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Abstract
Motivation: Single-cell chromatin accessibility sequencing (scCAS) technology provides an epigenomic perspective to characterize gene
regulatory mechanisms at single-cell resolution. With an increasing number of computational methods proposed for analyzing scCAS data, a
powerful simulation framework is desirable for evaluation and validation of these methods. However, existing simulators generate synthetic data
by sampling reads from real data or mimicking existing cell states, which is inadequate to provide credible ground-truth labels for method
evaluation.

Results: We present simCAS, an embedding-based simulator, for generating high-fidelity scCAS data from both cell- and peak-wise embeddings.
We demonstrate simCAS outperforms existing simulators in resembling real data and show that simCAS can generate cells of different states
with user-defined cell populations and differentiation trajectories. Additionally, simCAS can simulate data from different batches and encode
user-specified interactions of chromatin regions in the synthetic data, which provides ground-truth labels more than cell states. We systemati-
cally demonstrate that simCAS facilitates the benchmarking of four core tasks in downstream analysis: cell clustering, trajectory inference, data
integration, and cis-regulatory interaction inference. We anticipate simCAS will be a reliable and flexible simulator for evaluating the ongoing
computational methods applied on scCAS data.

Availability and implementation: simCAS is freely available at https://github.com/Chen-Li-17/simCAS.

1 Introduction

Rapid advances in single-cell sequencing technologies have
enabled the characterization of cellular heterogeneity and
identification of disease-specific processes at the single-cell
level (Olsen and Baryawno 2018). A range of single-cell chro-
matin accessibility sequencing (scCAS) technologies have
been developed to study chromatin accessibility and gene reg-
ulation in single cells, mainly single-cell Assay of Transposase
Accessible Chromatin with high-throughput sequencing
(scATAC-seq) (Buenrostro et al. 2015) and single-cell combi-
natorial indexing ATAC-seq (sci-ATAC-seq) (Cusanovich
et al. 2015). Specially, scATAC-seq can generate data from
hundreds of thousands of cells on the timescale of weeks
(Lareau et al. 2019), which is an effective technology to dis-
sect the activities of functional DNA sequences within specific
tissues.

Multiple computational methods have been proved to be ef-
ficient in revealing the cellular heterogeneity in scCAS data
(Fang et al. 2021, Granja et al. 2021), while benchmarking
these methods quantitatively with datasets of exact ground
truths is still a tough challenge. For example, the unsupervised
cell clustering methods utilize datasets with annotated cell

types for evaluation (Kiselev et al. 2019), while the cell types
in real datasets are generally annotated manually and without
external validation, which may bring unexpected artificial
biases. Besides, taking the coarse-grained biological knowl-
edge as ground truths may also lead to distortions in method
benchmarking. For benchmarking the methods of recon-
structing differentiation trajectories (Miao et al. 2021) in
scCAS data, the developmental relationships among different
cell groups are provided as the ground truth, while these rela-
tionships are incapable of locating each cell on the developing
trajectory. In addition to methods of identifying cell states,
other analysis methods, such as data integration methods
(Korsunsky et al. 2019) and cis-regulatory inference methods
(Pliner et al. 2018, Li et al. 2020) also require scCAS datasets
with ground-truth labels for better benchmarking. Therefore,
a systematic and flexible simulator, which provides synthetic
data with exact and fine-grained ground truths for scCAS
data, will significantly facilitate the evaluations of analysis
methods. However, due to the inherent high dimensionality
of accessible peaks and sparsity of sequencing reads per cell
(Chen et al. 2019), the simulation for scCAS data remains a
substantial challenge.
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Compared to abundant simulation methods for scRNA-seq
data (Zappia et al. 2017, Cao et al. 2021, Sun et al. 2021,
Crowell et al. 2022), the existing several simulation methods
for scCAS data are inadequate to satisfy the needs to bench-
mark diverse analyses. To our best knowledge, there are only
four methods that can be used for simulating scCAS data:
SCAN-ATAC-Sim (Chen et al. 2021), simATAC (Navidi
et al. 2021), EpiAnno (Chen et al. 2022), and scMultiSim (Li
et al. 2022). SCAN-ATAC-Sim generates scATAC-seq reads
by taking bulk samples as input. Due to directly sampling the
reads from bulk samples for each cell, SCAN-ATAC-Sim is
unable to capture the characteristics of single cells. simATAC
is the first simulator trained with single-cell data and gener-
ates synthetic data with discrete cell types of real data, while
simATAC concentrates on modeling bins, the fixed chromatin
regions, instead of peaks, the cis-regulatory elements with spe-
cific biological characteristics. EpiAnno solely simulates the
peak-by-cell matrix with highly accessible peaks, and such a
synthetic matrix without simulating full peak set is limited for
various analyses. scMultiSim generates multi-modality data
of single cells with user-defined cell states, while the random
selection of values in real scCAS data results in little resem-
blance of synthetic cells to real cells. In summary, none of
existing methods provides a systematic simulation framework
to generate a peak-by-cell matrix with user-defined cell states
while maintaining the resemblance to real scCAS data.

