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SUMMARY
Type 1 diabetes (T1D) results from autoimmune destruction of b cells. Insufficient availability of biomarkers
represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-
phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D devel-
opment. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins,
showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmu-
nity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals
who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 pro-
teins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if
individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with
areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies
and validates biomarkers, highlighting pathways affected during T1D development.
INTRODUCTION

Type 1 diabetes (T1D) is a chronic metabolic condition that af-

fects approximately 20 million people worldwide. Its associated

morbidities (e.g., cardiovascular disease, blindness, and kidney

failure) reduce life expectancy of individuals by 11 years,1 and

there is no cure yet for this disease. T1D results from a gradual

destruction of insulin-producing b cells by an autoimmune

response, which is associated with the appearance of autoanti-

bodies against pancreatic islet proteins (hereafter referred to as

‘‘seroconversion’’).2,3 However, the cause(s) that triggers and

the mechanisms that govern this autoimmune response are still
This is an open access article under the CC BY-N
poorly understood. The Environmental Determinants of Diabetes

in the Young (TEDDY) study has an ambitious goal of identifying

factors that contribute to islet autoimmunity (IA) or T1D, toward

enabling the development of therapeutic interventions.4 A key

bottleneck in this process is the lack biomarkers that can accu-

rately predict each step of T1D development.

Plasma proteomics analysis is a promising approach for

discovering protein biomarkers,5–7 and it has been applied to

identify biomarkers of T1D onset.8–11 Proteomics analysis

can also provide important insights on the mechanism(s) of

disease. Despite previous efforts,10,11 there is still an urgent

need for biomarkers that can predict the different stages of
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Figure 1. Study design: A two-phase study design to discover and validate biomarkers in human blood plasma

Individual plasma samples from a smaller number (n = 46) of individuals were pooled from pre- and post-seroconversion visits and analyzed by in-depth un-

targeted proteomics in the discovery phase (left panel) (n = 401 and 94). Individual plasma samples from several collection time points (represented by the dots in

the timeline) were analyzed in a larger cohort by targeted proteomics in the validation phase (right panel). Comparison I1: time point(s) before seroconversion of

the group that remained in autoimmunity by the age of 6 years (IA group) paired against matched controls. Comparison T1: time point(s) before seroconversion

of the group that developed type 1 diabetes (T1D) by the age of 6 years (T1D group) paired against matched controls. Comparisons I2 and T2 have the same group

of individuals as I1 and T1, respectively, but after seroconversion. Comparisons I3 and T3 compare IA and T1D groups before vs. after seroconversion,

respectively. See Figure S1 for details on sample collection time points.
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T1D development. Islet autoantibodies are excellent diagnostic

biomarkers for IA, and multipositivity to islet autoantibodies pre-

dicts an almost inevitable development of T1D. However, there is

a desperate need for biomarkers that predict and can be used to

monitor the onset of IA. Moreover, it is also important to be able

to distinguish between individuals that develop T1D vs. individ-

uals that develop IA but not hyperglycemia to appropriately

focus potential treatments to the relevant stage of disease

development.

Biomarker development is a long process, and many studies

fall short due to the lack of systematic validation of candidates.12

Here, we conducted a robust T1D plasma protein biomarker

discovery and validation study13 in the TEDDY cohort. We per-

formed machine learning analysis to identify biomarker panels

that can predict either the development of T1D or if individuals

would remain in IA until the age of 6 years both with high accu-

racy and as early as 6months before the appearance of the auto-

immune response. By comparing themwith previously published

proteomics models of insulitis using human islets and cultured b

cells treated with cytokines, our results also provide insights on

the mechanism of T1D development.

RESULTS

Experimental design and discovery phase analysis
The study was based on a nested case-control design4 and

aimed to identify biomarkers predictive of IA and T1D develop-

ment, with samples divided into 8 groups: pre- and post-sero-

conversion for individuals that developed T1D (T1D group) or re-
2 Cell Reports Medicine 4, 101093, July 18, 2023
mained in IA (IA group) by the age of 6 years, each paired

with respective control groups. The following comparisons

were considered: I1, IA group vs. control pre-seroconversion;

T1, T1D group vs. control pre-seroconversion; I2, IA group vs.

control post-seroconversion; T2, T1D group vs. control post-

seroconversion; I3, pre-vs. post-seroconversion of IA group;

and T3, pre-vs. post-seroconversion of T1D group (Figure 1).

The study was comprised of two phases: a discovery phase

focused on a deep proteomics analysis of pooled samples

from a limited number of individuals5 (n = 184) and a subsequent

validation phase with selected biomarker candidates analyzed

by targeted proteomics in many samples from a much larger

cohort14 (n = 990) across multiple time points (Figures 1, S1,

and S2). The characteristics and demographic information for

both discovery and validation phase cohorts are presented in Ta-

ble 1. A total of 1,488mass spectrometry analyses from 62multi-

plexed proteomics sets were performed in the discovery phase.

