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Disulfidptosis‑associated 
LncRNAs index predicts prognosis 
and chemotherapy drugs 
sensitivity in cervical cancer
Li Liu 1,5, Jun Liu 2,5, Qianbao Lyu 1,5, Jinzhi Huang 1, Yuanfeng Chen 1, Cuiyi Feng 1, Yaoyao Liu 3, 
Fukun Chen 3 & Zhouyan Wang 1,4*

Disulfidptosis is a newly discovered form of cell death. Not yet clearly classified as programmed 
cell death or accidental cell death. This study aimed to create a novel disulfidptosis-related lncRNA 
index (DLI) that can be used to predict survival and chemotherapy drugs sensitivity in patients 
with cervical cancer. First of all, we found lncRNAs associated with disulfidptosis between cervical 
cancer tissues and normal tissues. By LASSO-Cox analysis, overlapping lncRNAs were then used to 
construct lncRNA index associated with disulfidptosis, which can be served to predict the prognosis 
of patients with CC, especially the chemotherapy drugs sensitivity. ROC curves and PCA based on 
DLI and clinical signatures were developed and demonstrated to have good predictive potential. 
In addition, differences in immune cell subset infiltration and differences in immune checkpoint 
expression between high-DLI and low-DLI groups were analyzed, and we investigated the relationship 
between the DLI and tumor mutation burden (TMB). In summary, we constructed a lncRNA prediction 
index associated with disulfidptosis. This has important clinical implications, including improving 
the predictive value of cervical cancer patients and providing a biomarker for cervical cancer guiding 
individualized treatment.
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TMB	� Tumor mutation burden
IPS	� Immunophenoscore

In recent years, a remarkable surge in global cancer incidence and associated mortality rates has been reported. 
Cervical cancer (CC) ranks fourth in terms of the highest mortality and incidence rates among women globally1,2. 
The global age-standardized incidence of CC varies substantially among countries, with reported rates ranging 
from fewer than 13 cases to 1 case per 70,000 women. Noteworthy, CC is the chief cause of cancer-related deaths 
among women in low- and middle-income countries3. It is widely known that high-risk HPV strains are associ-
ated with CC. C While HPV is necessary for the transformation of cervical epithelial cells, other co-factors and 
molecular procedures also the occurrence of CC4,5. Therefore, the exploration of novel potential biomarkers and 
underlying mechanisms is important for predicting the prognosis and improving the treatment of CC.

Cell death is a crucial process for human health. In 2018, the Cell Death Nomenclature Committee classified 
this process into accidental cell death (ACD) and regulatory cell death (RCD). RCD, also known as programmed 
cell death (PCD), is a fully physiological form of cell death6. It plays an essential role in the development of an 
organism, acts as a host defense mechanism against pathogens and maintains homeostasis. However, excessive 
activation of the PCD pathway exerts detrimental effects and may lead to disease development7. At least 12 
types of PCD that are implicated in the development of malignant tumors. In glucose-deficient SLC7A11−high 
cancer cells, the excessive accumulation of disulfide molecules causes abnormal disulfide bonding between 
actin cytoskeletal proteins, thus disrupting their organization and eventually leading to the collapse of the actin 
network and cell death. This effect, known as disulfidptosis, effectively inhibits the growth of malignant tumors 
with any apparent toxicity to normal tissues8,9. This process of disulfidptosis involves glycogen accumulation, 
energy metabolism, mitochondrial respiration and disulfide regulation. The genes responsible for regulating these 
processes have been identified from published literature. For instance, GYS1 induces glycogen accumulation10; 
LRPPRC affects mitochondrial autophagy by regulating energy metabolism11; NDUFA11 and NDUFS1 maintain 
the mitochondrial structure and function12; NUBPL is involved in the mitochondrial respiratory chain13; OXSM 
is involved in glycogen regulation14; NCKAP1, RPN1, SLC3A2, and SLC7A11 are involved in the regulation of 
disulfidptosis8,9. Therefore, further investigations on disulfidptosis, the genes affecting glucose and lipid metabo-
lism, and the underlying mechanism of disulfidptosis will aid in the identification of potential novel targets of 
this disease.