To fill this gap, we propose simCAS, an embedding-based
simulation framework that simulates scCAS data from low-
dimensional embeddings with the user-defined settings. Our
simulation framework can provide simulated scCAS data
with unbiased ground-truth labels, such as cell states, data
batches, and cis-regulatory interactions. With the correction
by the estimated statistics, simCAS generates data of superior
resemblance to real data against existing simulators. To main-
tain the biological characteristics in cis-regulatory elements,
simCAS provides a simulated peak-by-cell matrix with user-
specific number of cells and number of peaks. By modulating
the generation of cell-wise low-dimensional embeddings,
simCAS generates data with ground-truth cell populations
and differentiation trajectories, which significantly facilitates
the benchmarking of analysis methods on identifying cell
states. Moreover, the batch effects and cis-regulatory interac-
tions can be optionally encoded in the synthetic data via add-
ing Gaussian noise and moderating peak-wise embeddings
generation, respectively, which extends the flexibility of our
simulation framework. At last, we demonstrate the reliability
and robustness of data generated by simCAS in benchmarking
four computational tasks for scCAS data analysis: cell cluster-
ing, trajectory inference, data integration, and cis-regulatory
interaction inference. simCAS can also generate data with var-
ious parameters to identify the strength and weakness of
analysis methods, guiding the improvement of these methods.

2 Materials and methods
2.1 simCAS framework

simCAS is an embedding-based method for scCAS data simu-
lation (Fig. 1). To enable multi-scenario applications, simCAS
provides three simulation modes, namely pseudo-cell-type
mode, discrete mode, and continuous mode, to generate syn-
thetic data with pseudo-real manifold, discrete clusters, and
continuous differentiation trajectories, respectively. For the
pseudo-cell-type mode, the input of simCAS is the real scCAS

data represented by a peak-by-cell matrix, and matched cell-
type information represented by a vector. For the discrete or
continuous mode, simCAS only requires the peak-by-cell ma-
trix as the input data, followed by automatically obtaining
the variation from multiple cell states. The output of simCAS
is a synthetic peak-by-cell matrix with a vector of user-
defined ground truths.

For each mode, the required process of simCAS is consis-
tent and can be divided into four major steps: (i) low-
dimensional embeddings generation, specifically in cell-wise
and peak-wise; (ii) estimation for distributions of statistics, in-
cluding the library sizes of the cells, the non-zero proportion
of the cells, and the count summation of the peaks; (iii) pa-
rameter matrix correction, by leveraging information from
the aforementioned estimated distributions of statistics; and
(iv) synthetic peak-by-cell matrix generation, i.e. generating
the final count matrix from a Poisson distribution. Note that
a number of peak-by-cell count matrices are routinely binar-
ized for downstream analyses, we thus provide an adapted
framework with a Bernoulli assumption (Supplementary Note
S1). Batch effects and cis-regulatory interactions can be op-
tionally added for task-specific benchmark studies.

2.1.1 Low-dimensional embeddings generation

The cell- and peak-wise embeddings are first generated to rep-
resent the simulated cells and peaks, respectively. The proper-
ties of cells and peaks can be partly adjusted with different
operations of generating embeddings. Given the number of
simulated cells as ncell, the number of simulated peaks as
npeak, and the dimension of cell embeddings as nembed,
simCAS first generates two embedding matrices, namely cell
embedding matrix (CEM) C 2 R

nembed�ncell and a peak-wise
effect matrix (PEM) P 2 R

npeak�nembed , for characterizing the
cell- and peak-wise features, respectively, and then generates a
cell-wise effect vector (CEV) l 2 R

1�nembed , for determining the
library size of each simulating cell. The CEM C can be divided
into two sub-matrices, i.e. C ¼ Chomo; Chete

� �
, where Chomo

serves as the homogeneous CEM and Chete serves as the het-
erogeneous CEM. The homogeneous CEM Chomo represents
inherent cellular properties shared across all the cells, such as
locating tissue and routine regulatory mechanism, while the
heterogeneous CEM Chete crystallizes different cellular biolog-
ical factors, such as differential chromatin accessibility and
cell-specific developing state (Zhang et al. 2019). The PEM P
reflects the effects of cell embeddings to associated peaks.
Elements in the CEV l control library sizes of simulated cells
by setting different effect degree from each cell embedding.

The generation procedure of the homogeneous CEM
Chomo, the PEM P and the CEV l are consistent among differ-
ent modes. For the homogeneous CEM, we assume that each
element in Chomo follows a Gaussian distribution with a unit
mean and a user-defined variance r2, which determines the
extent of data dispersion. As a side note, the parameter of var-
iance r2 is consistent between the homogeneous CEM and the
heterogeneous CEM. For generation of the PEM, simCAS
draws each element in P from a standard Normal distribu-
tion, followed by randomly setting the elements to zero with
probability g by row. g is set to 0.5 in this study. For genera-
tion of the CEV, values of elements in l are randomly sampled
from a standard Gaussian distribution.

