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SUMMARY
Fast and low-dose reconstructions of medical images are highly desired in clinical routines. We propose a
hybrid deep-learning and iterative reconstruction (hybrid DL-IR) framework and apply it for fast magnetic
resonance imaging (MRI), fast positron emission tomography (PET), and low-dose computed tomography
(CT) image generation tasks. First, in a retrospective MRI study (6,066 cases), we demonstrate its capability
of handling 3- to 10-fold under-sampled MR data, enabling organ-level coverage with only 10- to 100-s scan
time; second, a low-dose CT study (142 cases) shows that our framework can successfully alleviate the noise
and streak artifacts in scans performed with only 10% radiation dose (0.61 mGy); and last, a fast whole-body
PET study (131 cases) allows us to faithfully reconstruct tumor-induced lesions, including small ones
(<4 mm), from 2- to 4-fold-accelerated PET acquisition (30–60 s/bp). This study offers a promising avenue
for accurate and high-quality image reconstruction with broad clinical value.
INTRODUCTION

Medical image reconstruction translates physical data acquired

by the imaging equipment into diagnostic images to visualize

modality-specific tissue properties in the spatial domain. The

translation process is usually performed as the inverse of a for-

ward mapping from spatial-domain tissue map to acquired

data, which are theoretically formulated by respective physics

models. Therefore, the design of reconstruction algorithms and

the quality of reconstructed images are both dependent on the

acquisition schemes and can in turn affect the accuracy and

consistency of the downstream diagnosis.1

In clinical scenarios, magnetic resonance imaging (MRI),

computed tomography (CT), and positron emission tomography

(PET) are the three most widely used non-invasive imaging mo-

dalities for diagnosis. The straightforward MR reconstruction

uses inverse fast Fourier transform (IFFT), while CT and PET re-

constructions apply filtered back projection (FBP) and iterative

reconstruction (IR) to the acquired data, respectively. However,

radiologists further seek fast (e.g., MRI and PET) and low-dose

(e.g., CT) acquisition schemes for improved patient safety, com-
Cell R
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fort, and throughput.2–4 Such acquisition schemes collect

incomplete or unreliable data, making image reconstruction an

ill-posed inverse problem. Therefore, a priori knowledge should

be incorporated in reconstruction to suppress noises and arti-

facts related to suboptimal acquisitions.

IR methods have been extensively studied to tackle ill-posed

reconstruction tasks. In general, IR methods can significantly

improve image quality by simultaneously ensuring data consis-

tency with acquired data and explicitly applying manually

defined constraints to reconstructed images (e.g., sparsity, low

rankness, and smoothness) or acquired data (e.g., theoretical

distribution) for denoising purposes.5,6 Typical IR methods

include compressed-sensing (CS) reconstruction for MRI,7

model-based IR (MBIR) for CT,5,8 and ordered subset expecta-

tion maximization (OSEM) for PET.9,10

Recently, deep-learning (DL)-based data-driven methods are

shown to achieve impressive construction results, even outper-

forming IR methods in suppressing noises and artifacts.11–16

Most DL-based reconstruction methods map acquired data

or straightforwardly reconstructed images (i.e., by IFFT, FBP,

or IR) to their fully sampled (MRI) or denoised (CT/PET)
eports Medicine 4, 101119, July 18, 2023 ª 2023 The Author(s). 1
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Figure 1. Schematics of general hybrid deep-learning and iterative reconstruction (hybrid DL-IR)

The acquired data (left), reconstruction methods (middle), and reconstructed images (right) are shown for fast MRI, low-dose CT, and fast PET, respectively.
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counterparts via convolutional neural network (CNN)17–20

methods including generalized adversarial networks (GANs)

and U-Net.21–26 Instead of denoising with manually designed

constraints, DL-based methods exploit the excellent capability

of neural networks to implicitly learn feature representations of

inputs and outputs and the mapping function to transfer input

features to output features.27,28 However, since the same data-

to-data or image-to-image mapping is applied to all denoising

scenarios, DL-based methods can struggle to accommodate

large variability in the size and appearance of organs and lesions,

leading to over-smoothing and also loss of anatomical details.

