreness, alongside its subjectivity and
susceptibility to other physiological and psychological influencers
(e.g., mood, sleep quality, hormonal status) [65]. However, this
review identified that males untrained in resistance exercise are
more likely to respond positively to protein supplementation than
trained males. Similarly, protein supplementation more frequently
reduced symptoms of muscle soreness following concentric than
eccentric exercise. Therefore, both training status and muscle
contraction type may influence muscle soreness responses to
protein supplementation. Investigating these factors may allude to
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muscle soreness mechanisms, although current understanding is
hindered by the varied assessment methods used, for example,
different rating scales, participant positioning, pressure algometry,
muscle palpation, passively, or actively with mixed forms of
activity. Such inconsistencies might explain why muscle soreness
is argued to poorly reflect EIMD [66]. Until optimal and consistent
methods for assessing muscle soreness are employed, data should
be treated cautiously.

Post-exercise muscle strength decrements debilitate future
exercise quality for up to 7 days [13, 14]. This review has
demonstrated that peri-exercise protein consumption can reduce
muscle strength loss and accelerate the recovery of muscle
function. Therefore, high-quality exercise may be resumed faster
with the aid of protein consumption, compared to carbohydrate-
based or no peri-exercise nutritional strategy. Currently, the use of
protein as an exercise nutrition strategy is recommended for
muscle recovery, repair, and growth, due to its stimulatory effects
on post-exercise MPS rates [67], which are augmented by protein
consumption relative to exercise alone [35]. It follows that peri-
exercise protein consumption may be recommended as a multi-
purpose nutritional aid — assisting in the management of muscle
damage and repair processes. This dual-target strategy could help
lift financial, time, and resource constraints, as opposed to
following multiple dietary and/or physiotherapeutic strategies
serving individual purposes.

It is unclear how protein supplementation may reduce muscle
strength decrements following exercise and here, protein ingestion
was only beneficial for isometric MVC at 96 h post-exercise. One
explanation is that MPS is augmented by protein relative to
carbohydrate ingestion during the later (72-168 h) but not earlier
(24-72 h) recovery period after EIMD [68]. By this means, repair and
remodelling of muscle proteins and restoration of muscle function
may occur at an accelerated rate with protein supplementation.
However, it is difficult to explain why protein supplementation
benefited isokinetic but not isometric MVC at 24-72 h post-exercise.
These outcomes appear predominantly due to one influential study
[63], though nonetheless could relate to the magnitude of strength
decline, which was typically lower for isokinetic compared with
isometric MVC. The pathways by which protein ingestion acts to
attenuate EIMD warrant investigation, though notably, factors other
than post-exercise amino acid availability play a role [68].

Much research on protein nutrition, particularly related to MPS,
has sought to establish the optimal type, dose, and timing of
protein consumption to maximally stimulate post-exercise MPS
rates [69]. Although, this has not been the case for EIMD. The
present review identified no discernible effects of protein
ingestion timing, type, dosage (ranged 5-104g), or days of
supplementation on EIMD (supplementary fig. 1). However, other
inter-study differences in methodological design, for example the
exercise protocol, sample demographics, and measurement tools
may limit the ability to compare protein supplementation
protocols between trials.
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Fig.2 Isometric MVC forest plot. Forest plot of Hedges’ g effect sizes with 95% confidence intervals for the effect of protein supplementation
compared to control on the change from baseline in isometric maximal voluntary contraction at a <24 h post-exercise, b 24 h post-exercise,
¢ 48h post-exercise, d 72h post-exercise, and e 96 h post-exercise. A positive effect size indicates a beneficial effect of protein
supplementation compared to control. All eligible trials, including outliers, are presented and included in the analysis.
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Fig. 3 Isokinetic MVC forest plot. Forest plot of Hedges' g effect
sizes with 95% confidence intervals for the effect of protein
supplementation compared to control on the change from baseline
in isokinetic maximal voluntary contraction at a 24 h post-exercise,
b 48 h post-exercise, and ¢ 72 h post-exercise. A positive effect size
indicates a beneficial effect of protein supplementation compared
to control.

