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Decorin: a potential therapeutic candidate for ligamentum
flavum hypertrophy by antagonizing TGF-β1
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Ligamentum flavum hypertrophy (LFH) is the main physiological and pathological mechanism of lumbar spinal canal stenosis
(LSCS). The specific mechanism for LFH has not been completely clarified. In this study, bioinformatic analysis, human ligamentum
flavum (LF) tissues collection and analysis, and in vitro and in vivo experiments were conducted to explore the effect of decorin
(DCN) on LFH pathogenesis. Here, we found that TGF-β1, collagen I, collagen III, α-SMA and fibronectin were significantly
upregulated in hypertrophic LF samples. The DCN protein expression in hypertrophic LF samples was higher than that in non-LFH
samples, but the difference was not significant. DCN inhibited the expression of TGF-β1-induced fibrosis-associated proteins in
human LF cells, including collagen I, collagen III, α-SMA, and fibronectin. ELISAs showed that TGF-β1 can upregulate PINP and PIIINP
in the cell supernatant, and this effect was inhibited after DCN administration. Mechanistic studies revealed that DCN suppressed
TGF-β1-induced fibrosis by blocking the TGF-β1/SMAD3 signaling pathway. In addition, DCN ameliorated mechanical stress-
induced LFH in vivo. In summary, our findings indicated that DCN ameliorated mechanical stress-induced LFH by antagonizing the
TGF-β1/SMAD3 signaling pathway in vitro and in vivo. These findings imply that DCN is a potential therapeutic candidate for
ligamentum flavum hypertrophy.
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INTRODUCTION
Lumbar spinal canal stenosis (LSCS) is one of the most common
causes of lower back pain and gait disorder in elderly individuals
and seriously affects the daily living activities and health of
patients1. Disc herniation and ligamentum flavum hypertrophy
(LFH) are the main physiological and pathological mechanisms of
LSCS, which can compress the dura, cauda equina, and nerve
roots, resulting in corresponding clinical symptoms2–4.
The ligamentum flavum (LF) is an important part of the

posterior spinal column. Its main function is to limit the
hyperflexion of the spine and play a role in maintaining the
stability of the spine together with the intervertebral disc, facet
joint and intervertebral ligament. In addition, the LF is an
important part of the posterior lateral wall of the spinal canal
and has a protective effect on the spinal cord5. Histologically,
normal LF is composed of 80% elastic fibers and 20% collagen
fibers6. However, LFH manifests as the degradation of elastic fibers
and an increase in collagen fibers, which are typical fibrotic
changes7. Hypertrophic LF can compress nerves or the spinal cord,
causing clinical symptoms such as numbness, pain, and limited
mobility8–10.
Many studies have shown that fibrosis is the main cause of

hypertrophy of the LF, and a variety of molecules participate in
this pathological process, including transforming growth
factor beta 1 (TGF-β1), connective tissue growth factor (CTGF),

wnt-induced secreted protein-1 (WISP-1), interleukin- 1β (IL-1β),
interleukin-6 (IL-6), matrix metalloproteinases (MMPs), fibroblast
growth factor (FGF), vascular endothelial cell growth factor (VEGF),
etc.4,7,11–14. Among them, TGF-β1 is considered to be one of the
factors most closely related to LFH11,15–18.
Decorin (DCN) is a small leucine-rich proteoglycan that interacts

with various extracellular matrix proteins, cell surface receptors,
and cell growth factors19. More importantly, DCN can inhibit the
function of TGF-β1 by binding to it and neutralizing some of its
activity and is thought to be a natural inhibitor of TGF-β120,21.
Many studies have shown that this molecule can improve the
pathological changes caused by fibrosis in various tissues by
inhibiting TGF-β122–27. In the present study, bioinformatic analysis,
human LF tissues collection and analysis, as well as in vitro and
in vivo experiments were conducted to explore the effect of DCN
on LFH pathogenesis.

MATERIALS AND METHODS
Bioinformatic analysis
Raw data were acquired from the GEO database (https://
www.ncbi.nlm.nih.gov/geo). GSE113212 includes eight LF samples, four
of which are from healthy people, while the others are from patients with
LFH. QC (quality control) and the identification of DEGs (differentially
expressed genes) were performed with the R package limma28.
Clusterprofiler was applied to perform GO and KEGG enrichment analyses
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of the DEGs29. The R package ggplopt2 was used to draw the pictures. The
STRING database was used to identify potential protein‒protein interaction
(PPI) relationships (https://cn.string-db.org/). MCODE and Cytoscape (V
3.8.2) were further used to select the subnetwork.