For the heterogeneous CEM, we denote chete
i;j as the element

of the ith embedding and jth cell in Chete 2 R
nhete�ncell , where

nhete is the dimension number of heterogeneous embeddings.
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The generation of heterogeneous CEM determines the cell
states to be discrete clusters or continuous trajectories in the
final synthetic matrix. For the discrete mode, npop, that is the
number of discrete cell populations, and a covariance matrix
R 2 R

npop�npop , accounting for the distance between different
cell populations, are needed as user input. Then, npop vectors
with nhete dimensions are sampled from multivariate normal
distribution N I;Rð Þ and concatenated to a matrix
H 2 R

nembed�npop , and the heterogeneous CEM value of ith em-
bedding and jth cell within cell population k is generated by:

chete
i;j

~N hi;k; r
2

� �
;

where h.,. is the element in H. For the continuous mode,
simCAS requires users to input a Newick tree-format data
with tree nodes and branch lengths. simCAS first assigns the
cells to each branch in proportion to the branch length and
set a uniform interval for adjacent cells on the same branch.
chete

i;j is generated with a Brownian motion assumption:

chete
i;j ¼ chete

i;j�1 þ e0;

where ðj� 1Þth cell is the previous cell of jth cell from root to
leaves along the tree, and e0 is an increment sampled from a
normal distribution with a zero mean and the variance equal
to the interval between jth cell and ðj� 1Þth cell. For the root

cell, the value of chete
i;0 is sampled from a normal distribution

with a unit mean and the aforementioned variance r2. It is
worth mentioning that there is no heterogeneous part in CEM
for the pseudo-cell-type mode, because the heterogeneous in-
formation has been included in the input data. In this study,
nembed and nhete are fixed to 12 and 10, respectively. The
details of the CEM generation for the three simulation modes
are illustrated in Supplementary Fig. S1.

2.1.2 Estimation for distributions of statistics

Given a real peak-by-cell count matrix, simCAS estimates dis-
tributions of three core statistics from real data: library size
(the number of aligned reads per cell), cell non-zero propor-
tion (the proportion of non-zero values per cell), and peak
summation (the sum of aligned reads per peak). The estimate
distributions of these three statistics are used to correct the pa-
rameter matrix, which generates simulating count matrix, and
a precise estimation improves the resemblance of synthetic
data to real data.

For the pseudo-cell-type mode, the distributions of three
statistics are estimated from the input peak-by-cell matrix for
each cell type. In this mode, similar to simATAC (Navidi
et al. 2021), simCAS models log-transformed library size and
log-transformed cell non-zero proportion by two Gaussian
mixture models with two components, respectively. To esti-
mate the distribution of peak summation, simCAS fits a vari-
ant of Logarithmic distribution (referred to as Log-variant

Figure 1. A graphical illustration of simCAS framework. simCAS provides three modes to simulate cells with different states: pseudo-cell-type mode,

discrete mode, and continuous mode. simCAS first generate cell- and peak-wise low-dimensional embeddings with user-defined ground truths. Then, the

distributions of statistics in real data are estimated for correcting the parameters. A peak-by-cell matrix is finally generated from the corrected parameters.

The batch effects and interaction peaks can be added optionally during the simulation in different modes. The synthetic data generated by simCAS can be

used to benchmark four major computational tasks of analyzing scCAS data: cell clustering, trajectory inference, data integration, and cis-regulatory

interaction inference.
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distribution), which has a characteristic of long right tail as
with the real distribution of peak summation (Fisher et al.
1943). The probability mass function of the Log-variant dis-
tribution and other five alternative discrete distributions can
be obtained in Supplementary Note S2.

For the discrete or continuous mode, simCAS uses kernel
density estimation to estimate the distributions of statistics
(Zhang et al. 2019) from the whole input peak-by-cell matrix
so that it is adaptive to the diversity of input mixing cell types.

We denote the estimated distributions of log-transformed li-
brary size, log-transformed cell non-zero proportion, and
peak summation as fl, fc; and fp.

2.1.3 Parameter matrix correction and synthetic peak-by-cell
matrix generation

The elements of parameter matrix serve as Poisson mean
parameters to generate the final simulated peak-by-cell ma-
trix, and the correction operation on the parameter matrix
determines that the final synthetic matrix preserves the cell-
and peak-wise properties of input real matrix. For pseudo-
cell-type mode, the low-dimensional embeddings are
generated randomly and the correction step for each cell type
guarantees that simulated data capture the characteristics of
real cell types. For discrete mode or continuous mode, the cell
embeddings are predefined with discrete or continuous states,
and the following correction on parameter matrix helps the fi-
nal simulated cells resemble the real cells without changing
the inherent states. By multiplying the PEM P 2 R

npeak�nembed

and the CEM C 2 R
nembed�ncell , we will obtain a parameter ma-

trix ~K 2 R
npeak�ncell with the same shape as the final output ma-

trix. Due to the random sampling in CEM and PEM
generation, part of elements in ~K are inevitably negative and
cannot be directly used as the parameter in Poisson distribu-
tions. To transform ~K into an expected parameter matrix,
simCAS performs the two following operations: (i) transform
elements in ~K into positive via a mode-specific activation
function; and (ii) perform cell- and peak-wise correction using
the fitted distributions of library size, cell non-zero propor-
tion, and peak summation in the previous step. Details of the
two operations are available in Supplementary Note S3. By
the two operations, simCAS obtains the mean parameter ma-
trix K, of which elements are served as mean parameters of
Poisson distributions.