To ensure quality across 18 months of data collection, we devel-

oped and implemented an automated quality control system

named QC-ART (quality control analysis in real time).15 This tight

quality control analysis assured that consistent data were

collected across the study. The data profile had very similar dis-

tributions of peptide abundances across different multiplexed

sets (Figure S3A) and numbers of identified peptides in each

group (Figure S3B). A total of 36,252 peptides derived from

1,720 proteins were identified, and after normalizing to a refer-

ence sample that was included in each multiplexed proteomics

set, peptides were sequentially removed from the dataset based

on the following criteria: (1) detected in 2 or fewer samples



Table 1. Characteristics of the study cohort

Discovery Validation

T1D IA T1D IA

Cases

Matched

controls Cases

Matched

controls Cases

Matched

controls Cases

Matched

controls

Number 46 46 46 46 94 94 401 401

Case seroconversion

age (months)

median 12 – 23 – 12 – 22 –

Q1 9 – 14 – 10 – 12 –

Q3 18 – 33 – 19 – 33 –

Gender female 25 25 17 17 43 43 179 179

male 21 21 29 29 51 51 222 222

Clinical center Colorado 8 8 4 4 13 13 57 57

Georgia/Florida – – 1 1 6 6 28 28

Washington 4 4 5 5 6 6 37 37

Finland 23 23 23 23 31 31 113 113

Germany 6 6 1 1 13 13 33 33

Sweden 5 5 12 12 25 25 133 133

HLA-DR-DQ genotypes HLA ineligible 1 1 – – 1 3 1 2

DR3/4 26 20 25 17 55 39 211 152

DR4/4 7 6 10 9 13 18 65 71

DR4/8 7 5 8 6 14 10 61 67

DR3/3 1 6 3 11 5 9 46 81

FDR specific 4 8 – 3 6 13 17 28

Family history of T1D GP 28 28 42 42 61 61 309 309

FDR: mother 3 11 1 3 4 15 16 37

FDR: father 11 5 2 1 20 14 54 40

FDR: both parents – – – – 1 – 1 –

FDR: sibling 4 2 1 – 8 4 21 15

Type of first

autoantibody

not IA+ – 44 – 45 – 89 – 392

IAA only 27 2 27 – 53 4 194 0

GADA only 8 – 11 1 14 1 132 3

IA-2A only – – 1 – – – 6 –

two or more

autoantibodies

11 – 7 – 27 – 69 –

FDR, first-degree relative; GADA, glutamic acid decarboxylase autoantibody; GP, general population; HLA, human leukocyte antigen; IA, islet auto-

immunity group (remained in autoimmunity by the age of 6); IA-2A, islet antigen-2 autoantibody; IAA, insulin autoantibody; T1D, type 1 diabetes group

(progressed to autoimmune diabetes by the age of 6).
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across any group, (2) coefficient of variance greater than 150%,

(3) detected in fewer than 2matched case-control pairs, and (4) p

value >0.05 across different comparisons. These criteria resulted

in a final discovery phase proteomics dataset that included 376

significant proteins (373 with R2 peptides and 3 with 1 peptide)

at a p value threshold of %0.05 (Figure 2A; Table S1).

Biological pathways regulated in IA and T1D
development
A functional-enrichment analysis of the discovery phase data

showed that 22 pathways were overrepresented among the

376 differentially abundant proteins and their proteoforms (Fig-

ure 2B). To facilitate the interpretation, we further grouped these

pathways into fewer biological processes based on the compo-

nents of each pathway that were regulated in the different com-
parisons. We plot the pathways as circles, with their sizes being

proportional to the fold enrichment and colored based on the

enrichment significance (Figure 2B). Complement and blood

clotting, antigen presentation, extracellular matrix, nutrient

digestion and absorption, cellular metabolism, and inflammatory

signaling processes were significantly enrichedwith differentially

abundant proteins (Figure 2B). To investigate if these processes

might also occur in islets during T1D development, we compared

the results of the functional enrichment analysis of the TEDDY

proteomics data to published proteomics analyses of human is-

lets16 and the b cell line EndoC-bH117 from the Human Islet

Research Network (HIRN). Each sample type was treated with

pro-inflammatory cytokines interleukin-1b (IL-1b)+interferon g

(IFNg) as a model of insulitis during IA. Proteins related to com-

plement and blood clotting, antigen presentation, extracellular
Cell Reports Medicine 4, 101093, July 18, 2023 3



Figure 2. Discovery phase data analysis

(A) Discovery phase data quality and statistical analysis workflow (N = 46). Sequential pre-filtering steps focused on identification and removal of high-variability

(steps 1–2) and low-coverage (step 3) peptides and proteins. Resulting proteins and peptides were submitted to multiple statistical comparisons in the context of

autoimmunity and T1D development (steps 4–5).