Human LF sample collection
Patients with lumbar degenerative diseases who needed surgical
intervention were enrolled in this study. According to the preoperative
diagnosis, patients were divided into the LFH group and the non-LFH
group. Patients with LSCS caused by LFH were assigned to the LFH group,
and patients with simple lumbar disc herniation were assigned to the non-
LFH group. LFH was defined as a LF thickness greater than 4mm on
magnetic resonance imaging (MRI) at the operated level, and non-LFH was
defined as a LF thickness less than 3mm on MRI at the operated level. LF
tissues (L4/5) were isolated and collected during the operation and then
used for subsequent experiments.

Cell isolation and culture
Human LF cells were isolated from LF tissues as described previously13.
After the LF tissues were obtained from patients, the samples were washed
three times with phosphate-buffered saline (PBS, Boster, Wuhan, China).
Subsequently, the LF tissues were cut into approximately 0.5 mm3 granules
and digested with 0.2% type I collagenase (Sigma, USA) for 1 h at 37 °C in a
cell incubator. Then, 0.2% type I collagenase was removed, and the
samples were washed with Dulbecco’s modified Eagle’s medium (DMEM,
Gibco, USA). Finally, the specimens were incubated with DMEM containing
15% fetal bovine serum (Gibco, USA) and 1% penicillin‒streptomycin
solution (Biosharp, Guangzhou, China) in a cell incubator with a 5%
concentration of CO2 at 37 °C. LF cells within four generations were used
for subsequent experiments.

Cell viability and proliferation
LF cells were cultured in 24-well plates (2 × 104 cells/well) or 96-well plates
(1 × 104 cells/well). After 80% confluence, the LF cells were treated with
different concentrations of recombinant human DCN (143-DE, R&D
Systems, Minneapolis, MN, USA) for 24 h. Subsequently, the Calcein-AM/
PI Double Stain Kit (Yeasen, Shanghai, China) and Cell Counting Kit-8 (CCK-
8, Boster, Wuhan, China) assays were used to test cell viability and
proliferation. For calcein-AM/PI double staining, a fluorescence microscope
(Evos Flauto; Life Technologies, USA) was used to gather live/dead cell
images, and the live cells and dead cells were counted in six random fields
of view for each well. For the CCK-8 assay, CCK-8 solution was added to a
96-well plate (10 µL/well), and the 96-well plate was incubated in the dark
for 1 h at 37 °C. Finally, the absorbance at 450 nm was obtained using a
spectrophotometric microplate reader (Bio-Rad, Richmond, USA).

Cell intervention
LF cells derived from patients in the non-LFH group (normal LF cells) and
LFH group (hypertrophic LF cells) were cultured in 24-well plates (2 × 104

cells/well) or 6-well plates (1 × 106 cells/well). After 80% confluence, the
normal LF cells were treated with different concentrations (0 ng/ml, 2.5 ng/
ml, 5 ng/ml, 10 ng/ml) of recombinant human TGF-β1 (240-B, R&D Systems,
Minneapolis, MN, USA), and hypertrophic LF cells were treated with
different concentrations (0 nM, 50 nM, 100 nM, 200 nM) of recombinant
human DCN for 24 h. Subsequently, the cells were collected for protein
extraction, and the cell supernatant was collected for ELISAs. For further
analysis of the role of TGF-β1 and DCN in the LFH process, normal LF cells
were treated with 10 ng/ml TGF-β1 in combination with different
concentrations of DCN for 24 h. Similarly, the cells were then collected
for immunofluorescence staining and protein analysis, and the cell
supernatant obtained was used for ELISAs.

Western blotting analysis
LF tissues were cut into approximately 0.5 mm3 granules and then
homogenized with a tissue homogenizer until there were no visible solids.
LF cells were collected and lysed with RIPA lysis buffer containing 1%
phosphatase inhibitors and 1% protease inhibitors (Boster, Wuhan, China)
on ice for 30min. Subsequently, an ultrasonic disruptor was used for
further lysis. After centrifugation, the supernatant was collected, and the
protein concentration was detected with a BCA assay kit (Boster, Wuhan,
China). After this, the proteins were mixed with protein loading buffer at a
ratio of 4:1, heated at 100 °C for 5 min, and finally stored at −80 °C for