In the synthetic peak-by-cell matrix generation step, each
element xi;j of the final simulated count matrix X 2 R

npeak�ncell

is derived from a Poisson distribution with the corresponding
mean parameter ki;j in K.

2.1.4 Optional steps in simCAS

To facilitate benchmark studies of various downstream analy-
sis, simCAS offers several optional steps, more specifically, to
incorporate batch effects or cis-regulatory interactions with
synthetic data in the step of low-dimensional embeddings gen-
eration. Batch effects, namely unwanted variations in single-
cell sequencing data of various batches, will potentially inter-
fere with the biological analysis. The effects can be divided
into two major categories (Luecken et al. 2022): technical var-
iations, mainly in sample composition, sequencing technolo-
gies, and more; biological factors, such as spatial locations,
tissues, and species. In simCAS, users could add and adjust
Gaussian noises to the mean parameter matrix K and the
PEM P, respectively, for simulating batch effects of technical
variations or biological factors. Furthermore, simCAS can

also generate data with user-defined cis-regulatory interac-
tions by remodeling the PEM. Details of the optional steps
in the simCAS framework are provided in Supplementary
Note S4.

2.2 Data collection and preprocessing

We follow the standard pipeline of epiScanpy (Danese et al.
2021) to filter out peaks that covered in too few cells and cells
that do not have enough accessible peaks, and then remove
cell types with <50 cells. We collected four scCAS datasets
with peak-by-cell matrices and matched cell-type labels:
Buenrostro2018 (Buenrostro et al. 2018), Li2021 (Li et al.
2021), Preissl2018 (Preissl et al. 2018), and Chiou2021
(Chiou et al. 2021). A summary of original download links
and preprocessing results of the above datasets is shown in
Supplementary Table S1.

2.3 Other methods used in this study

For baseline methods, we implemented two simulators with
source code obtained from their studies: simATAC (Navidi
et al. 2021), the first scATAC-seq simulator as we know, and
scMultiSim (Li et al. 2022), a simulator for single-cell multi-
omics generation. Note that EpiAnno (Chen et al. 2022) only
generates data with highly accessible peaks instead of whole
peaks, and SCAN-ATAC-sim (Chen et al. 2021) requires bulk
data as input, so we excluded these two simulators as baseline
methods. Since simATAC can only simulate data with the
same manifold as real and scMultisim is not designed specifi-
cally for scCAS data, we compared the performance of these
methods with simCAS in the pseudo-cell-type mode. The
details for baseline methods implementations, downstream
analysis methods for benchmarking, and the procedure
for data visualization are also provided in Supplementary
Note S5.

2.4 Metrics for evaluation

We assess the simulation performance from two perspectives,
namely statistical evaluation and biological evaluation. For
statistical evaluation, we focus on the average of read counts
per peak (peak mean), the library size and the zero-peak pro-
portion in each cell (cell sparsity) as with simATAC, and mea-
sure the diversity between the simulated data and real data by
calculating median absolute deviation (MAD), mean absolute
error (MAE), root mean square error (RMSE), Pearson corre-
lation coefficient (PCC), Jensen–Shannon divergence (JSD),
and Kolmogorov–Smirnov statistic (KSS). As a side note, for
the library size, we perform log-transformation before com-
parison as with the recent benchmark studies (Cao et al.
2021, Crowell et al. 2022). For biological evaluation, we
compute median integration local inverse Simpson’s index
(miLISI) (Sun et al. 2021) to quantify the similarity between
synthetic cells and real cells.

To evaluate the performance of different clustering methods
on synthetic data generated by simCAS, we perform the fol-
lowing three metrics: adjusted mutual information (AMI),
Homogeneity score (Homo), and adjusted Rand index (ARI)
(Chen et al. 2019). To quantitatively benchmark the perfor-
mance of cis-regulatory interaction inference methods, we
take interactive peaks as positive samples and non-interactive
peaks as negative samples in a selected peak hub, and F1 score
is used to assess the accuracy of annotation. Details of the
above evaluation are provided in Supplementary Note S6.
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3 Results
3.1 simCAS generates high-fidelity cells with

consistent manifold with real data

To demonstrate the advantage of simCAS with the pseudo-
cell-type mode for data simulation, we conducted the statisti-
cal evaluation and biological evaluation using four datasets
(Section 2). In this section, simCAS was benchmarked against
two baseline methods, simATAC and scMultiSim. Using the
peak-by-cell matrix and the cell-type labels of each dataset as
input, simCAS and baseline methods simulated the peak-by-
cell matrix for each cell type with the same number of peaks
and cells as in the real datasets.