(B) Functional enrichment analysis. The 376 differentially abundant proteins identified from the discovery phase were submitted to function enrichment analysis

with DAVID using the KEGG annotation. Pathways were plotted as circles, with sizes based on their fold enrichment and colors based on p values. Individual

pathways were grouped into larger biological processes based on the overlapping proteins between each pathway. Pathways that were also enriched among the

167 targets of the validation phase are marked with asterisks. Comparison I1: time point(s) before seroconversion of the group that remained in autoimmunity by

the age of 6 years (IA group) paired againstmatched controls. Comparison T1: time point(s) before seroconversion of the group that developed T1D by the age of 6

years (T1D group) paired against matched controls. Comparisons I2 and T2 have the same group of individuals as I1 and T1, respectively, but after serocon-

version. Comparisons I3 and T3 compare IA and T1D groups before vs. after seroconversion, respectively.
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matrix, and inflammatory signaling were also enriched among

the IL-1b+IFNg regulated proteins in the human islet study (Fig-

ure 2B). In EndoC-bH1 cells, pathways related to antigen presen-
4 Cell Reports Medicine 4, 101093, July 18, 2023
tation, inflammatory signaling, and cell metabolism were regu-

lated similarly to the plasma signatures (Figure 2B). This shows

that similar inflammatory signatures that occur in plasma of
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individuals during T1D development also occur in islets during

insulitis.

Extracellular matrix

Pathways related to the extracellular matrix were commonly en-

riched among the different comparisons. However, there was

only a small overlap of significant proteins between the different

comparisons, as shown in the heatmap. At pre-seroconversion,

the IA group had 14 regulated proteins (12 upregulated) (com-

parison I1, Figure 3), while the T1D group had 10 regulated pro-

teins (all upregulated) (comparison T1, Figure 3). Post-serocon-

version, the scenario became more distinct, with the IA group

having 24 out of 25 regulated proteins downregulated, while

the T1D group had 17 out of the 17 regulated proteins upregu-

lated (comparisons I2 and T2, respectively, Figure 3).

Antigen presentation

Antigen processing and presentation was the most distinctive

pathway at the pre-seroconversion time point when comparing

the T1D group vs. the IA group. In the T1D group, a higher

level of antigen-processing proteins was observed, including

cathepsin L1 (CTSL) (protein names are abbreviated using

their UniProt gene names) and proteasome subunits PSMA8,

PSMB1, PSBM5, and PSBM6 (comparison T1, Figure 3).

Cathepsin L1 and proteasome subunits PSMA2, PSBM4, and

PSBM10were also higher after seroconversion but were accom-

panied also by the antigen-presenting complex human leukocyte

antigen class I (HLA-B) and b-2-macroblobulin (B2M) (compari-

son T2, Figure 3).

Inflammatory signaling

Four cytokines and chemokines were regulated across different

comparisons. C-C motif chemokine 14 (CCL14) was downregu-

lated pre-seroconversion in the T1D group compared with the

control (comparison T1, Figure 3). CCL5 and proplatelet basic

protein (PPBP; or CXCL7) were up- and downregulated, respec-

tively, in the T1D group compared with the control at the post-

seroconversion time point (comparison T2, Figure 3). Receptors,

such as platelet-derived growth factor receptor b (PDGFRB) and

macrophage receptor MARCO, and signaling transduction pro-

teins, such as serine/threonine-protein phosphatase 2A 65 kDa

regulatory subunit A alpha isoform (PPP2R1A), were also regu-

lated (Figure 3).

Complement and coagulation

At pre-seroconversion, complement factors C1QC, C3 C4A, C5,

C8A, C8B, C9, CR1L, CFB, CFH, and CFI and coagulation fac-

tors F5, F12, fibrinogen a and g, von Willebrand, and adenylate

kinase were higher in the IA group vs. respective controls (com-

parison I1, Figure 3), while proteoforms of F5 and vonWillebrand

factors were upregulated in the T1D group (comparison T1, Fig-

ure 3). Post-seroconversion, both groups had lower levels of

most coagulation and complement factors compared with their

respective controls. However, specific proteoforms were regu-

lated in the opposite way (comparisons I2 and T2, Figure 3),

probably reflecting processing or post-translational modifica-

tions of these proteins.

Metabolic proteins

Among the central carbon metabolism enzymes, glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH), fructose-bisphos-

phate aldolase A, and ribose-5-phosphate isomerase were

reduced post-seroconversion in the T1D group but not in the
IA group (comparisons I2 and T2, Figure 3), suggesting an

abnormal sugar metabolism. Lipoproteins represent another

class of metabolic proteins regulated in plasma. Apolipoprotein

(Apo) A1 was increased in both groups pre-seroconversion but

had similar levels to the control after seroconversion (Figure 3).

Conversely, Apo A2, A4, B, C1, C2, C3, D, E, H, and J had similar

levels compared with the controls in both groups pre-serocon-

version but declined after seroconversion (Figure 3). Overall,

these data indicate changes in metabolic proteins that precede

hyperglycemia.

Validation of protein biomarker candidates
We performed a systematic prioritization of the candidate bio-

markers from the discovery phase based on the following

criteria: (1) statistical significance at Benjamini-Hochberg

adjusted p value %0.05; (2) R2 peptides identified per protein,

a spectral count (SpC) R20, and an unadjusted p value

<0.005; (3)R2 peptides identified per protein, an SpCR20, de-

tected in more than 23 samples, and machine learning (ML) to

determine the group of proteins that are the most predictive of

each of the 6 comparisons; or (4) proteins that were previously

described as potential T1D onset biomarkers in the literature8–11

and had an unadjusted p value % 0.05 (Figure 4A). This analysis

led to the selection of 167 proteins for the validation phase, of

which 811 peptides were selected for targeted proteomics assay

development (as described in STARMethods). Similar to the dis-

covery phase, we developed an informatics tool named Q4SRM

(quality control analysis for selected reaction monitoring)18 to

systematically track data quality across 29 months of analyses.