Western blotting analysis. Proteins were separated by electrophoresis
using SDS‒PAGE gels and then transferred to PVDF membranes (Millipore,
Billerica, USA). The PVDF membranes were blocked with 5% skim milk for
1 h and then incubated with species-matched primary antibodies against
decorin (#29199, Signalway Antibody LLC, Maryland, USA), TGF-β1 (#41494,
Signalway Antibody LLC, Maryland, USA), collagen I (14695-1-AP,
Proteintech Group, Wuhan, China), collagen III (22734-1-AP, Proteintech
Group, Wuhan, China), α-SMA (ab124964, Abcam, Cambridge, UK),
fibronectin (ab268020, Abcam, Cambridge, UK), SMAD3 (#9253, Cell
Signaling Technology, Danvers, USA), phosphorylated-SMAD3 (P-SMAD3,
#9520, Cell Signaling Technology, Danvers, USA) and GAPDH (BM1623,
Boster, Wuhan, China) at 4 °C overnight. Next, the membranes were
washed three times with TBST and then incubated with species-matched
secondary antibodies (Cell Signaling Technology, Danvers, USA) for 1 h at
room temperature. Finally, the membranes were washed again with TBST,
and the protein bands were developed with a Western blotting
chemiluminescence kit (Thermo Pierce, MA, USA) and visualized with a
Bio-Rad scanner system (CA, USA).

Immunofluorescence
After intervention, LF cells were fixed with 4% paraformaldehyde for 10min
and permeabilized with 0.1% Triton X-100 for 15min, and then, the cells
were blocked with 5% goat serum for 1 h. After this, the LF cells were
incubated with antibodies against collagen I, collagen III, α-SMA and
fibronectin at 4 °C overnight. Subsequently, the cells were incubated with
FITC-conjugated (green) or Cy3-conjugated (red) anti-rabbit IgG antibodies
(Boster, Wuhan, China) for 1 h in the dark and then stained with DAPI (Boster,
Wuhan, China) for 10min. Finally, a fluorescence microscope (Evos Flauto;
Life Technologies, USA) was used to gather immunofluorescence images.

Animals and animal procedures
Thirty male Sprague–Dawley rats (250–300 g) were randomly divided into
three groups. One group was the sham group, and the other two groups
were the LFH model group. The LFH model was established as described
previously30. After weighing, the rats were anesthetized by pentobarbital
(intraperitoneal injection, 4.0 mg/100 g body weight). A dorsal longitudinal
incision was adopted over the L4-5 or L5-6 spinous processes of the rats.
After exposure of the spinous processes and bilateral facet joints, the
adjacent muscles were detached. The spinous processes, bilateral facet
joints and interspinal ligament were resected. After surgery, one of the LFH
model groups was treated with paravertebral injections of DCN (200 nM,
500 µl per rat, twice per week), and another LFH model group was treated
with saline in the same way. After 8 weeks, all rats were sacrificed, and the
intact peripheral blood and operative segmental vertebrae were isolated
and collected for further experiments.

Enzyme-linked immunosorbent assay
LF tissues of rats were isolated and cut into approximately 0.5 mm3

granules, added to PBS and homogenized by a tissue homogenizer until
there were no visible solids. After centrifugation at 3000 RPM for 20min at
4 °C, the supernatant was collected and used to detect the local
concentrations of procollagen type I N-terminal propeptide (PINP) and
procollagen type III N-terminal propeptide (PIIINP). The peripheral blood
derived from rats was left at room temperature for one hour and then
centrifuged at 3000 RPM for 20min at 4 °C. Blood serum was collected and
used to detect the systemic concentrations of PINP and PIIINP. The
concentrations of PINP and PIIINP in LF cell supernatant, rat LF and rat
blood serum were determined by ELISA kits (Signalway Antibody LLC,
Maryland, USA).

Histological staining and immunohistochemistry analysis
The LF tissues from humans or rats were fixed with 4% paraformaldehyde
and then transferred to 10% EDTA for decalcification. Subsequently, the LF
tissues were dehydrated, paraffin-embedded, and then cut into 5-μm
sections. Histological staining included hematoxylin-eosin (H&E) staining
and Elastica-van Gieson (EVG) staining. According to the proportion of
elastic fibers and collagen fibers, the LF fibrosis score was assessed as
follows: Grade 0 represents normal tissue without a fibrotic region; Grade 1
represents fibrosis involving 0–25% of the entire area; Grade 2 means
fibrosis in 25–50% of the LF; Grade 3 indicates between 50 and 75%
fibrosis, and Grade 4 indicates fibrosis over 75% of the LF31. Antibodies
against DCN, TGF-β1, collagen I, collagen III, α-SMA and fibronectin were
used for immunohistochemical analysis.
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Statistical analysis
GraphPad Prism V.7.00 software was used for statistical analyses in this
study. Continuous data are presented as the mean ± SD, and categorical
data are presented as frequencies and percentages. One-way analysis of
variance was used for multiple group comparisons, independent t tests
were used for the comparison of continuous data between two groups,
and chi-square tests were used to analyze the categorical variables. P
values < 0.05 were considered to be statistically significant.