This review identified few trials that compared protein
supplementation strategies while being matched for other
methodological detail. White et al. [43] provided untrained males
with 23 g whey protein plus 75 g carbohydrate before or after
eccentric leg extension exercise, which had no impact on EIMD,
irrespective of supplementation timing. Likewise, there were no
differences in EIMD between groups of untrained males consum-
ing a large dose (1.5 g-kgBM ") of whey protein pre, post, or pre
and post exercise [42]. In a series of experiments with comparable
methodological design, Cockburn and colleagues examined the
impact of various milk protein feeding strategies on EIMD in
trained males performing leg-based resistance exercise. These
authors found no significant interactions between EIMD markers
and milk protein timing (pre, post, or 24 h post-exercise), dosage
(17 or 349), or type (milk or flavoured milk plus carbohydrate)
[36, 38, 39]. Similarly, ingesting flavoured milk relative to an
isonitrogenous dose of whey protein hydrolysate did not impact
muscle damage following whole-body resistance exercise in
trained males [70]. Conversely, Buckley et al. [44] indicate that
the type of ingested protein influences EIMD.

Buckley and colleagues [44] noted that maximal isometric
strength was preserved in untrained males at 6-24 h following
maximal eccentric exercise when hydrolysed whey protein, but
not isolated whey protein or flavoured water, was consumed post-
exercise. This finding is unusual, especially as there were no
between-group differences in peak strength decrements at 0-2 h
post-exercise, nor in other EIMD markers. Another anomaly is the
tendency for maximal strength to undergo a second decrease
from 6 to 24h following whey isolate ingestion, meanwhile
maximal strength of the placebo group began returning to
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baseline. The authors propose that the hydrolysed whey protein
accelerated strength recovery relative to non-hydrolysed protein
by means of stimulating muscle repair processes. However, this
theory seems unlikely, given that isolated whey protein stimulates
increased post-exercise MPS rates [71-74]. Furthermore, a similar
study observed comparable isometric strength reductions and
recovery rates after eccentric exercise with ingested whey
hydrolysate, whey isolate, and flavoured water [45]. Supporting
data [60] make it challenging to explain the outcomes of Buckley
[44]; thus, the impact of protein hydrolysis on EIMD warrants
further investigation. To ascertain the importance of protein
feeding type, timing, and dosage for the management of EIMD,
further studies with comparable methodologies are required. Due
to the apparent lack of difference between isolated and whole-
food sources of protein, future studies should adopt a food-first
approach where feasible.

The food-first approach aids the achievement of multiple
nutrient requirements, however meeting protein intake goals
using this approach may be challenging for some protein types.
Accordingly, the ‘food first but not always food only’ approach is
advocated [75]. Plant-based proteins present a challenge, as they
necessitate consumption of larger food volumes to achieve protein
requirements. For example, 20 g of milk protein can be obtained
through ~200 g of dairy yoghurt, while ~500 g of soya yoghurt is
required to obtain 20 g of soy protein. Alternatively, a single-serve
of isolated soy protein conveniently provides an isonitrogenous
dose. Plant-based diets are growing in popularity, due to various
health, environmental, ethical, and economic benefits [76].
Although, the impact of plant-based proteins on EIMD is uncertain.
Three studies considered the impact of plant- versus animal- based
proteins on resistance EIMD in untrained males in the present
review [41, 58, 60]. Hasegawa and colleagues [58] provided
participants with 20 g of egg white or isolated soy protein or water
preceding whole-body resistance exercise. Serum [CK] and muscle
soreness significantly increased 30 min and 24 h post-exercise,
respectively, with no between-group differences. Nieman et al. [41]
found that consuming ~24 g of isolated whey, but not pea, protein
before and after whole-body exercise, and pre-sleep for 4 d,
attenuated serum [CK] elevations at 72-96h post-exercise
compared to water consumption. Nonetheless, relative to water,
neither protein source reduced muscle strength, endurance, and
power decrements or muscle soreness. Here, the ineffectiveness of
plant-based proteins for reducing EIMD may be attributed to their
single-source origin. Plant-based proteins, including soy, rice, and
wheat, have been scrutinised as inferior in quality to animal-based
proteins, due to their lower essential amino acid content [77] and
bioavailability [78]. Ingesting a larger dose [79] or a blend [80, 81]
of plant-based proteins provides the amino acid profile required to
stimulate increased MPS rates. In this review, only one study [60]
compared the effect of a plant-based protein blend on EIMD with
whey protein isolate, whey protein hydrolysate, and a non-
isoenergetic control. EIMD was unaffected by peri-exercise
ingestion of a 25-40 g protein dose, irrespective of source, which
is perhaps partly due to equivalent daily total protein intakes
between groups. Further investigation of plant- versus animal-
based proteins and single-source versus blended plant-based
proteins from isolated and whole-food sources is needed to
determine the relevance of protein quality in EIMD.