A total of 694 peptides from all 167 proteins were successfully

monitored until the end of the study (Figure 4B; Table S2). An

additional post hoc quality control analysis showed a strikingly

high correlation (>95%) for almost all the 6,426 targeted prote-

omics analyses performed (Figure S4). From the measured pep-

tides, 127 peptides from 83 (50%) proteins were significant and

showed similar abundance patterns to the discovery phase

across comparisons I1, T1, I2, and T2, validating them as bio-

markers (Figure 4; Tables S3, S4, and S5). The 83 validated pro-

teins belong to all major biological processes observed as regu-

lated in T1D development in the discovery phase: antigen

presentation, complement and blood clotting, extracellular ma-

trix, inflammatory signaling, and metabolic proteins.

ML models for predicting T1D onset
ML is a powerful approach to identify individual or combinations

of biomarkers that can predict a phenotype. Therefore, we per-

formed ML analysis to identify biomarkers that can predict if

the individual will remain in IA or develop T1D by the age of 6

years prior to seroconversion. We used logistic regression with

a LASSO penalization to build ML models that can predict the

different outcomes. This analysis can identify models based on

panels of peptides that best predict the different outcomes,

and they were tested by cross-validation repeated for 100 boot-

strap iterations. The receiver operating characteristic curves

from this analysis show that both IA and T1D states at the age

of 6 years can be predicted with high accuracy at 6 months prior

to the seroconversion time with average areas under the curves

of 0.871 and 0.918 and bootstrapped 95% confidence intervals
Cell Reports Medicine 4, 101093, July 18, 2023 5



Figure 3. Regulated pathways

The 376 differentially abundant proteins identified from the discovery phase were submitted to function enrichment analysis with DAVID using the

KEGG annotation. The heatmap shows the proteins enriched for each pathway. Asterisks mark those proteins in specific comparisons that were statistically

significant. Comparison I1: time point(s) before seroconversion of the group that remained in autoimmunity by the age of 6 years (IA group) paired against

matched controls. Comparison T1: time point(s) before seroconversion of the group that developed T1D by the age of 6 years (T1D group) paired against matched

controls. Comparisons I2 and T2 have the same group of individuals as I1 and T1, respectively, but after seroconversion. Comparisons I3 and T3 compare IA and

T1D groups before vs. after seroconversion, respectively.

6 Cell Reports Medicine 4, 101093, July 18, 2023
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Figure 4. Validation phase data analysis

(A) Biomarker candidates were selected first based on statistical test with p value correction. Additional candidates were selected for validation based on the

p value, number of samples in which the peptide was detected, spectral count, machine learning, and previous reports in the literature.

(B) Up to 5 peptides for each candidate protein were selected based on their physicochemical properties and probability ranking for a likely successful mea-

surement by targeted proteomics.

(C) Cross-validated proteins across discovery (D) and validation (V) phases. Only significant, validated proteins are represented in the heatmap and are colored

based on their regulation. Time points are represented by months prior (�) or post (+) seroconversion. Comparison I1: time point(s) before seroconversion of the

group that remained in autoimmunity by the age of 6 years (IA group) paired against matched controls (n = 401). Comparison T1: time point(s) before sero-

conversion of the group that developed T1D by the age of 6 years (T1D group) paired against matched controls (n = 94). Comparisons I2 and T2 have the same

group of individuals as I1 and T1, respectively, but after seroconversion. Comparisons I3 and T3 compare IA and T1D groups before vs. after seroconversion,

respectively.
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Figure 5. Prediction of autoimmunity with normoglycemia or T1D onset prior to seroconversion by machine learning analysis

(A) The panels show receiver operating characteristic (ROC) curves of peptide panels that predict normoglycemia (comparison I1) (n = 247) and T1D onset

(comparison T1) (n = 49) at 6 months prior to the seroconversion. The numbers (n) of case-control pairs used at each time point are shown at the top of each ROC

curve. Individual bootstrap curves are shown in gray with the mean curve given in blue.

(B) Heatmaps showing the selected proteins and their frequencies of being kept in the model over the 100 bootstrap iterations for the most important peptide

features used to predict the model. The left two panels contain proteins that were selected in only one comparison, whereas the right panel shows proteins that

were commonly selected. Proteins are named based on UniProt gene names.
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of (0.826, 0.912) and (0.830, 0.942), respectively (Figure 5A). Fig-

ure 5B shows the proteins that correlate with the panel of pep-

tides that were selected by the ML analysis to build the models.

Among the most important proteins, i.e., the ones that appeared

with more frequency across the training models, there were pro-

teins from the complement and coagulation cascades (e.g.,

C4B, C5, C6, C8B, C9, F2 and F5), extracellular matrix (e.g.