For statistical evaluation, we first performed comparisons
of three properties, namely peak mean, library size, and cell
sparsity of synthetic data to real by cell type (Section 2).
Figure 2a and Supplementary Fig. S2 depict the comparison
of the three statistics’ distributions in all cell types between
the synthetic dataset and the real dataset (Buenrostro2018),
and demonstrate that data generated by simCAS highly
resembles real data at peak-wise and cell-wise. It is observed
that when trained with more cells, sinCAS can better preserve
these properties, indicating that simCAS better captures the
cell- and gene-wise characteristics if provided with a larger
cell population. To quantitatively measure the similarity of
statistics’ distributions between synthetic data and real data,
we further calculated MAD, MAE, RMSE, 1-PCC, JSD, and
KSS (Section 2). A smaller value of each metric means that the
simulated peak-by-cell matrices more accurately preserve
properties of real data. As shown in Fig. 2b, simCAS

significantly outperformed simATAC and scMultiSim across
all cell types in Buenrostro2018 dataset. Taking MAD as an
example, for peak mean, library size, and cell sparsity, the av-
erage value of simCAS is 54.5%, 20.2%, and 93.8% lower
than simATAC, respectively, and 60.0%, 50.3%, and 84.4%
lower than scMultisim, respectively. Focusing on peak mean
and library size, scMultiSim provided overall the worst per-
formance with the highest diversity between synthetic data
and real data. Due to neglecting to model the cell sparsity in
scCAS data, simATAC leads to the most spurious estimation
in this property. This is consistent with the observation in the
study of EpiAnno that simATAC generated synthetic data as
pseudo-bulk data instead of single-cell data (Chen et al.
2022). On the other datasets, simCAS still showed the superi-
ority in the statistical evaluation (Supplementary Figs S3a,
S4a and S5a). The details of the quantitative evaluation for all
datasets are provided in Supplementary Table S2. By replac-
ing the distribution for modeling peak summation with other
discrete distributions, we demonstrated that Log-variant dis-
tribution achieves best performance for fitness overall in ma-
jority cell types (Supplementary Fig. S6). In addition to
statistical evaluation at cell-wise and peak-wise, we also tested
whether simCAS can capture the property of peak–peak cor-
relations. We first selected top 2000 peaks with highest acces-
sibility in real dataset and preserved the same peaks in
simulated datasets as above. We next calculated the
Spearman correlation coefficients of every peak–peak pairs’
chromatin accessibilities in the processed real and simulated
datasets. As shown in Fig. 2c, simCAS best captures the corre-
lations among highly accessible peaks, while a higher value

Figure 2. Comparisons of synthetic data and real data. (a) QQ-plots of peak mean values, library size values, and cell sparsity values between synthetic

common myeloid progenitors (CMPs) generated by simCAS and real CMPs in Buenrostro2018 dataset. The 1000 quantiles of peak mean values are used

for the comparison. (b) Comparison results of three statistics between synthetic cell types and real cell types in Buenrostro2018 dataset. For each cell

type, the similarity between statistics of synthetic data and real data is measured by six metrics: MAD, MAE, RMSE, 1-PCC, JSS, and KSS, and each gray

point represents a cell type. (c) Spearman correlation coefficients of synthetic and real datasets on the pairs of top 2000 highly variable peaks selected in

real data. (d) UMAP visualization of the synthetic datasets and real Buenrostro2018 dataset. The synthetic datasets are projected to the embedding space

with the same low-dimensional projection trained on the real data. miLISI values are calculated to measure the mixture of synthetic cells and real cells for

different simulators.
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and a lower value of Spearman correlation coefficients are
presented by simATAC and scMultiSim, respectively.
Additionally, we tested the computing resources of simCAS
with the pseudo-cell-type mode (Supplementary Note S7 and
Supplementary Fig. S7), and used the other four datasets to
show the performance of simCAS to robustly capture the
peak correlations (Supplementary Figs S3b, S4b and S5b).

For biological evaluation, we assessed the similarity be-
tween simulated cells and real cells for each dataset by calcu-
lating the miLISI value of mixed cells (Section 2). The results
of data visualization and biological evaluation are shown in
Fig. 2d, simCAS achieves highest miLISI value and, conse-
quently, has superior simulation capability to capture the
structure of cell clusters (Section 2). simATAC generates cells
that gather to a small group within a certain cell type, which
indicates that these simulated cells are less heterogeneous
compared to the real cells. scMulitisim generates data without
considering the diversity of different cell types and the visual-
izing result is a concentrated dense population in the UMAP
space. The visualizations and miLISI values of other four
datasets (Supplementary Figs S3c, S4c and S5c) showed the
satisfactory performance of simCAS to maintain the realistic
manifold of scCAS data. Note that the input of peak-by-cell
matrix of Pressl2018 dataset is binarized, and the simulation
for this dataset is conducted by an adapted simCAS frame-
work with a Bernoulli assumption (Supplementary Note S1).