The present findings on the efficacy of ingested protein for
muscle function restoration following resistance exercise are
consistent with Davies and colleagues [27]. This meta-analysis
(n =13 trials) reported small-medium beneficial effects of whey
protein consumption <24-96h post-exercise. However, peak
isometric knee extensor strength was the only outcome con-
sidered, and without corroboration from other EIMD markers
these data have narrow application. Further, varied control groups
were included (water, carbohydrate, milk, and collagen proteins),
making inter-trial generalisability unreasonable. Conversely, the
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Fig. 4 Muscle soreness forest plot. Forest plot of Hedges' g effect sizes with 95% confidence intervals for the effect of protein
supplementation compared to control on muscle soreness ratings at a pre-exercise, b <24 h post-exercise, ¢ 24 h post-exercise, d 48 h post-
exercise, e 72 h post-exercise, and f 96 h post-exercise. A positive effect size indicates a beneficial effect of protein supplementation compared
to control. All eligible trials, including outliers, are presented and included in the analysis.
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Fig. 4 (Continued)

systematic review by Pasiakos et al. [31] examined the impact of a
range of protein- and amino acid- based supplements on EIMD
outcomes (muscle function, soreness, CK, LDH, Mb) for up to
several weeks following endurance or resistance exercise. These
authors found minimal evidence supporting a benefit of protein
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supplementation for post-exercise recovery of muscle function
and soreness. However, they acknowledge that divergencies in
study design regarding protein supplementation and exercise
protocols limit their observations. In contrast, the present review
identified an overall advantage to consuming protein on muscle
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Table 3.

Proposed guidelines for data reporting in primary research

A framework of data reporting guidelines for primary research to increase inclusion in meta-analyses.

Authors should provide supplementary data files of all gathered data where feasible

When measures are conducted at multiple time-points, authors should strive to report the mean change and variance between time-points (not

just mean and variance data at each time-point)

Where feasible, baseline data for all measures should be obtained and reported

The acquired sample size for each variable at each time-point should be reported (these data could be included in figure legends or

supplementary files)

Studies conducted with participants of both sexes should report male and female data separately (even if the analysis of sex differences is not an

outcome of the study)

Authors should report the methods used relating to study quality, e.g., randomisation, blinding, allocation concealment. If no consideration has

been given to these methodological factors, this should be stated.

function, which may reflect the tighter study inclusion criteria
(resistance exercise only, separation of muscle functional markers,
exclusion of amino acid-based supplements). Seemingly, broad
criteria for study inclusion may mask beneficial effects of protein
supplementation for EIMD, especially when small sample sizes
prevent sub-group analysis.