MMP2, COL1A1, COL1A2, WVF, and ADAMTS13), and antigen
8 Cell Reports Medicine 4, 101093, July 18, 2023
processing and presentation (HLA-A, HLA-B, and B2M) (Fig-

ure 5B; Table S6), suggesting that they are important processes

in the disease development. A total of 28 out of the 116 selected

peptides were commonly selected across both I1 and T1 com-

parisons, while 81 were selected only in the I1 comparison and

7 only in T1 (Figure 5B; Table S6), showing that both IA and

T1D groups have some overlapping but also distinct signatures.

Overall, the ML analysis showed that IA and T1D states at the



Figure 6. Summary of pathways regulated in

autoimmunity and T1D development

Many components of the complement cascade

were found to be increased pre-seroconversion

(comparisons T1/I1) and decreased post-sero-

conversion (T2/I2). An increase in phago/lysosome

components was observed in comparisons T1/I1/

T2. However, an increase in proteasome and an-

tigen presentation components was only observed

in T1. This process can trigger cellular signaling

along with the stimulation of cytokine/chemokine

receptors, regulating gene expression and cell

metabolism (I1/T2/I2). We also observed a regu-

lation of the extracellular matrix proteins (up in T1/

I1/T2 and down in I2), which can regulate the

interaction with immune cells. Comparison I1: time

point(s) before seroconversion of the group that

remained in autoimmunity by the age of 6 years (IA

group) paired against matched controls. Compar-

ison T1: time point(s) before seroconversion of the

group that developed T1D by the age of 6 years

(T1D group) paired against matched controls.

Comparisons I2 and T2 have the same group of

individuals as I1 and T1, respectively, but after

seroconversion. Comparisons I3 and T3 compare

IA and T1D groups before vs. after seroconversion,

respectively.
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age of 6 years can be predicted even 6 months prior to the onset

of IA.

DISCUSSION

We initially identified 376 differentially abundant proteins among

the varying points of IA with normoglycemia and T1D develop-

ment in a cohort of the TEDDY study. These proteins were over-

represented in processes related to T1D development such as

complement and blood clotting, antigen presentation, extracel-

lular matrix, nutrient digestion and absorption, cellular meta-

bolism, and inflammatory signaling (Figure 6). Importantly, these

processes were also regulated in human islets and cultured b

cells stimulated with pro-inflammatory cytokines to mimic the in-

sulitis process. This suggests that some of these processes also

occur in the pancreas during T1D development. Overall, our

data showed a regulation in the complement and coagulation

cascades. Polymorphism in complement has been associated

with a higher risk of T1D development.19,20 Increased comple-

ment activation and deposition have been shown in pancreata

from individuals with T1D.21 Patients with T1D also have

increased clotting condition, including upregulation in platelet

aggregation and coagulation activity and reduction in fibrino-

lysis.22 Complement can also participate in opsonization of path-

ogens or dead cells, probably b cells, toward phagocytosis

(Figure 6).

The phagocytosis and lysosome components were also

shown to be regulated in our data (Figure 6). This process is

involved in pathogen and dead cell destruction and antigen pre-

sentation. The subsequent processes of proteasome antigen

processing and presentation with HLA were only upregulated

at the pre-seroconversion stage of individuals that developed

T1D (comparison T1, Figure 6), reinforcing the importance of
this process in the disease development. It is possible that higher

proteasome levels result in abnormal antigen presentation and

autoimmunity development. Polymorphism on the antigen pre-

sentation gene HLA is indeed themajor risk factor for developing

T1D.23 The HLA variants can differentially present islet self-anti-

gens and are believed to be involved in autoimmunity develop-

ment.24 During IA, pro-inflammatory cytokines and chemokines

are produced, triggering b cell apoptosis and helping to recruit

leukocytes and leading to insulitis.25 This signaling also leads

to regulation in gene expression and cell metabolism, which is

observed in our data (Figure 6).

Our data show shifts in metabolic proteins even pre-serocon-

version (Figure 6). Changes in metabolite profiles have been

shown to predict development of autoantibodies 6 months

prior to seroconversion.26 In addition, metabolite profiles de-

tected in 3- to 9-month-old children from the TEDDY study are

predictive of their developing T1D by the age of 6 years.27 In

addition, abnormal pro-insulin-to-C-peptide ratio can be de-

tected 12 months prior to the onset of T1D,28 suggesting a

dysfunction in insulin processing that may affect the body meta-

bolism even before causing hyperglycemia. Similarly, bile acid

metabolism is dysregulated prior to seroconversion in T1D

development.29 Furthermore, several components of plasma

lipoproteins were downregulated after seroconversion. Triacyl-

glycerols, which are major components of plasma lipoproteins,

have been shown to be lower in children that developed T1D

compared with children that had IA but who remained normogly-

cemic.30 Lipoprotein subunits, such as Apo CIII, have been

linked to T1D development. Apo CIII has been shown to trigger

b cell apoptosis.31 Overall, changes in metabolism precede the

disease onset and may also be involved in T1D development.