Non-coding RNAs (ncRNAs) represent a novel class of transcripts. That, although mostly not translated 
into proteins, play crucial roles in various cellular and physiological functions15. Among them, long ncRNAs 
(lncRNAs) are implicated in cancer development, indicated by their mutations and dysregulated expression. 
lncRNAs can promote tumorigenesis and metastasis, while also possessing tumor-suppressive and pro-cancer 
functions16. As such, lncRNAs hold immense promise as novel biomarkers and therapeutic targets for cancer17. 
For instance, the lncRNA SNHG1 is involved in the migration and invasion of CC18. Considerably linked with 
tumor size, FIGO stage, and lymph node metastasis, The lncRNA FALEC has shown substantially elevated lev-
els in the plasma of CC patients. Additionally, overexpression of lncRNA FALEC promotes HeLa cell invasion 
and proliferation19. However, to date, the specific disease targets and underlying mechanisms through which 
lncRNA regulate disulfidptosis-related genes and affect the prognosis of CC by means of disulfidptosis remain 
unexplored. We extracted RNA sequencing data of patients with CC from publicly accessed databases and used 
bioinformatics methods to screen for lncRNAs associated with disulfidptosis related-genes (such as GYS1 etc.) 
that have predictive prognostic significance. This study intended to identify ncRNA-based biological targets 
for predicting CC prognosis, discover potential chemotherapeutic drugs targeting ncRNAs, and unravel the 
mechanisms underlying disulfidptosis in CC.

Materials and methods
Downloading and organizing raw data.  Transcriptomic data, clinicopathological data, copy number 
variation (CNV) data, and single nucleotide variation (SNV) data of patients with CC (304 tumor tissues and 
3 normal tissues) from The Cancer Genome Atlas (TCGA) database (https://​www.​cancer.​gov/). The Perl pro-
gramming language (version 5.32.1.1) was used to organize data for subsequent analysis. The CNV profile of 
disulfidptosis-associated genes in CC was assessed by constructing a lollipop plot, and the R package “RCir-
cos” was utilized to map the variant loci on the chromosome. Additionally, waterfall plots were constructed to 
detect the mutations existing in disulfidptosis-associated genes in CC. Among 289 cervical cancer samples, we 
screened these ten genes for somatic mutations in 29 samples and counted the somatic mutation frequencies.

Acquisition of disulfidptosis‑associated lncRNAs and establishment of disulfidptosis‑associ‑
ated lncRNA index.  Details of ten disulfidptosis-related genes were manually compiled from the literature. 
Pearson correlation analysis was performed to evaluate the relationship between disulfidptosis-related genes and 
lncRNAs, which was visualized using Sankey diagrams. The criteria for deducing the association were |R2|> 0.4 
and p < 0.001. Univariate COX analysis was performed to screen for prognosis-related lncRNAs. Based on clin-
icopathological traits, patients with CC in the TCGA-CESC dataset were randomly split into a training cohort 
and a testing cohort in a 1:1 ratio. LASSO and multivariate COX regression were used for the training cohort to 
further refine the selection of the lncRNAs for model construction. Internal validation was subsequently per-
formed in the testing cohort as well as in the entire TCGA dataset (TCGA cohort). The best prediction model 
was determined using the penalty parameter calculated through 1000-fold cross-validation with a p-value of 
0.05.

The final formula for establishing the disulfidptosis-associated lncRNA index (DLI) is as follows:

https://www.cancer.gov/
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where coeflncRNA represents the link between a lncRNA and the survival of patients with CC. and explncRNA rep-
resents the expression level of that particular lncRNA.

In addition, we validated the expression differences of the lncRNAs screened using the Wilcox test to test 
whether there were expression differences between normal and tumor tissues in the TCGA dataset.

Characterization of DLI.  To assess the predictive value of the DLI in CC, we conducted validation analyses 
in each of the three cohorts: TCGA cohort, training cohort, and testing cohort. In the TCGA cohort, patients 
with CC were categorized into low-risk (< median) or high-risk (≥ median) groups based on median scores 
of DLI (Risk). Kaplan–Meier curves depicting overall survival (OS) and progression-free survival (PFS) were 
generated using the R packages “survminer” and “survival,” and the differences between the risk groups were 
calculated. Scatter plots, risk curves, and heatmaps were constructed to confirm the distribution of risk values 
among patients in different risk groups and to deduce the risk of CC-associated death.

Validation of the predictive ability of DLI.  Univariate and multivariate COX regression analyses were 
performed to evaluate the independence of DLI relative to other clinical characteristics. Receiver operating char-
acteristic curves (ROC) were generated to assess the sensitivity and specificity of prognostic predictive value of 
the DLI when compared with other clinicopathological characteristics in patients with CC.

PCA analysis and nomoscore calculation.  Principal component analysis (PCA) analysis was employed 
to compare the risk definition and spatial distribution of patients based on various genetic classifications. This 
analysis facilitates the clinical utilization of the DLI and provides a comprehensive evaluation of patient prog-
nosis. We integrated the prognostic characteristics (age, grade, and T, N, M) of patients with CC to calculate the 
predictive power on 1-, 3- and 5-years OS. Furthermore, multivariate Cox regression and stepwise regression 
analysis were performed to identify independent predictors Column plots were constructed, and nomoscore was 
calculated, which serves as a predictive tool for the outcomes of patients with CC. A nomogram was developed 
using the R package "regplot".