3.2 simCAS simulates data with discrete cell states

to benchmark cell clustering methods

The cell types in most real scCAS data are obtained by unsu-
pervised cell clustering and manual annotation, which highly
rely on the investigator’s background knowledge, and may be
not accurate enough as the ground truths for quantitative
evaluation to analysis methods (Chen et al. 2021, 2022).
Therefore, synthetic data with ground-truth labels of cell
types will greatly benefit the increasing computational meth-
ods for cell clustering in scCAS data. We thus developed the
discrete mode in simCAS for simulating cells with user-
defined cell populations. Note that as (i) simATAC can only
generate cells with consistent manifold with real data and (ii)
we have demonstrated scMultisim is insufficient for accu-
rately simulating high-fidelity scCAS data, we did not con-
tinue to serve these two simulators as baseline methods
(Section 2). Using the peak-by-cell matrix of Buenrostro2018
dataset as training data, we generated three synthetic datasets
with different parameters: A1 dataset with the covariance ma-
trix of different cell populations R ¼ R1 and the standard de-
viation in CEM generation r ¼ 0:5, A2 dataset with R ¼ R2

and r ¼ 0:5, and A3 dataset with R ¼ R2 and r ¼ 0:7
(Fig. 3a). We set the number of cells, the number of peaks and
the number of populations to 1500 (300 for each cell popula-
tion), 169 221 (same as the number of real peaks), and 5, re-
spectively, and keep these parameters in the three synthetic
datasets. As the UMAP visualization in Fig. 3a, the inter-
population distances among different populations maintain
the relationships encoded in R1. When rising the covariance
between populations A and B from 0.56 in R1 to 0.78 in R2,
cells between populations A and B exhibit a closer relation-
ship, and cells of population C are separated slightly from
cells of populations A and B. Besides setting the covariance
matrix, some other parameters can be set to control the prop-
erties of simulated data. For example, a higher value of r
brings higher inner-population variance as shown in A2 and

A3 dataset (Fig. 3a). To further demonstrate the high resem-
blance of synthetic data to real data in the discrete mode, we
showed that simCAS successfully retains the properties of
peak mean, library size, and cell sparsity (Fig. 3b and
Supplementary Fig. S8a).

We then simulated six datasets (referred to as the B1–B6
dataset) of discrete data with different number of cells (500–
3000) and different number of populations (3–7) to evaluate
three commonly used unsupervised clustering methods (Chen
et al. 2019) for single-cell analysis: Leiden clustering, K-means
clustering, and HC (Section 2 and Supplementary Fig. S9a).
For Leiden clustering, we implemented a binary search to
tune the resolution to match the number of populations and
the number of clusters, while K-means clustering and hierar-
chical clustering are directly set the number of clusters to the
number of cell populations. As shown in Fig. 3c, Leiden clus-
tering and hierarchical clustering work consistently across dif-
ferent metrics, and Leiden clustering performs better than
K-means clustering and hierarchical clustering in almost all
the datasets. Taking B2 dataset as an example, we showed
clustering results with the UMAP visualization in
Supplementary Fig. S9b. The results of benchmarking analysis
on our simulated data are consistent with the benchmark
study for clustering methods on single-cell data (Chen et al.
2019), indicating that data generated by simCAS is credible to
benchmark the clustering methods on scCAS data with differ-
ent sizes and dimensions.

3.3 simCAS simulates data with continuous

differentiation trajectories

Although a range of methods have been developed to distin-
guish different cell types in scCAS data, the cellular processes
are dynamic in nature and not always well described by these
methods (Chen et al. 2019). Therefore, methods for trajectory
inference are explored to provide more comprehensive analy-
ses of single-cell data (Saelens et al. 2019). However, the in-
formation of cell trajectory relies on existing biological
knowledge, which is imprecise and inconvenient to evaluate
analysis methods for data with continuous trajectories. To fill
this gap, simCAS provides the continuous mode to generate
data by defining the cell trajectory with an input Newick tree.
Using the Buenrostro2018 dataset as training data, we simu-
lated three datasets as follows: C1 dataset with the Newick
tree T1 and the standard deviation of CEM r ¼ 0:5, C2 and
C3 datasets with the same tree T2 but with different standard
deviations r ¼ 0:5 and r ¼ 1:0, respectively (Fig. 4a). For
each dataset, we generated a peak-by-cell matrix with the
shape of 169 221 and 1500. The UMAP visualization showed
that, cells generated by simCAS explicitly maintains the tra-
jectory structure from the input tree. More specifically, the
length of trajectory in the UMAP space is in direct proportion
of the branch in the input tree, and e.g. cells of a shorter
branch, such as “R-E” in T2, are grouped to a smaller cluster.
The value of r also controls the dispersion of cells. We further
compared the distributions of peak mean, library size, and
cell sparsity between simulated data and real data. As shown
in Fig. 4b and Supplementary Fig. S8b, data generated by
simCAS in the continuous mode highly resemble real data in
cell- and peak-wise properties.

Using C1 dataset as input, we evaluated the parameter con-
figuration in Monocle3 (Cao et al. 2019), a method for trajec-
tory inference and pseudotime estimation, for testing two
fundamental parameters, minimal branch length (m_branch)
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and number of centers (n_center). We then used Monocle3 to
visualize cells characterized by ground truths and predict tra-
jectories with different parameters (Fig. 4c). The results indi-
cated that a lower value of minimal branch length brings
more branches of the trajectory structure, and a larger num-
ber of centers make the trajectory structure more complicated,
which are consistent with instructions in the study of
Monocle3. Compared with other parameters, Monocle3 with
minimal branch length of 5 and centers number of 40
completely delineates the real trajectory and detects the tree
nodes. Altogether, simCAS provides a new perspective to
computational method development for trajectory inference.