RESULTS
Bioinformatic analysis identifies TGF-β1 as a key regulator in
the development of LFH
After QC including PCA and removal of batch effects, we obtained
an expression matrix containing 19,410 genes (Supplementary Fig.
1a, b). Differentially expressed genes (DEGs) were further
identified with rigorous criteria (logFC >1, p < 0.05) (Fig. 1A). The
top 200 up- and downregulated genes are represented in Fig. 1B
(Supplementary Table 1). GO enrichment analysis of DEGs
involving biological process (BP), cell component (CC), and
molecular function (MF) was further performed with DEGs,
suggesting that DEGs were mainly enriched in terms related to
extracellular matrix, such as extracellular matrix organization and
collagen-containing extracellular matrix. Interestingly,
TGFβ-related biological processes have also been found to play
an important role in the pathological process of LFH (Fig. 1C–E).
GSEA validated that the process of proteoglycan biosynthesis and
type 1 collagen synthesis was significantly enhanced in the
progression of LFH (Fig. 1F). Similar results have previously been
reported12,32. To demonstrate the key pathways involved in LFH,
we carried out KEGG analysis, which indicated that the TGFβ
pathway was significantly enriched in the pathogenesis of LFH
(Fig. 1G). PPI analysis was further performed to explore the key
modules in DEGs where two major modules were then identified,
in which COL1A2, FN1, and TGFB1, known as TGFβ1, were found
to have a relatively higher level of expression (Fig. 1H). These
results indicated that COL1A2, FN1, and TGFB1 played an
important role in the development of LFH. In addition, we found
that these three genes were significantly increased in the samples
from LFH patients (Fig. 1I–K). This result showed that the increased
expression of TGF-β1 is positively correlated with LFH fibrosis. Our
previous work confirmed that DCN played a vital role in the
progression of fibrosis by antagonizing TGF-β123,25. For DCN,
which encoded protein DCN, we did not observe a significant
increase in the LFH samples (Fig. 1L). Therefore, we hypothesized
that DCN could be a potential therapeutic candidate for LFH by
antagonizing TGF-β1.

Demographic characteristics of clinical data
In view of the results of the mechanistic analysis, we collected
some clinical samples for analysis. A total of 40 patients (L4/5)
were enrolled in this study: 20 patients in the LFH group and 20
patients in the non-LFH group. Demographic characteristics in
both groups are shown in Table 1. Baseline characteristics of sex
and bone mass index (BMI) and operative level of the 2 groups
were similar. However, the mean age of the LFH group was
significantly older than that of the non-LFH group. The mean value
for LF thickness in the LFH group was 5.27 ± 0.42 mm, which was
significantly higher than that in the non-LFH group
(2.54 ± 0.31 mm) (Fig. 2A, B).

Increased fibrotic degree of LF in patients with LFH
Many studies have shown that fibrosis is the main pathological
course of LFH4,11,14,32. Our study emphasized this again. H&E
staining showed that the fibrous structure of LF in the LFH group
was disordered and uneven. There was a loss of fiber in some
areas, and the number of cells was increased (Fig. 2C).
Furthermore, the proportion of elastic fibers decreased, and the

proportion of collagen fibers increased in EVG staining (Fig. 2C, D).
The fibrosis score of the LF in the LFH group was significantly
higher than that in the non-LFH group (Fig. 2E). Western blotting
analysis and immunohistochemistry analysis showed that the
expression of collagen I and collagen III was significantly
upregulated in the LHF group (Fig. 2F–H). In addition, we
observed increased expression of α-SMA and fibronectin in the
LHF group (Fig. 2F–H).