GO analysis and GSEA analysis.  We used gene ontology (GO) to analyze the differential genes between 
high- and low-DLI groups using the "clusterProfiler" R package. In addition. We used GSEA software (version 
6.2) to perform a gene set enrichment analysis (GSEA) and identify the primary pathways of action in the high- 
and low-DLI groups. The statistical significance of the screen was set at P < 0.05 and the false discovery rate 
(FDR) q < 0.05.

Analysis of the immune infiltration of the DLI and IPS score.  We evaluated immune cell infiltration 
in TCGA samples using seven methods. The “GSVA” and “GSEABase” R packages are used to calculate differ-
ences in immune function between different risk groups. A box plot was also used to show the differences in 
immune checkpoint and immune cell infiltration between high- and low-DLI groups. Immunophenoscore (IPS) 
obtained from The Cancer Immunome Atlas (TCIA) database (https://​tcia.​at/​home).

Tumor mutation burden landscape and chemotherapy drug sensitivity prediction.  The 
"maftool" package was used to create waterfall plots showing differences in tumor mutation burden (TMB) 
between high- and low-risk groups. The Wilcoxon test was used to analyse survival differences between high- 
and low-mutation groups, and for joint survival analysis with different DLI groups. KM curves were used to 
visualise survival analysis.

Drug sensitivity was calculated using the "oncopredict" software package. This package was developed by 
Maeser et al.20 for drug sensitivity prediction. The IC50 value represents the sensitivity of the chemotherapeutic 
drug in the cell lines of this cancer type. Higher IC50 values mean that the drug is less sensitive and a higher dose 
is required to achieve the same efficacy. It fits the gene expression profile of a tissue to the half-maximal inhibi-
tory concentration (IC50) of a cancer cell line to the economics of Drug Sensitivity in Cancer (GDSC). Download 
details from GDSC on molecular indicators of drug sensitivity and response in cancer cells20 to generate models 
that can be applied to CC transcriptomics data. The data from our high- and low-DLI groups were correlated 
with the expression profile data from GDSC, and then unpaired t-tests were used to compare the differences in 
IC50 of chemotherapeutic agents between the high and low DLI groups. A sensitivity score was then performed 
to forecast the IC50 for each drug’s half-maximal inhibitory concentration in CC patients.

Statistical analysis.  Software used in this study included R language and PERL, GSEA software (version). 
p < 0.05 (marked with *) was considered statistically significant.

Results
Differential expression and variation landscape of disulfidptosis‑associated genes in patients 
with CC.  We analyzed the expression differences for the ten disulfidptosis-related genes between CC tumor 
tissues and normal tissues. Our findings revealed that all ten genes had upregulated expression in tumor tis-

DLI = (coefZSCAN16−AS1 × expZSCAN16−AS1)+ (coefAC083799.1 × expAC083799.1)

+ (coefAL021707.6 × expAL021707.6)+ (coefLINC02356 × expLINC02356)

+ (coefAC023043.1 × expAC023043.1),

https://tcia.at/home
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sues (Fig. 1A). Except for NDUFA11, the remaining nine genes showed significant differences in expression. 
Additionally, we investigated the CNV of the 10 genes in CC and observed that the CNVs were predominantly 
deletions. Notably, NDUF11 and NDUFS1 showed the highest number of copy number deletions (Fig. 1B), while 
SLC3A2 showed the most substantial increase in DNA copy number. The gene chromosomal loci at which these 
gene copy number variants are located are shown in Fig. 1C. A waterfall diagram showing the tumor mutations 
of these ten genes was constructed (Fig. 1D). Somatic mutations in these genes were found in 32 of 289 patients, 
with the highest mutation rate being LRPPRC.