LIMITATIONS

Several limitations may have affected the outcomes and applica-
tion of the present review. From the pool of studies, 5 were
considered low/fair quality and therefore susceptible to bias,
which can exaggerated treatment effects [82]. The main PEDro
criteria that studies failed to meet were lack of double blinding,
which can induce bias; completion of =1 outcome by 85% of
participants; and receipt of allocated treatment. However, failure
to meet these criteria was often assumed, due to a lack of
methods reporting. Other limitations arose from the supplemen-
tation strategies and study designs employed. Control supple-
ments were varied (artificial sweetener, water, flavoured water,
electrolytes, glucose, maltodextrin, dextrose, and no supplement
[42, 62, 83, 84]), and mostly, not isoenergetic to protein
supplements; thus, energy/carbohydrate content may have
confounded protein effects. A range of protein doses were given,
potentially increasing heterogeneity of the study pool. Two
studies [42, 85] prescribed protein dose relative to body mass
(1.5 g-kgBM™") resulting in large doses (~104 g), although most
studies provided a standard dose (17-42 g).

Eight studies were possibly limited by adopting crossover
designs. Due to RBEs associated with EIMD [16-18], responses to
repeated exercise were likely attenuated, particularly in untrained
participants [57, 58, 84] and with insufficient washout periods (1-2
wk) [57, 58, 61, 62, 86, 87]. Notwithstanding, all crossover studies
counterbalanced treatment order, which should limit order effects
and the impact of RBEs.

Regarding the meta-analyses, ESs were not obtained for all
variables in each trial due to insufficient data reporting. However, no
apparent differences existed in the outcomes of included or
excluded trials. Data extraction from figures may have been
inaccurate, resulting in over/underestimated treatment effects.
Furthermore, when sample size was not reported for each variable
and time-point, a consistent sample size was assumed, which if
inaccurate could alter true effects. Variables with different assess-
ment methods (e.g., active and passive soreness) were pooled to
maximise k for meta-analyses; however, this might impact overall
treatment effects. This review considered only four variables, thus
providing scope for future meta-analyses to examine protein
supplementation effects on other markers of EIMD. Moreso, due
to its large-scale, this review did not consider amino acid-based
supplements, which may offer beneficial sub-analysis. Finally, as the
study samples were 94% young male, the outcomes of this review
may be inapplicable to older adults and females.
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Future directions

The limited understanding of the impact of protein supplementa-
tion for resistance EIMD management in females should be
addressed by conducting high-quality research with females or
both sexes. Additional investigation of various protein types
(particularly plant-based), timing, and dosing strategies would
help inform protein nutrition guidelines for EIMD management.
Establishing optimal methods for assessing EIMD in experimental
models requires investigation, as methodological inconsistencies
across current studies are hindering knowledge progression of
EIMD mechanisms and management strategies. To benefit future
research, standardised methodologies (e.g., consistent measures,
measurement time-points, assessment tools) should be practiced,
increasing the generalisability and application of outcomes, and
data inclusion in topical reviews and meta-analyses. Where
feasible, cross-over designs with sufficient wash-out period and,
when relevant, unilateral limb models should be employed to limit
heterogeneity. Furthermore, data reporting and transparency
issues are limiting study inclusion in meta-analyses and obstruct-
ing accurate and representative conclusions being drawn.
Accordingly, a framework is proposed outlining data reporting
guidance to increase inclusion of primary data in meta-analyses
(Table 3).

CONCLUSIONS

This systematic review with meta-analysis demonstrated that, in
young males, peri-exercise protein consumption reduces maximal
strength decrements and lowers [CK] following acute resistance
exercise but does not benefit muscle soreness. These outcomes
are seemingly unaffected by the type, timing, frequency, and dose
of ingested protein, though may be affected by the exercise
protocol and sample training status, with further examination
required. This review identified an absence of female-focussed
research and a limited number of studies examining plant-based
protein sources, which warrants future research priority. Develop-
ing evidence-based EIMD management strategies is impeded by
methodological inconsistencies across studies, particularly per-
taining to EIMD assessment methods. This review highlights the
need for standardised and transparent data reporting in EIMD
research and proposes a guiding framework.
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