TGF-β1 and DCN expression was upregulated in LFH
We then examined the expression of TGF-β1 and DCN in LF
specimens. Protein analysis and immunohistochemistry analysis
showed that the expression of TGF-β1 was significantly increased
in the LFH group. For DCN, we observed increased expression in
the LFH group, but there was no significant difference (P= 0.114)
(Fig. 3). Our results were consistent with bioinformatic analysis.

DCN inhibited LF cell proliferation
To further investigate the role of DCN in LFH, we isolated human
LF cells from LF tissues. First, we detected the effect of DCN on the
viability and proliferation of LF cells. The CCK-8 assay showed that
DCN suppressed LF cell proliferation, and this inhibitory effect was
dose-dependent. LF cell proliferation was obviously inhibited
when the concentration of DCN was 100 nM and 200 nM (Fig. 4C).
However, with increasing DCN concentration, there was no
significant difference in the proportion of living cells and dead
cells, which suggested that the inhibitory effect of DCN on LF cell
proliferation was not caused by inducing cell death (Fig. 4A, B).

TGF-β1 induced fibrosis in normal LF cells, while DCN
inhibited fibrosis in hypertrophic LF cells
Previous literature has demonstrated that TGF-β1 can induce
fibrosis in LF cells11. This result was also confirmed in our study.
After the LF cells were seeded on six-well plates, they were
administered with different concentrations of TGF-β1. The results
showed that the expression of collagen I, collagen III, α-SMA and
fibronectin was significantly increased in ligamentum flavum cells
(Fig. 5A, B). The levels of PINP and PIIINP in the cell supernatant
were significantly increased with increasing TGF-β1 concentration
(Fig. 5C). In addition, we found that DCN inhibited the fibrosis of
hypertrophic LF cells. With the administration of DCN, the
expression of collagen I, collagen III, α-SMA and fibronectin was
significantly downregulated in hypertrophic LF cells, as well as the
levels of PINP and PIIINP in the cell supernatant (Fig. 5D–F). These
results indicated that TGF-β1 and DCN play opposite roles in LF
cell fibrosis. The concentration with the most obvious effect for
TGF-β1 (10 µg/ml) and DCN (100 nM and 200 nM) was identified
and used for subsequent studies.

DCN inhibited TGF-β1-induced fibrosis-associated protein
expression in LF cells
We investigated the interaction of DCN and TGF-β1 in LF cells.
Normal LF cells were administered 10 ng/ml TGF-β1 in combina-
tion with different concentrations of DCN (0 nM, 100 nM, and
200 nM). The results showed that the expression of collagen I,
collagen III, α-SMA, and fibronectin was significantly increased
with 10 ng/ml TGF-β1, yet this phenomenon was alleviated after
DCN intervention (Fig. 6A, B). These results were verified by
immunofluorescence (Fig. 6C–F). Consistent with the protein
expression of fibrotic proteins, the increased levels of PINP and
PIIINP induced by TGF-β1 were significantly attenuated by DCN in
the cell supernatant (Fig. 6G). Our data showed that DCN can
inhibit the fibrosis of LF cells by antagonizing TGF-β1. In addition,
further analysis was performed to investigate the ability of DCN to
inhibit TGF-β1-stimulated fibrotic protein expression in LF cells
through the SMAD3 signaling pathway. Western blotting analysis
revealed that intervention with DCN in LF cells inhibited TGF-β1-
stimulated P-SMAD3 protein expression (Fig. 6H–J). In summary,
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Fig. 1 Bioinformatics analysis revealed TGF-β1 as a key regulator in the development of LFH. A The volcano plot shows 570 upregulated
DEGs and 457 downregulated genes. B The heatmap shows the top 200 up- and downregulated genes. C Enrichment analysis of biological
processes from the GO database. D Enrichment analysis of cell components from the GO database. E Enrichment analysis of molecular
function from the GO database. F GSEA of DEGs. G KEGG enrichment analysis of the key pathways involved in LFH. H PPI analysis identified
two major modules. I–L The relative expression levels of TGF-β1, COL1A2, FN1, and DCN (n= 4). Data are presented as the means ± SDs. ns, no
significance; *p < 0.05; **p < 0.01; ***p < 0.001.
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our data indicated that DCN suppressed TGF-β1-induced fibrosis
of LF cells by blocking the SMAD3 signaling pathway.