Construction of a prediction index for disulfidptosis‑associated lncRNAs.  Spearman correlation 
analysis was performed to identify 71 lncRNAs associated with disulfidptosis-related genes (Fig. 2A). Subse-
quently, univariate COX regression analysis was conducted on the lncRNAs to assess their prognostic relevance. 
Based on the results, eight differentially expressed lncRNAs with prognostic significance were further screened 
and selected. Among the differentially expressed lncRNAs, one was determined as a risk factor and the remain-
ing seven were identified as protective factors. We integrated transcriptomic data from TCGA-CESC datasets 
with clinical data, which generated training cohort and a testing cohort. No statistical difference in clinicopatho-
logical characteristics between the training and testing cohorts (Table 1). The LASSO-COX regression analysis 
was applied to the training set (eight candidate lncRNAs) to determine the optimal prediction score. Based on 
the optimal penalty parameter (λ) determined using the LASSO model, five lncRNAs were finally constructing 
the DLI. Cvfit curves and λ curves are shown in Fig. 2C,D. The expression differences of the five genes between 
the tumor tissues and normal tissues are shown in Supplementary Fig.  S1. AC023043.1, AC083799.1, and 
AL021707.6 were up-regulated in tumor tissues, whereas LINC02356 and ZSCAN16-AS1 were up-regulated in 
normal tissues. We showed the association of these five lncRNAs with disulfidptosis-related genes in Fig. 2E, and 
the results indicated different degrees of regulation and correlation between the five lncRNAs and disulfidptosis-
related genes. Particularly, the five lncRNAs showed a positive relationship with SLC3A2, RPN1, and NDUFA11 
and a negative relationship with NUBPL, NDUFS1, NCKAP1, LRPPRC, and GYS1.

Figure 1.   Differences in gene expression and variation landscape associated with disulfidptosis. (A) Differences 
in the expression of disulfidptosis-related genes between cervical cancer tissue and normal tissues. (B) The CNV 
landscape of disulfidptosis-related genes in TCGA-CESC datasets. (C) The site of CNV in disulfidptosis-related 
genes on chromosomes. (D) Somatic mutation landscape of disulfidptosis-related genes.
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Characteristics of DLI.  To assess the predictive potential of the DLI, we performed prognostic analyses in 
three cohorts: TCGA cohort, training cohort, and testing cohort. Patients in these cohorts were categorized into 
two groups, namely, low- and high-DLI groups, according to the median score of the DLI. Kaplan–Meier analy-

Figure 2.   Identification of the signature of disulfidptosis-related lncRNA. (A) Sankey diagram of lncRNAs 
co-expressed with disulfidptosis-related genes. (B) Forest plots of 8-lncRNA screening by COX regression 
related with disulfidptosis. (C,D) Lasso regression of the DLI of 5-lncRNA. (E) Heatmap shows the 
co-expression relationship between disulfidptosis-related lncRNA index and disulfidptosis-related genes.
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sis of OS analysis revealed that patients in the low-DLI group exhibited a better prognosis than these in high-DLI 
group across all three cohorts (Fig. 3A–C). In all three cohorts, patients in the high-DLI group had an increased 
risk of death when compared with those in the low-DLI group (Fig. 3D–F). Furthermore, PFS was also evaluated 
in patients with CC, which yielded consistent results with the predicted outcome of OS, showing improved PFS 
outcomes in the low-DLI group (Fig. 3G). Risk grouping and clinical characteristics of all CC cases are shown 
in Fig. 3H. As shown in the figure, the lncRNA AC023043.1 showed high expression in patients of the high-DLI 
group and was a risk factor, whereas the other four lncRNAs showed low expression and were protective factors.

Assessment of DLI predictive capability.  To assess the independence and accuracy of the DLI, we per-
formed univariate and multivariate Cox regression analyses incorporating patient age, sex, and tumor grade to 
determine independent prognostic factors (Fig. 4A,B). The hazard ratio of the risk score was statistically signifi-
cant (P < 0.05). These r analyses indicated that the prognostic predictive power of the DLI was independent of 
other clinical characteristics. Furthermore, the ROC curve (Fig. 4C) demonstrated that DLI was a more accu-
rate predictors than other clinical characteristics (area under the curve [AUC] = 0.787). The predictive power 
of survival 1 years (AUC = 0.702), 3 years (AUC = 0.754), and 5 years (AUC = 0.778) was excellent (Fig. 4D), 
The C-index curves further supported these findings, with C-index values being greater than 0.7 (Fig. 4E). We 
believed that combined DLI and other clinical characteristics (age, grading, staging, T, N, M) is a more conveni-
ent predictive tool and has stronger predictive power in clinical applications. So we calculated nomoscore and 
plotted nomogram (Fig. 4F). The nomoscore showed a significant increase in the predictive confidence for 1-, 
3- and 5-year survival rates after combining clinical features (0.988, 0.908, and 0.898, respectively). To validate 
the spatial grouping performance of risk scores for patients with CC and visualize the discriminating ability and 
power of DLI among patients, we conducted PCA for all four gene groups (Fig. 4G–J). The results indicated that 
DLI could more accurately determine the risk cutoff for patients than the other gene sets.