Another process highly regulated in our data was the extracel-

lular matrix (Figure 6). Circulating extracellular matrix proteins
Cell Reports Medicine 4, 101093, July 18, 2023 9
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are good indicators of tissue damage32 and may indicate dam-

age on the pancreatic islets. In addition, during recruitment of

leukocytes, the islet extracellular matrix undergoes major re-

modeling to allow cell infiltration.33 Our data show a different

profile on plasma extracellular proteins between the individuals

with IA that developed T1D or had normoglycemia, possibly

enabling or impeding b cell destruction.34

In clinical diagnosis, T1D is diagnosed by blood glucose levels

or glycated hemoglobin.3 For predictive biomarkers, HLA geno-

type and autoantibodies against islet proteins have been used,

but they lack enough discriminative power due to the heteroge-

neity of the disease.35 Biomarkers based on T cells are currently

being developed but require further validation.36 Proteomics has

been applied to identify T1D biomarkers, but some of these were

focused on disease diagnosis after onset.8,9 In biomarker studies

prior to T1D onset, von Toerne et al.10 performed a proteomics

discovery and validation study on samples from individuals after

seroconversion to identify biomarkers that can diagnose the

onset of IA and T1D development. They identified several circu-

lating biomarkers of IA and found that a protein panel composed

of hepatocyte growth factor activator, complement factor H,

ceruloplasmin, and age can predict progression time to T1D.10

Moulder et al. performed untargeted proteomics analysis in a

longitudinal study from 3months to 12 years of age for 13 individ-

uals that developed T1D vs. age-matched controls and found

that the profile of proteins such as complement proteins and

Apos can predict the onset of T1D.11 Here, we performed a study

to identify and validate biomarkers of different stages of the dis-

ease and the likelihood of developing T1D. Unlike the study by

Moulder et al. that matched case-control pairs based on age,

we make our comparisons in relation to seroconversion. We

identified and validated 83 biomarkers of IA and T1D develop-

ment prior to the onset of the disease. Furthermore, we per-

formed ML analysis and identified panels of proteins that can

predict both the development of persistent autoantibodies with

normoglycemia and T1D even 6 months prior to the appearance

of the autoimmune response. We believe evaluation of these

promising predictive protein panels in other ongoing prospective

studies of development of autoimmunity and T1D in human co-

horts could aide in the development of prognostics and

therapeutics.

Limitations of the study
One limitation of our study is that the validation was not per-

formed in an independent cohort of samples. Validation in inde-

pendent cohorts of samples can eliminate some confounding

factors based on geographical and populational biases. Howev-

er, our cohort includes individuals from 7 different centers in the

US and Europe, which can reduce some of the regional con-

founding factors. Another limitation of our study is that the ML

models were also not validated in an independent cohort of sam-

ples. However, they have gone through 100 bootstrap iterations

of repeated cross-validation for the robustness of the analysis.

The ML analysis also requires the development of a baseline

value for control individuals before being put in practice. There-

fore, these two limitations are among the points that need to be

further evaluated in additional studies of independent cohorts

before implementing our findings in clinical practice. Finally,
10 Cell Reports Medicine 4, 101093, July 18, 2023
baseline model performance based on traditional risk factors,

such as gender or metabolic markers, was either used in pairing

case and control subjects or was not available and thus was

not explicitly evaluated. However, model performance area

under the curve (AUC) values in this study were found to outper-

form previously published baseline metrics.37,38 Despite these

limitations, our results provided biological insights on the molec-

ular pathways regulated in T1D development and identified

biomarker candidates for the disease.
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Biological samples

Human plasma The Environmental Determinants of

Diabetes in the Young (TEDDY) study

https://teddy.epi.usf.edu/

Chemicals, peptides, and recombinant proteins

Custom Synthesized Heavy Isotope-

Labeled Peptides

New England Peptides, now Vivitide N/A

4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES)

Sigma - Aldrich H3375

Acetonitrile, HPLC grade J.T. Baker 9829–03

Acetonitrile anhydrous Sigma - Aldrich 271004

Ammonium hydroxide solution Sigma - Aldrich 338818

Aprotinin Sigma - Aldrich A6103

Buffer A for Multiple Affinity Removal LC

Column

Agilent 5185–5987

Buffer B for Multiple Affinity Removal LC

Column

Agilent 5185–5988

Chloroform Sigma - Aldrich C2432

Dithiothreitol Thermo Scientific 20291

Ethylenediaminetetraacetic acid Sigma - Aldrich E7889

Formic acid Sigma - Aldrich 33015

Iodoacetamide Thermo Scientific 90034

HPLC Grade Water J.T. Baker 4218–03

Hydroxylamine Solution 50% Sigma - Aldrich 467804

Methanol, HPLC grade Fluka 34966

Sequencing grade modified trypsin Promega V5117

Tris (hydroxymethyl)aminomethane

hydrochloride pH 8.0

Sigma - Aldrich T2694

Trifluoroacetic acid Sigma - Aldrich 91707

Urea Sigma - Aldrich U0631

Critical commercial assays

8-plex iTRAQ kit Applied Biosystems 4390811

Deposited data

Discovery phase mass spectrometry data MassIVE MSV000091560

Validation phase mass spectrometry data MassIVE MSV000091562

Software and algorithms

R package (v3.2.3) The R Project for Statistical Computing https://www.r-project.org/