DCN alleviated LF fibrosis and hypertrophy in an in vivo LFH
model
We further explored the effect of DCN in an LFH model of lumbar
instability induced by resection of the posterior structure of the

lumbar spine. Compared with those of the sham group, the
thickness and area of LF in the LFH model group were significantly
increased. Histological analysis showed that the morphological
changes in LF in the LFH model group were consistent with those
in human LF isolated from the LFH group, including disordered,
uneven, focal loss of fiber structure, a decreased proportion of
elastic fibers and an increased proportion of collagen fibers.
However, in the DCN treatment group, we found that those
morphological changes in the LFH model group were significantly
ameliorated (Fig. 7A–E). In addition, immunohistochemistry
analysis showed that the expression levels of collagen I and
fibronectin in the LFH model groups were significantly higher than
those in the sham group, yet this phenomenon was significantly
ameliorated after DCN intervention (Fig. 7F, G). Similarly, ELISAs
showed that the local levels of PINP and PIIINP in the LFH model
group were significantly increased compared to those in the sham
group. However, in the DCN treatment group, this phenomenon
was significantly ameliorated (Fig. 7H). To further test the systemic

Fig. 2 Increased fibrotic degree of LF in patients with LFH. A Coronal and sagittal MRI of LF. The LF thickness was determined on coronal
MRI. B Comparison of LF thickness between the LFH group and the non-LFH group (n= 20). C Representative images of H&E staining and EVG
staining of the LF samples from the two groups (n= 8). EVG staining (collagen fibers were stained pink, while elastic fibers were stained black).
The scale bar indicates 100 μm. D Comparison of the percentage of collagen fibers and elastic fibers between the two groups (n= 8).
E Comparison of LF fibrosis scores between the two groups (n= 8). F Western blot analysis of collagen I, collagen III, α-SMA and fibronectin
protein expression in LF samples from the two groups. GAPDH was the loading control (n= 6). G Quantitative analysis of collagen I, collagen
III, α-SMA and fibronectin protein expression in LF samples from the two groups (n= 6). H Representative images of immunohistochemical
staining of collagen I, collagen III, α-SMA and fibronectin in LF samples from the two groups (n= 8). The scale bar indicates 100 μm. Data are
presented as the means ± SDs. ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001.

Table 1. Comparison of the baseline data of patients between the two
groups.

Variable Non-LFH group
(n= 20)

LFH group
(n= 20)

P value

Age (years) 53.6 ± 8.2 60.2 ± 7.0 0.009

Sex (male/
female)

13/7 9/11 0.341

BMI (kg/m2) 22.2 ± 2.4 23.6 ± 2.3 0.069
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effects of local DCN intervention, we detected the levels of PINP
and PIIINP in peripheral blood by ELISA. The results showed no
significant difference in serum concentrations of PINP and PIIINP
from peripheral blood among the three groups, which indicated
that the application of local DCN will not cause systemic effects
(Fig. 7I).

DISCUSSION
LFH is considered to play a pivotal role in the pathogenesis of
LSCS2–4. The development of LFH is affected by many factors,
including mechanical stress, age, sex, obesity and diabetes
mellitus; however, the specific mechanism has not yet been
completely clarified11,14,33,34. A variety of studies have shown that
the development of LFH is closely related to fibrosis, and multiple
cell factors participate in this process, among which TGF-β1 is
known to be crucial in the development of LFH pathol-
ogy4,7,11,13–18,35,36. In the present study, the bioinformatic analysis
and in vivo and in vitro experiments again emphasize this finding.
The role of TGF‐β1 has been investigated in various fibrosis-

associated pathological processes, including lung and kidney
fibrosis, joint contracture, scar repair, liver cirrhosis, postoperative

epidural adhesions, and atherosclerosis22,23,25,35,37–39. TGF‐β1 can
activate the TGF‐β1/Smad3 pathway, thereby regulating the
differentiation from fibroblasts to myofibroblasts though the
upregulation of α-SMA23,35,36. In addition, TGF-β1 can induce the
synthesis of multiple ECM components, including collagen I,
collagen III, and fibronectin23,36. As one type of fibroblast, the
differentiation of LF cells is also regulated by TGF‐β1. In our study,
we also found that the expression of collagen I, collagen III, α-SMA,
and fibronectin was increased in hypertrophic LF tissues and
coincided with TGF‐β1 upregulation, and these findings were
confirmed again by in vitro experiments.
Given the crucial role of TGF‐β1 in the development of LFH,