Gene ontology analysis and gene set enrichment analysis.  Additionally, we performed gene ontol-
ogy (GO) analysis on the differentially expressed genes between the low-DLI and high-DLI groups. The analysis 
revealed that the differentially expressed genes were enriched mainly in the regulation of peptidase activity and 
function (Fig. 5A,B). Furthermore, gene set enrichment analysis (GSEA) demonstrated that the high-DLI group 
was enriched mainly in malignant and pan-cancer-related pathways as well as cell adhesion (Fig. 5C). By con-
trast, the low-DLI group was functionally enriched mainly in neurological disorders and biological oxidation 
(Fig. 5D).

Immune infiltration for risk scores and prediction of immunotherapy.  The immune function of 
the two risk groups is presented in Fig. 6A. Quantification of the differences is shown in Fig. 6C, indicating 

Table 1.   Clinical characteristics of CC patients involved in the study.

Total
N = 304

Testing set
n = 152

Training set
n = 152 P-value

Age ≤ 65 269 (88.49%) 135 (88.82%) 134 (88.16%) 1

Age > 65 35 (11.51%) 17 (11.18%) 18 (11.84%)

Grade G1 18 (5.92%) 7 (4.61%) 11 (7.24%) 0.5572

Grade G2 135 (44.41%) 70 (46.05%) 65 (42.76%)

Grade G3 118 (38.82%) 59 (38.82%) 59 (38.82%)

Grade G4 1 (0.33%) 0 (0%) 1 (0.66%)

Grade Unknow 32 (10.53%) 16 (10.53%) 16 (10.53%)

Stage Stage I 162 (53.29%) 74 (48.68%) 88 (57.89%) 0.3226

Stage Stage II 69 (22.7%) 33 (21.71%) 36 (23.68%)

Stage Stage III 45 (14.8%) 27 (17.76%) 18 (11.84%)

Stage Stage IV 21 (6.91%) 12 (7.89%) 9 (5.92%)

Stage Unknow 7 (2.3%) 6(3.95%) 1 (0.66%)

T T1 140 (46.05%) 68 (44.74%) 72 (47.37%) 0.3438

T T2 71 (23.36%) 35 (23.03%) 36 (23.68%)

T T3 20 (6.58%) 7 (4.61%) 13 (8.55%)

T T4 10 (3.29%) 7 (4.61%) 3 (1.97%)

T Unknow 63 (20.72%) 35 (23.03%) 28 (18.42%)

M M0 116 (38.16%) 59 (38.82%) 57 (37.5%) 0.8219

M M1 10 (3.29%) 6 (3.95%) 4 (2.63%)

M Unknow 178 (58.55%) 87 (57.24%) 91 (59.87%)

N N0 133 (43.75%) 67 (44.08%) 66 (43.42%) 0.5919

N N1 60 (19.74%) 27 (17.76%) 33 (21.71%)

N Unknow 111 (36.51%) 58 (38.16%) 53 (34.87%)
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that among the four statistically different immune functions (antigen-presenting cell [APC] co-stimulation, 
chemokine receptor [CCR], major histocompatibility complex [MHC] class I presentation, and para-inflamma-
tion), the high-DLI group showed enrichment in immune functions when compared with the low-DLI group. 
Additionally, we assessed immune cell infiltration between the low-DLI and high-DLI groups (Fig. 6B), and 
observed higher infiltration of CD4+T cells and CD8+T cells in the high-DLI group. Furthermore, we analyzed 
the differences in immune checkpoints between the two groups (Fig. 6D) and observed that the TNF family was 
highly expressed in the low-risk group, which may be one of the reasons for tumor progression inhibition. By 
contrast, VTCN1 was highly expressed in the low-risk group when compared with that in the high-risk group, 
which requires further investigation. To obtain a prediction of the effectiveness of immunotherapy for CC, we 

Figure 3.   Characteristics of disulfidptosis-related lncRNA index. (A–C) The OS of TCGA cohort, the testing 
cohort, and the training cohort. (D–F) Risk characteristics between high- and low- risk (DLI) groups in TCGA 
cohort, the testing cohort, and the training cohort. (G) The PFS survival analysis in TCGA cohort. (H) Heatmap 
of expression in five lncRNAs in TCGA and distribution of clinical features.
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calculated the immune prognostic score (IPS) for patients in the high-risk and low-risk groups. We discovered 
that regardless of the positive or negative status of CTLA4 and programmed death ligand 1 (PD-L1), the IPSs 
were lower in the high-risk group than in the low-risk group, indicating a potentially better response to immu-
notherapy (Fig. 6E).