In this article, we propose a generalized hybrid DL-IR scheme

to solve ill-conditioned reconstruction problems for fast MRI,

low-dose CT, and fast PET acquisitions (Figure 1). Hybrid DL-IR

serves as a generalized reconstruction scheme that simulta-

neously leverages thecapability ofDL-basedmethods tomitigate

noises and artifacts and the strengths of IR methods to preserve

detailed structures. Themodality-specific knowledge required by

the reconstruction tasks can be flexibly incorporated into this

generalizedDL-IR scheme for specific applications. For example,

(1) for fastMRI,DL-based reconstruction is first performed to alle-

viate noises and aliasing artifacts in reconstructed images, fol-

lowed by a CS algorithm to refine the detailed structures; (2) for

low-doseCT, a 3DDL-based spatial-domain denoiser is incorpo-

rated into the MBIR iterations so that a more effective regulariza-

tion function can be implicitly learned by the 3D DL denoiser; and

(3) for fast PET, both denoising and enhancement networks are

incorporated into the iteration process so as to simultaneously

improve the image contrast and noise performance. We name

the specific applications as artificial intelligence (AI)-assisted

CS (ACS) in MRI, deep IR in CT, and HYPER deep progressive

reconstruction (DPR) in PET. We then evaluate the performance

of the hybrid DL-IR scheme in these applications.
2 Cell Reports Medicine 4, 101119, July 18, 2023
RESULTS

The rational and clinical utility of hybrid DL-IR is described in the

following three applications, i.e., fast MRI, low-dose CT, and fast

PET, respectively. Data are collected from varying scanners of

three centers, termed institutes A, B, and C (please refer to the

STAR Methods for details). The generalizability of the model is

also evaluated in experiments including unseen external valida-

tion in each of the three tasks.

ACS for fast MRI scans
MR data are acquired in the k-space, which is the frequency

domain, and can be connected to the spatial domain via IFFT.

Fast MRI accelerates data acquisition by sampling fewer

k-space frequency components than required by the Nyquist

sampling criterion, leading to increased noises and aliasing arti-

facts in the reconstructed images. A variety of acquisition and

reconstruction schemes have been developed for fast MRI in

the past decades, including half Fourier,29 parallel imaging

(PI),30,31 CS,7,32 and DL-based methods.33–37 These methods

exploit various prior knowledge to either directly infer themissing

k-space data or perform denoising and dealiasing in the recon-

structed images. For example, half Fourier imaging assumes

conjugate symmetry of k-space data about its origin, PI uses

knowledge of coil sensitivity maps to recover and unfold each

aliased component, CS assumes sparsity of reconstructed im-

age in the wavelet domain, and DL hypothesizes that the pat-

terns of noises and aliasing artifacts learned in the training data

can be generalized to the testing data.33–37 With respective

priors, the half Fourier method allows an acceleration factor up

to 23, and PI typically allows 2- to 3-fold-accelerated ac-

quisition, while CS and DL-based reconstruction methods

enable more than 3-fold-accelerated data acquisition. In the
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reconstruction of MR images, DL-based methods outperform

CS in denoising efficacy and also tolerance to data acquired

with a larger acceleration factor, while they suffer from over-

smooth effects, lower fidelity, and limited generalizability to

various MR imaging contrasts and organs of interest.38

Our hybrid DL-IR scheme employs an ACS reconstruction al-

gorithm for fast MRI (Figure 2). ACS first relies on an AI module to

reconstruct an image with a minimal amount of noises and alias-

ing artifacts. The image inferred by the AI module is then used as

a spatial regularizer to guide image reconstruction in a CS mod-

ule (Figure 2A). Since MR images contain a large variety of

contrasts, organs, and image orientations, the design of the

ACS algorithm ensures that the CS module can get a good

spatial constraint from the AI module to reduce noises and alias-

ing artifacts, and the generalizability of the CS module is maxi-

mally exploited to ensure reasonable reconstruction for all

possible imaging settings.