inhibiting the TGF‐β1 pathway is a potential therapeutic option to
treat LFH or ameliorate its severity. Although several studies have
found that many proteins, including CCN5/WISP‐2, clusterin,
cytokine receptor-like factor 1 (CRLF1) and epidermal growth
factor (EGF), can regulate the development of LFH via the TGF‐β1
pathway, there is still a lack of effective targeted drugs and
nonsurgical treatments to prevent the development of
LFH35,36,40,41.
As one of the components of the extracellular matrix, DCN

showed significant antifibrotic effects on multiple fibrosis-

Fig. 3 TGF-β1 and DCN expression were upregulated in LFH. A Western blot analysis of DCN and TGF-β1 protein expression in LF samples
from the two groups. GAPDH was the loading control (n= 6). B Quantitative analysis of DCN and TGF-β1 protein expression in LF samples
from the two groups (n= 6). C Representative images of immunohistochemical staining of DCN and TGF-β1 in LF samples from the two
groups (n= 8). The scale bar indicates 100 μm. Data are presented as the means ± SDs. ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001.

Fig. 4 DCN inhibited LF cell proliferation. A Calcein-AM/PI double staining of LF cells after intervention with different concentrations of DCN
(green, living cells; red, nuclei of dead cells). The scale bar indicates 400 μm. B Quantitative analysis of the percentage of living cells (six
random fields of view for each well). C CCK-8 assay of LF cells showed that DCN suppressed the proliferation of LF cells, especially when the
concentration of DCN was 100 nM and 200 nM (n= 6). Data are presented as the means ± SDs. ns no significance; *p < 0.05; **p < 0.01;
***p < 0.001.
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associated disease models in the kidney, liver, lung, optic nerve
and vasculature by inhibiting the TGF‐β1 pathway24,38,39,42–44. It
has been reported that DCN can reduce tissue fibrosis by binding
TGF‐β1 and neutralizing part of its activities and is considered a
natural inhibitor of TGF‐β121. Mechanistic studies indicated that
DCN inhibits the TGF‐β1 pathway by blocking the TGF-β1-induced
phosphorylation of SMAD2/3, thereby downregulating the expres-
sion of collagen I, collagen III, α-SMA and fibronectin23,39.
Therefore, we propose a hypothesis that DCN can be a potential
therapeutic candidate for LFH.
The relationship between DCN and TGF‐β1 is rather complex.

On the one hand, TGF‐β1 can induce increased expression of
DCN45. On the other hand, DCN can inhibit TGF‐β1-induced
fibrosis46. Previous literature has shown that the expression of
DCN is increased in fibrotic tissue38,39,47. In addition, Yabe et al.
reported that the expression of DCN was significantly increased in
LFH4,32. These studies suggested that DCN has a protective role in
LFH. In our study, bioinformatic analysis and protein analysis of LF
tissues showed that the expression of DCN in LFH was increased,
but there was no significant difference. We think the reasons may
be as follows. First, in the early stage of LFH, the increased
expression of TGF‐β1 induced by mechanical stretching force
upregulated the expression of DCN. At this stage, DCN expression
increased significantly in LFH4,11,30,32. Increased TGF‐β1 activates
the TGF‐β1/SMAD3 signaling pathway, leading to fibrosis and
hypertrophy of the LF. With the development of LFH, part of the
DCN participates in the repair of hypertrophic LF, and part of the
DCN binds TGF‐β1 to suppress TGF-β1-induced fibrosis48,49. As a
result, the increase in DCN expression cannot match the increase
in TGF expression, thus further aggravating the development
of LFH.
Based on the above results, we assume that exogenous DCN

can help alleviate LFH by antagonizing TGF‐β1, and this

hypothesis was confirmed by in vitro cell experiments. With the
administration of DCN, fibrosis-associated protein expression in
hypertrophic LF cells was significantly downregulated. In addition,
our study indicated that TGF‐β1 upregulated the expression of
fibrosis-associated protein in LF cells, and this induced effect was
inhibited after the administration of DCN by blocking the TGF‐β1/
SMAD3 signaling pathway. These findings are important experi-
mental evidence that DCN can inhibit LF fibrosis by antagonizing
TGF-β1, indicating that DCN is a potential therapeutic candidate
for LFH.
To further investigate the anti-hypertrophic effects of DCN on