Tumor mutational burden differences in DLI.  Tumor mutational burden (TMB) is crucial for tumor 
prognosis. The mutations in different DLI groups are depicted in Fig. 7A,B. While the mutation rate was slightly 
higher in the high-DLI group than in the low-DLI group, the difference was no statistically significant. Notably, 
the number of mutations in TTN (Titin gene) and KMT2C was significantly higher in the low-DLI group than 
in the high-DLI group. While further analyzing the predictive role of TMB on OS, we observed that the high-
mutation group combined with the low-DLI group had the most favorable prognosis, whereas the low-mutation 
group combined with the high-DLI group had the worst prognosis (Fig. 7C).

Prediction of chemotherapy drug sensitivity by DLI.  Chemotherapy is an important treatment for 
CC. To predict the differences in chemotherapeutic drugs sensitivity among patients in different DLI groups, 
we calculated the IC50 values of various chemotherapeutic drugs in different risk groups using the Genomics of 

Figure 4.   Validation of the disulfidptosis-related lncRNA signature. (A,B) The disulfidptosis-related lncRNA 
signature was shown to be an independent risk factor for patients’ overall survival in TCGA. (C) The AUC 
showed that index (risk score) was an independent predictor compared with other clinicopathological 
signatures. (D) The C-Index of the DLI (risk score) was higher than other clinicopathological signatures. (E) The 
DLI could be used as an independent predictor to predict the OS of 1-, 3-, 5 years. (F) The nomogram of DLI 
combined with other clinical features. (G) PCA of all genes. (H) PCA of disulfidptosis-related genes. (I) PCA of 
disulfidptosis-related lncRNAs. (J) PCA of DLI.
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Drug Sensitivity in Cancer (GDSC) database. The results demonstrated that the IC50 values for all commonly 
used chemotherapeutic agents in CC were higher in the high-DLI group than in the low-DLI group. Specifi-
cally, the sensitivity to chemotherapeutic drugs was higher in the low-DLI group than in the high-DLI group 
(Fig. 8A). Furthermore, we identified four chemotherapy drugs (oxaliplatin, docetaxel, paclitaxel, and vinorel-
bine) for use in CC. The chemotherapeutic drugs that correlated with the five lncRNAs of the construct score 
were screened for future research on CC treatment. Figure 8B shows a bubble plot illustrating the correlation 
between gene expression and chemotherapeutic drugs, where the size and color of the bubbles represent the 
magnitude of positive and negative correlations, respectively. AL021706.6 expression showed a negative correla-
tion with the IC50 values of Dactolisib, Alpelisib and GNE-317, while ZSCAN16-AS1 showed a positively associ-
ated with Erlotinib, and a negatively associated with Dactolisib and GNE-317.

Discussion
ncRNAs, especially lncRNAs, affect CC progression through the cell death pathway and sensitivity to 
radiotherapy21,22. However, given the limited treatment options and poor prognosis of locally advanced and 
intermediate-stage CC23. The discovery of novel predictive targets and exploration of potential therapeutic agents 
are of utmost importance. Disulfidptosis, a newly discovered mode of cell death, has not yet been extensively 
studied in CC. Nonetheless, we believe that disulfidptosis involves related genes regulated by ncRNAs. Given 
our focus on lncRNAs, we screened publicly available databases to explore disulfidptosis-related lncRNAs that 
could serve as predictive targets.

In the present research, we investigated the expression of disulfidptosis-related genes in CC and observed 
that these ten genes had upregulated expression in tumor tissues. Consequently, we identified lncRNAs associ-
ated with upstream-elements and used a machine learning approach to screen for five lncRNAs differentially 
expressed lncRNAs with prognostic and predictive ability. These five lncRNAs were used to construct a DLI 

Figure 5.   GO and GSEA analysis. (A) The bubble diagram of GO analysis. (B) The circle graph of GO analysis. 
(C) GSEA analysis of the high DLI group. (D) GSEA analysis of the low DLI group.
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for CC. This index demonstrated the ability to predict the risk of death, OS, and PFS in patients with CC, with 
better outcomes observed in the low-DLI group. We conducted a literature survey on the five lncRNAs that 
comprising the index and discovered that three of the lncRNAs had been previously reported in studies on other 
cancer types. For instance, silencing of ZSCAN16-AS1 inhibits hepatocellular carcinoma (HCC) cell proliferation, 
migration and invasion, as well as acceleration of HCC cell apoptosis24. However, in our study, ZSCAN16-AS1 
was highly expressed in the low-DLI group, a finding that is inconsistent with its expression in HCC. We believe 
this inconsistency is attributed to the heterogeneity of tumors. However, this finding should be confirmed in 
future studies on CC apart from elucidating the underlying mechanism. AC083799.1 as well as AC023043.1 are 
part of predictive models for the prognosis of endometrial cancer25 and kidney cancer26, respectively. Neverthe-
less, AL021707.6 and LINC02356 have not been reported yet, presenting a direction for future research in CC.