Decon2LS_V2 Pacific Northwest National Laboratory https://github.com/

PNNL-Comp-Mass-Spec

DTA Refinery Pacific Northwest National Laboratory https://github.com/

PNNL-Comp-Mass-Spec

MSGF+ University of California – San Diego https://msgfplus.github.io/

MASIC Pacific Northwest National Laboratory https://github.com/

PNNL-Comp-Mass-Spec

QC-ART Pacific Northwest National Laboratory https://github.com/

PNNL-Comp-Mass-Spec
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DAVID National Institutes of Health https://david.ncifcrf.gov/

Other
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Thomas O.

Metz (thomas.metz@pnnl.gov).

Materials availability
Formaterials availability, please reference the TEDDY access page: https://teddy.epi.usf.edu/research/. There are restrictions on the

availability of samples, and they are subject to approval by the TEDDY Ancillary Studies Committee.

Data availability
For data availability, please reference the TEDDY data summary: https://teddy.epi.usf.edu/research/. The mass spectrometry raw

data files were deposited into MassIVE (https://massive.ucsd.edu/) under accession numbers MSV000091560 (untargeted prote-

omics) and MSV000091562 (targeted proteomics).

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design, sample cohort, batching and randomization
The study was conducted after approval from the Institutional Review Boards of the University of South Florida (USF) and the Pacific

Northwest National Laboratory (PNNL) in accordance with federal regulations. The study analyzed samples at pre- and post-sero-

conversion from individuals that developed T1D (T1D group) or remained in IA (IA group) by the age of 6 years, each paired with

respective control groups. The following comparisons were made: I1: IA group vs. controls pre-seroconversion; T1: T1D

group vs. controls pre-seroconversion; I2: IA group vs. controls post-seroconversion; T2: T1D group vs. controls post-seroconver-

sion; I3: pre-vs. post-seroconversion within the IA group; and T3: pre-vs. post-seroconversion within the T1D group (Figure 1).

TEDDY study participants have higher genetic risk of developing T1D, and to reduce the study to amanageable size, samples were

previously matched based on clinical center, gender, and family history of T1D.4 Samples were collected from September 2004 to

May 2012. Individuals were treated for 30–40 min with topical EMLA anesthetic, and blood was drawn by venipuncture of the ante-

cubital vein in EDTA tubes. Plasma was separated from cells by centrifugation and stored at�70�C at the NIDDK repository until the

start of the proteomics project in September 2014. Seroconversion was determined by screening for autoantibodies against islet

cells (IA-2A), insulin (IAA), glutamic acid decarboxylase (GADA) and zinc transporter 8A (ZnT8A) as previously described.39 T1D

was diagnosed based on blood glucose levels and oral glucose tolerance test following the recommendations of the World Health

Organization and American Diabetes Association.40

In this nested case-control study, TEDDY monitored over 8,000 individuals from 7 centers (Germany, Sweden, and Finland in Eu-

rope; and Denver, Georgia, Florida, and Washington in the USA) from the ages of 0–6 years old. From these, 418 developed IA and

114 progressed to T1D.4 For the proteomics analysis, we selected 401 individuals for the IA group and 94 individuals for the T1D

group, each paired to a matched control. The characteristics of the subset of case-control samples are listed in Table 1.

The proteomics study was designed with a discovery and a validation phase to ensure an in-depth and robust analysis and was

also conducted in a blinded fashion until the conclusion of the validation phase. Sample selection, batching, and randomization were

performed at USF, whereas proteomics measurements were conducted at PNNL. Randomization was performed to assure that the

study endpoints and patient time points were appropriately dispersed across the study and that the nested case-control pairs were

analyzed within the same batch during processing to match the statistical design.
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Discovery phase - Untargeted proteomics analysis
A statistical power analysis was performed to determine the number of case-control pairs needed in each study group, using a similar

plasma proteomics dataset collected in the authors’ laboratory and consisting of 16,928 peptides measured in 12 individuals across

multiple time points. Using the power.t.test function in R package (v3.2.3), it was determined that 23 case-control pairs were required

to reach 80% power to detect a 2-fold difference utilizing a variance estimate associated with the 75-th percentile of all measured

peptides from the proteomics data. This number was doubled to 46 case-control pairs to account formissing data frequently encoun-

tered during untargeted proteomics analysis. This resulted in 2252 plasma samples (considering multiple time points) that were then

combined per donor within pre- or post-seroconversion into 368 pooled samples due to costs and logistics. For a detailed distribu-

tion of the samples used, see Figure S1. In the analysis, fourteen of themost abundant proteins in each sample were depleted using a