3.4 simCAS contributes to benchmarking in

single-cell data integration

With the data integration methods applied on scCAS data,
datasets from various origins can be analysed simultaneously,
which provides a comprehensive perspective to study cellular

heterogeneity (Kopp et al. 2022, Yuan and Kelley 2022).
Whereas, due to the challenges for distinguishing batch effects
from indicative biological variances (Luecken et al. 2022), it
can be difficult to evaluate the methods of batch effect correc-
tion or data integration objectively. simCAS provides an op-
portunity to benchmark methods for this task by generating
data with simulated batches. simCAS with the discrete mode
can incorporate user-defined batch effects of biological fac-
tors, namely biological batch effects, with simulated data by
adding Gaussian noise on the PEM (Section 2). For instance,
we first set the number of populations to three (the number of
cells in cell populations A, B, and C is set to 600, 600, and
300, respectively) and a unit diagonal matrix as the covari-
ance matrix, included a Gaussian noise with the mean of 0.5
and the standard variation of 0.5 to the PEM, and performed
the remaining steps to generate a peak-by-cell matrix,
regarded as Batch 1. We then performed the same
procedure without adding Gaussian noise to generate another

Figure 3. Synthetic data generation in discrete mode of simCAS and benchmarking of cell clustering methods. (a) UMAP visualization of synthetic

datasets (A1–A3) with discrete cell populations generated by simCAS, colored by user-defined populations in the input covariance matrices. Datasets

A1 and A2 are generated with different input covariance matrices. Datasets A2 and A3 are generated with different values of variance parameter.

(b) QQ-plots of peak mean values, library size values, and cell sparsity values between A1 dataset and real Buenrostro2018 dataset. Peak mean is

compared using 1000 quantiles, and library size is compared using 100 quantiles as well as cell sparsity. (c) Performance benchmarking of Leiden

clustering, K-means clustering, and hierarchical clustering by AMI, ARI, and Homo. Six simulated datasets (B1–B6) with discrete cell populations of cells

number ranging from 500 to 3000 and populations’ number ranging from 3 to 7 are utilized for the benchmarking.
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peak-by-cell matrix, regarded as Batch 2. Note that these two
matrices are generated with exponential activation function
to increase difference between the batches. Finally, we

concatenated the two matrices by column, and obtained a
synthetic dataset D1 with two batches. With the data visuali-
zation shown in Fig. 5a, we demonstrate that the simCAS

Figure 4. Synthetic data generation in continuous mode of simCAS and benchmarking of trajectory inference method Monocle3. (a) UMAP visualization

of synthetic datasets (C1–C3) with continuous trajectories generated by simCAS, colored by the branches of user-defined input trees. Datasets C1 and C2

are generated with different input trees of specific nodes and branch lengths. Datasets C2 and C3 are generated with different values of variance

parameter. (b) QQ-plots of peak mean values, library size values, and cell sparsity values between C1 dataset and real Buenrostro2018 dataset. Peak

mean is compared using 1000 quantiles, and library size is compared using 100 quantiles as well as cell sparsity. (c) Results of trajectory inference by

Monocle3 applied on dataset C1. The performance of Monocle3 is evaluated with different values of two parameters, minimal branch length and number

of centers. The inference results of cells are shown in the UMAP space, colored by the estimated pseudotime along with the inferred trajectories. White

nodes, black nodes, and gray nodes represent root nodes, branch nodes, and leave nodes, respectively.
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effectively simulates biological batch effects within each cell
population. Otherwise, to mimic batch effects of technical
variations, i.e. technical batch effects, simCAS adds Gaussian
noise the mean parameter matrix K, and the UMAP visualiza-
tion illustrates the well-defined technical batch effects com-
pared with cell populations (Supplementary Fig. S10).

To benchmark the parameter configurations of Harmony,
a widely used integration method for single-cell sequencing
data, we adapted D1 dataset to a more challenging dataset
D2 by removing cell population C in batch2, to mimic the sce-
nario with batch-specific and rare cell types. Two parameters
of Harmony, namely lambda, a ridge regression penalty pa-
rameter, and sigma, the width of soft K-means clusters, are
evaluated. As shown in Fig. 5b, the results of UMAP visuali-
zation demonstrate that, a larger value of sigma assigns cells
to more clusters, while a smaller value of lambda results in
more aggressive integration, as with the instruction in
Harmony. With the lambda of 1 and sigma of 0.1, Harmony
successfully integrates cells from different batches and sepa-
rates cells of the different cell populations. With a larger
sigma of 0.5, Harmony clustered cells to four groups and
failed to correct the batch effects of cell population B, and
with a larger lambda of 20, Harmony still separated different
cell populations well, but the cells in population B are not
well mixed between different batches. The parameter configu-
ration evaluation of Harmony confirms the capability of
simCAS to be a reliable simulator to benchmark data integra-
tion methods for scCAS data.