We conducted further validation to assess the independence, accuracy, and specificity of the DLI in prognostic 
prediction for CC. Independent prognostic analysis verified that the index could serve as a prognostic factor 
independent of other clinical characteristics. The ROC curve demonstrated that the diagnostic accuracy and 
predictive accuracy of the index were superior to those of other clinical factors, while the C-index curve indicated 

Figure 6.   Immune infiltration analysis of the signature. (A) Heatmap showed immune cells and immune 
function between high and low risk groups in all samples. (B) Heatmap of immune penetration based on 
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, and XCELL algorithms. (C) 
Differences in immune function between high- and low-DLI groups. (D) Differences in immune checkpoints 
between high- and low-DLI groups. (E) Differences in IPS between high- and low-DLI groups.
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a higher specificity than that for other clinical factors. Furthermore, the risk score derived from the index was 
more widely applicable and provided a clearer definition of patient management stratification than other genetic 
characteristics. The Nomoscores, calculated in conjunction with other clinical factors, improved the accuracy 
of the prognostic assessment for patients. These validations collectively indicate that the DLI exhibits superior 
independence, accuracy and specificity and can be used as a target for prognostic prediction in CC.

The immune environment, which is the most critical part of the tumor microenvironment, plays a crucial 
role in the regulating disease progression and response to anticancer therapy27,28. Currently, programmed death 
ligand 1 (PD-L1) expression is utilized in clinical practice to identify patients with CC who may benefit from 
immune checkpoint inhibitor therapy. However, recent information suggests that PD-L1 may not be a completely 
reliable biomarker for patient selection29. Therefore, we conducted further analysis of the immune microenviron-
ment between the high- and low-DLI groups based on the index. Our findings revealed that immune functions 
(APC-co-stimulation, CCR, MHC-class-I and parainflammation) were enriched mainly in the high-DLI group. 
Conversely, several algorithms for immune infiltration indicated a greater enrichment of CD4+ T cells and CD8+ 
T cells in the low-DLI group than in the high-DLI group. This disparity can be explained by the prolonged pres-
ence of tumor antigens and inflammatory stimuli in the high-DLI group, leading to T-cell exhaustion30, and 
weakened tumor-killing ability, thus resulting in a worse prognosis. Based on these findings, we believe that 
strategies aimed at alleviating T-cell exhaustion and enhancing effector T-cell function hold promise as potential 
therapeutic directions for improving the prognosis of patients with CC.

In terms of immune checkpoint expression, TNFRSF18, TNFRSF4, TNFRSF24, TNFRSF14 were significantly 
upregulated in the low-DLI group. The tumor necrosis factor (TNF), TNF receptor (TNFR), and TNF/TNFR 
superfamily (TNFSF/TNFRSF) include 29 receptors and 19 ligands that play a crucial role in controlling cellular 
processes. Communication routes mediated by TNFSF and TNFRSF are essential for various developmental, 

Figure 7.   Relationship between DLI and tumor mutation burden. (A,B) Waterfall plots of somatic mutation 
characteristics in the high-DLI and low-DLI groups. (C) K–M survival curves between the four groups.
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homeostatic, and stimulus-responsive processes in vivo31,32. Members of the TNF family have been shown poten-
tial as novel targets for tumor immunotherapy33. CD44, another important clinical target, is commonly regarded 
as a cancer stem cell (CSC) marker in various malignancies. High expression of CD44 significantly upregulate 
stumorigenic processes such as cell proliferation, metastasis, invasion, migration, and stemness34. Our study 
revealed upregulated CD44 expression in the high-DLI groups, consistent with the findings of previous studies. 
VTCN1 is also a well-reported immunotherapeutic target that promotes invasive metastasis in multiple cancer 
types including ovarian cancer26. In CC, VTCN1 expression facilitates the immunosuppressive microenvironment 

Figure 8.   Chemotherapy drug sensitivity prediction for DLI. (A) Differences in sensitivity of commonly used 
chemotherapeutic drugs for CC. (B) Chemotherapeutic drug prediction with correlation to five lncRNAs in 
DLI.
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by promoting the production of IL-10 and transforming growth factor(TGF)-β1, contributing to the progression 
of cervical carcinogenesis35. However, in our study, we observed the elevated VTCN1 expression in the low-DLI 
group, which may attributed to the complex microenvironment of the tumor, and this finding should be validated 
in further investigations. Regarding the prediction of immunotherapy efficacy, IPS scores were calculated for 
the two DLI groups. The results indicated that the IPS score of the low- DLI group was higher than that of the 
high-DLI group in all four gene groups, suggesting that the low-DLI group has higher immunogenicity, while 
the high-DLI group may receive more benefit from immunotherapy strategies involving CTLA-4 blockers and 
PD-L1 blockers. These findings suggest that the index could serve as a reference for patient selection of immu-
notherapy regimens.