Hu-14 4.63 100 mmMARS column (Agilent Technologies, Palo Alto, CA) coupled to a 1200 series HPLC (Agilent) and concentrated

in Amicon centrifugal filters (3-kDa MWCO, Millipore, Burlington, MA). Proteins were digested in 96-well plates,41 and peptides were

labeled with 8-plex iTRAQ reagent (Applied Biosystems, Foster City, CA) following manufacturer recommendations. A pooled refer-

ence sample was created by mixing aliquots of each sample and was used for normalization across different datasets. The multi-

plexed iTRAQ-labeled samples were fractionated by high pH reversed phase chromatography and analyzed on a nanoAquity

UPLC� system (Waters) connected to an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific).15,42 Mass spectra were pro-

cessed using Decon2LS_V2 and DTA Refinery,43,44 with peptides identified using MSGF+45 by searching against the human

SwissProt sequences of theUniprot Knowledgebase. The parameters included: (1) 6 ppmparent ionmass tolerance, (2) partial tryptic

digestion, (3) cysteine carbamidomethylation (+57.0215) and N-terminal/lysine 8-plex iTRAQ (+304.2053) addition as static modifi-

cations, and (4) oxidation (+15.9949 Da) on methionine, cysteine, tyrosine, and tryptophan, dioxidation (+31.9898 Da) on cysteine,

and deamidation/deamination (+0.9840Da) on asparagine, glutamine, and arginine residues as variablemodifications. Identifications

were filtered with MSGF probability scores of %1.0 3 10�9, %7 3 10�11 and %2 3 10�12 at spectral, peptide and protein levels,

respectively, resulting in <1% false-discovery rate. iTRAQ reporter ion intensities were extracted with MASIC,46 and the intensities

of multiple MS/MS spectra from the same peptide were summed together to remove redundancy.

Validation phase - Targeted proteomics analysis
Up to 5 peptides were selected as surrogates for candidate biomarker proteins identified in the discovery phase based on their phys-

ical-chemical properties (between 8 and 20 amino acid residues, derived from trypsin digestion at both termini, and lack of post-

translationally modified amino acid residues or residues that are problematic for chemical synthesis), and a Bayesian network-gener-

ated probabilistic scorewas used to select the peptidesmore likely to be successfully developed into targeted proteomics assays. To

account for possible proteoforms, peptides from the same proteins that were not statistically significant were also included. Samples

were prepared and analyzed in batches of approximately 80 samples in 96-well plates. The case and control pairs were restricted to

the same batch and randomized across the plate. Time points from each individual is shown in Figure S2. Quality control samples

were comprised of 6 pooled plasma samples from TEDDY and 1 commercial pooled plasma sample from BioIVT (Westbury, NY);

these were also randomized within each batch. Whole plasma of 6,426 individual samples were digested in 80 batches in 96-well

plates41 and spiked with custom synthesized peptides (New England Peptides, now Vivitide) containing heavy isotopes in the C-ter-

minal residues. Targeted proteomics analyses were performed using a Nano M-class UPLC (Waters) interfaced to a TSQ Altis triple

quadrupole mass spectrometer (Thermo Fisher Scientific). The linearity of the assays was checked by diluting human plasma into

chicken plasma. Data quality was assessed using the Q4SRM tool.18 Data were analyzed with the Skyline software and were manu-

ally inspected for proper alignment and background threshold.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Statistical quality control of untargeted proteomics data involved removing peptides that were observed in only one sample per group

and outlier identification using a Mahalanobis distance method.47,48 Protein quantification from the peptide-level data was based on

standard and scaled median quantification48,49 and statistics were performed on proteins and proteoforms (different forms of the

same proteins resulting from gene isoforms, processing or post-translational modifications) based on their abundance profiles using

an analysis of variancemodel, while accounting for sample pairing and batch in themodel. The p values were subsequently corrected

with a Benjamini-Hochberg multiple comparison adjustment50 within each comparison to account for the multiple tests being per-

formed. Participant gender and agewere incorporated as potential covariates to account for any effects not removed by pairing. After

p value correction for multiple testing, no significant evidence of either factor was found. Machine learning was also performed to

identify possible validation candidate proteins that did not meet the p value threshold but were predictive of outcome in a multi-

variate model. This was done using R and consisted of data imputation with Random Forest,51 risk association via Probabilistic Con-

ditional Logistic Regression integrated with least absolute shrinkage and selection operator (LASSO) for feature selection

(clogitLasso).52
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Machine learning analysis to identify early biomarker panels predictive of disease onset
Validation phase data was filtered to remove 3 peptides observed in less than 50%of samples for at least one of the three time points

prior to seroconversion. Remaining missing values were imputed with Random Forest51 imputation. A pairing correction53 was

applied to the data to account for the case-control study design. Logistic regression with a LASSO penalization function was fit to

the data with case/control status as the explanatory variable. The machine learning model was fit separately to each time point’s

data using 4-fold cross-validation repeated for 100 bootstrap iterations.

Function-enrichment analysis
Differentially abundant proteins were filtered for function-enrichment analysis using DAVID,54 and only pathways containing KEGG

annotation were used. The biological interpretations were only performed after the targeted proteomics data analysis were

completed to avoid unconscious bias in sample and data analysis.
Cell Reports Medicine 4, 101093, July 18, 2023 e4
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