LF in vivo, we built an LFH rat model as described in previous
literature30. Increased mechanical stress is the main cause of
LFH11,14,30. Damage to the posterior structural integrity of the
lumbar spine can cause segmental instability, thereby producing
increased mechanical stress on the LF, ultimately leading to
LFH11,30,31. It was also found that the expression of TGF-β1 was
significantly increased in LF cells subjected to mechanical
stretching force, and the application of exogenous TGF-β1 can
induce the synthesis of collagen in LF cells11. These studies
indicated that TGF-β1 plays a crucial role in LFH induced by
mechanical stress. In the present study, we found that the LF
thickness was significantly increased in the LFH model group and
coincided with the increased fibrosis score and upregulation of
collagen I and fibronectin. In contrast, in the DCN treatment
group, the thickness of LF was thinner than that in the LFH model
group, and the expression of collagen I and fibronectin was also
decreased.
In addition, the local levels of PINP and PIIINP were significantly

increased in the LFH model group. However, in the DCN treatment
group, the local levels of PINP and PIIINP were significantly lower
than those in the LFH model group. While excessive fibrosis can
lead to the development of multiple fibrosis-related diseases,

Fig. 5 TGF-β1 induced fibrosis in normal LF cells, while DCN inhibited fibrosis in hypertrophic LF cells. A Western blot analysis and
B quantitative analysis of collagen I, collagen III, α-SMA and fibronectin protein expression in normal LF cells after administration of different
concentrations of TGF-β1. GAPDH was the loading control (n= 3). C ELISAs of PINP and PIIINP levels in the cell supernatant of normal LF cells
after the administration of different concentrations of TGF-β1 (n= 3). DWestern blot analysis and E quantitative analysis of collagen I, collagen
III, α-SMA and fibronectin protein expression in hypertrophic LF cells after administration of different concentrations of DCN. GAPDH was the
loading control (n= 3). F ELISAs of PINP and PIIINP levels in the cell supernatant of hypertrophic LF cells after the administration of different
concentrations of DCN (n= 3). Data are presented as the means ± SDs and compared with those of the control group. ns, no significance;
*p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 6 DCN inhibited TGF-β1-induced fibrosis-associated protein expression in LF cells. A Western blot analysis and B quantitative analysis
of the protein expression levels of collagen I, collagen III, α-SMA and fibronectin in LF cells after intervention with 10 ng/ml TGF-β1 and
different concentrations of DCN for 24 h (n= 3). C–F Immunofluorescence staining of collagen I, collagen III, α-SMA and fibronectin under
different interventions for 24 h (fibronectin and collagen III were stained green; collagen I and α-SMA were stained red; DAPI, blue). Scale bar:
400 µm. G The levels of PINP and PIIINP in the cell supernatant of LF cells under different interventions for 24 h (n= 3). H Western blot analysis
and I–J quantitative analysis of SMAD3 signaling protein expression levels in LF cells after intervention with 10 ng/ml TGF-β1 and different
concentrations of DCN for 24 h (n= 3). Data are presented as the means ± SDs. ###p < 0.001 vs. the control group; *p < 0.05 vs. the TGF-β1
group; **p < 0.01 vs. the TGF-β1 group; ***p < 0.001 vs. the TGF-β1 group.
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moderate fibrosis is also key to wound healing and tissue
repair50–52. Given the extensive antifibrotic effect of DCN, we
detected the serum levels of PINP and PIIINP to investigate
whether topical application of DCN caused systemic effects. The
results showed that the serum levels of PINP and PIIINP in
peripheral blood among the three groups were similar. We believe
that the reason for the difference between local and systemic
levels of PINP and PIIINP may be the method of DCN
administration. Since the blood supply around LF is poor, the
local application of DCN cannot effectively reach other tissues and
organs through blood circulation and therefore does not cause
systemic effects. In summary, our data indicated that local
application of DCN can ameliorate mechanical stress-induced
LFH by antagonizing TGF-β1 in vivo without causing systemic
effects.
Nevertheless, limitations still existed in this study. First, we

showed that DCN can ameliorate mechanical stress-induced LFH
by antagonizing TGF-β1 in vivo, yet the most effective concentra-
tion of DCN remains unclear. Although our data suggested that
the effect of DCN administered by paravertebral injections is
limited to the area of the LF and did not affect the serum levels of

PINP and PIIINP, further studies are needed to assess the effective
concentration range and safety. Moreover, a noninvasive and
more effective drug delivery method targeting LF should be
explored and developed.
In conclusion, our research showed that DCN can ameliorate the

development of LFH by antagonizing TGF-β1, which indicates that
DCN is a potential therapeutic candidate for LSCS caused by LFH.

AVAILABILITY OF DATA AND MATERIALS
The datasets used and/or analyzed during the current study are
available from the corresponding author upon reasonable request.
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