3.5 simCAS facilitates benchmarking in

cis-regulatory interaction inference

scCAS data provides a perspective to investigate the interac-
tions of chromatin accessible sites, and several computational
methods (Li et al. 2020, Dong and Zhang 2021), such as
Cicero (Pliner et al. 2018), have been proposed to predict the
interactions between peaks, namely cis-regulatory interac-
tions. However, in the absence of fine-grained labels, which

contain correlations among all the chromatin sites, quantita-
tive evaluation of the corresponding methods presents a
unique challenge. We here conducted a series of experiments
to show how simCAS tackles the challenge and benefits
benchmarking in cis-regulatory interaction inference.

We used synthetic data generated from simCAS fitted by
the Buenrostro2018 dataset to illustrate the performance of
Cicero (Section 2). First, we extended gene regions in
Chromosome 1 upstream by 50 kb and downstream by 50 kb
to obtain peak hubs. We then filtered the hubs containing
<50 peaks and the hubs overlapped with others. Fourteen
peak hubs (referred to as hub_1 to hub_14) are retained with
the number of peaks ranging from 51 to 92 and the hub
length ranging from 337 196 to 1 622 989 bps (Fig. 5c).
Finally, we randomly selected 40 peaks of each hub to con-
struct interactive peaks, and the remaining peaks are non-
interactive samples without modeling correlations.

With the simulated data, we performed Cicero with the
window parameter of 200 000 to predict the co-accessibility
scores for peak–peak pairs in the simulated data, and the
CCANs are constructed by the predicted interactions.
Considering the interactive peaks as positive samples and
non-interactive peaks as negative samples, we calculated a F1
score for each pair of peak sets between predefined peak hubs
and predicted CCANs, and evaluated the performance by the
highest F1 score for each peak hub across all the CCANs. As
shown in Fig. 5c, Cicero consistently performed well in most
peak hubs with different parameters, and achieved the highest
F1 score when setting the co-accessibility score cutoff to 0.5,
which is reasonable because the possible interactive peaks will
be discarded with higher cutoffs and more false positive sam-
ples may be predicted with lower cutoffs. With the penaliza-
tion on the correlations by the distance, Cicero failed to
annotate the regions of length significantly exceed the setting
window, such as the hub_1 and hub_7 (Fig. 5c). We further
visualized the co-accessibility scores predicted by Cicero on
the hub_3 region of gene KAZN. As shown in Fig. 5d, with

Figure 5. Method benchmarking results of data integration and cis-regulatory interaction inference. (a) UMAP visualization of synthetic dataset of 3000

cells with simulated biological batch effect, clustered by the cell populations and marked by different batches. (b) Results of different parameter

configurations of lambda and sigma in Harmony integration method. The integration results are visualized in the UMAP space, clustered by cell

populations, and marked by simulated batches. (c) Length of selected 14 peak hubs, which represent high accessible gene regions, ranging from 337 196

to 1 622 989 bp (left). Cicero is applied to infer the interactive peaks defined in these hubs with co-accessibility score of 0.4, 0.5, and 0.6, and the

performance is benchmarked with the F1 score calculated between predicted peaks in CCANs and ground-truth interactive peaks in synthetic data (right).

(d) The predicted connections by Cicero on the peak hub of gene KAZN region extended upstream by 50 kb and downstream by 50 kb. The 40 red peaks

represent the ground-truth interactive peaks defined in the synthetic data, and the remaining 26 blue peaks are non-interactive peaks.
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the co-accessibility cutoff of 0.5, most interactive peaks are
predicted to be associated with each other, and the interaction
is stronger with a closer distance. For the non-interactive
peaks, Cicero successfully avoided false positive interactions.
With the flexible adaptation of interactive peaks, simCAS is
potential to guide computational method benchmarking in
cis-regulatory interaction inference.

4 Discussion

We developed a Python package simCAS, an embedding-
based simulator of scCAS data, to simulate data from user-
defined low-dimensional embeddings. With statistical evalua-
tion and biological evaluation using multiple datasets with
different protocols, and with different sizes, dimensions, and
qualities, we illustrated that simCAS not only preserve cell-
and peak-wise properties, but also capture biological signals.
By testing various analysis methods on simulated data, we
also demonstrated the capability of simCAS for benchmark-
ing analysis, suggesting that simCAS has the potential to ac-
celerate development of computational methods for scCAS
data analysis. Besides, for the binarized input peak-by-cell
matrix, the adapted simCAS framework with a Bernoulli as-
sumption also showed the satisfactory capability to conduct
benchmarking analysis (Supplementary Figs S3 and S11).

We also describe several avenues for improving simCAS.
First, we can develop an R version of simCAS to offer users
the convenience for benchmarking methods programmed in
different languages. Second, we can focus on higher-level
properties in real scCAS data, such as cell–cell correlation or
variance at cell-wise and peak-wise. Third, we can incorpo-
rate external batch information from real data with data
modeling in simCAS, to capture the characteristics of real
batch effects. Fourth, as suggested by EpiAnno (Chen et al.
2022), we can integrate simCAS-simulated data and real data
to augment scCAS data analysis. Finally, due to rapid advan-
ces in sequencing technologies, we look forward to extending
the framework for single-cell multi-omics data simulation to
satisfy the benchmarking for more single-cell-related compu-
tational methods.

Supplementary data

Supplementary data are available at Bioinformatics online.
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