TMB is associated with clinical response to immune checkpoint blockade therapy in certain tumors36,37. Our 
study suggested no significant difference in total TMB between the high-DLI and low-DLI groups. However, TTN 
exhibited a considerably higher mutation frequency in the low-DLI group than in the high-DLI group, making 
it the gene with the largest difference in mutation frequency. TTN mutations are identified as prognostic factor 
in a variety of diseases, although their effect differs among different cancer types. For example, TTN mutations 
are positively associated with prognosis in lung squamous cell carcinoma (LUSC)38, but the association may 
differ in thyroid cancer39. Survival analysis also demonstrated that high TMB combined with low-DLI resulted 
in the most favorable prognosis. Future studies should further investigate whether the improved prognosis is 
attributed to increased TTN mutations.

The sensitivity of chemotherapy in patients with CC notably affects prognosis. Simultaneous chemotherapy 
and radiotherapy (concurrent chemoradiation therapy) plus brachytherapy is the standard-of-care treatment 
for CC beyond locally advanced stages40,41.The recommended chemotherapy regimens involve platinum-based 
agents, paclitaxel or docetaxel used in combination with platinum-based agents42. However, platinum drugs, 
which are non-specific chemotherapeutic agents, often cause severe systemic adverse reactions, and the recur-
rence and distant metastasis rates of CC after chemotherapy remain high at 40%43. Therefore, other chemothera-
peutic agents have been extensively studied in CC treatment. Clinical trials investigating the use of vincristine for 
CC treatment have also been conducted44. Our findings indicated elevated IC50 values for oxaliplatin, docetaxel, 
paclitaxel, and vincristine in the high-DLI group, suggesting that the low-DLI group exhibited better chemo-
therapy sensitivity than the high-DLI group. This can be directly applied to the clinical selection of commonly 
used chemotherapeutic agents.

Furthermore, our study derived novel findings by refining the prediction of the expression of the five lncR-
NAs in DLI in relation to the sensitivity to targeted drugs. For instance, Dactolisib, a dual PI3K and mTORC1/2 
inhibitor has shown potential benefits in CC treatment45. Erlotinib treatment sensitizes CSCs to paclitaxel treat-
ment in vitro and in vivo46, Alpelisib demonstrates antitumor effects and enhances cisplatin efficacy through 
the PI3K/AKT pathway in PIK3CA mutant CC cells47. The expression of AL021707.6 as well as ZSCAN16-AS1 
showed interesting correlation with the IC50 of these drugs, indicating a new direction in the study of targeting 
drugs in CC.

Combining the aforementioned predictions, we conclude that the risk classification of patients based on the 
risk scoring model constructed by disulfidptosis-related lncRNA provides valuable insights. We developed a DLI 
consisting of five lncRNAs. Of these five lncRNAs, ZSCAN16-AS1, AC083799.1, AL021707.6, and LINC02356 
can be used as protective factors, while AC023043.1 can be used as a risk factor. The high-DLI group may exhibit 
increased sensitivity to immunotherapy, while the low-DLI group is more likely to benefit from chemotherapy. 
Clinically, detecting of the expression levels of these five lncRNAs can be used to predict the prognosis of patients 
with CC, guiding immunotherapy predictions, and aid the selection of chemotherapeutic agents and targeted 
drugs.

Our study still has some shortcomings. First, our study was based on a public database with limited sample 
size and lack of external data set validation. Secondly, we need to implement further experimental programs to 
confirm our study. In addition, the mechanism by which our model affects the prognosis of still needs further 
investigation.

Conclusions
Our study defined five lncRNAs associated with disulfidptosis, and their index was shown to predict the prognosis 
of CC patients with independence, accuracy, and specificity, which could predict patient survival and facilitate 
clinical management of patients in a stratified manner combined with clinical characteristics. In addition, it 
could be used as a predictive target for the prognosis and treatment of CC, as well as a guide for the sensitivity 
of patients to immunotherapy and chemotherapy.

Data availability
The RNA sequencing profiles are able to be gained from The Cancer Genome Atlas (TCGA) (https://​portal.​gdc.​
cancer.​gov/). Further inquiries can be directed to the corresponding author.
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