To evaluate the clinical use of ACS, a total of 6,066 cases of

fully sampled k-space data are retrospectively acquired from

three centers using the 3 T whole-body MR scanner uMR780.

Among 6,066 cases of MR data, 5,910 cases from institutes A

and B are randomly divided into the training dataset (4,728

cases, 80%) and the testing dataset (1,182 cases, 20%) (Fig-

ure S1), and the other 156 cases from institute C are serve as

the external validation dataset. We evaluate the ACS and PI

methods using the k-space down-sampled MRI data, which

are obtained with acceleration factors in the range of 23 to 43

to simulate fast MRI scans. The reconstruction performance is

analyzed by quantifying the visibility of errors between the recon-

structed and reference images (i.e., mean squared error [MSE],

normalized MSE [NMSE], and normalized root MSE [NRMSE]),

calculating the signal-to-noise ratio (SNR) and peak SNR

(PSNR) reflecting image fidelity, and assessing the degradation

of structural information (i.e., structural similarity [SSIM] index).39

The training and testing data are collected from 9 organs, with

2–5 pulse sequences applied to each organ to create various im-

age contrasts (Table S1). The reconstruction performance of

ACS is assessed by ablation studies including PI, AI, and PI +

AI, and comparison studies of other two DL frameworks

named model-based reconstruction using deep-learned priors

(MoDL)40 and end-to-end variational networks (E2E-VarNets).41

Here, MoDL combining the power of a physics-derived model-

based framework with data-driven learning is proposed for

general inverse problems.40 The E2E-VarNet is designed for

multi-coil MRI reconstruction (i.e., PI and CS) by estimating the

sensitivity maps within the network and learning fully end to

end.41 The representative reconstructed images of ACS, abla-

tion studies (i.e., PI, AI, and PI + AI), and comparison studies

(i.e., MoDL and E2E-VarNet) in the testing dataset are shown in

Figure 2B, where the brain images reconstructed by ACS have
Figure 2. AI-assisted compressed-sensing (ACS) reconstruction perfo

(A) The schematics of ACS reconstruction framework.

(B) Representative T2w head images reconstructed from fully sampled k-space

using ACS, PI, AI, PI + AI, MoDL, and E2E-VarNet methods.

(C) Six quantitative metrics (i.e., MSE, NMSE, NRMSE, SNR, PSNR, and SSIM) o

E2E-VarNet) under different acceleration factors for testing data.

See also Tables S2 and S3.
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good agreement with the reference images. Aswe can see, PI re-

sults exhibit a certain degree of noises, and E2E-VarNet results

show aliasing artifacts.With an acceleration factor of 33, images

reconstructed by ACS show reduced artifacts and noises and

refine detailed structures compared with those reconstructed

by other methods. As shown in Figure 2C and Tables S2 and

S3, ACS owns statistically lower error-related metrics (i.e.,

MSE, NMSE, and NRMSE) and higher consistency-related met-

rics (i.e., SNR, PSNR, and SSIM) than other methods across

most acceleration factors. Especially in the case of high acceler-

ation factors, ACS shows advantages over PI for all combina-

tions of pulse sequences and organs (Figure S2).

Similar results are also observed in the external validation da-

taset, which is collected from the head with 2 pulse sequences

(i.e., T1-weighted (T1w) fluid attenuated inversion recovery

(FLAIR) and T2-weighted (T2w) FLAIR). The reconstruction per-

formance of ACS and PI is also evaluated on the k-space

down-sampled MRI data with acceleration factors in the range

of 23 to 43. As shown in Figure 3A, images reconstructed by

ACS demonstrate reduced artifacts and noises compared with

those reconstructed by PI under high acceleration factors.

Quantitative NRMSE values of ACS are statistically lower than

those of PI under most acceleration factors, which is consistent

with the visualized results (Figure 3B; Table S4).

In addition, we demonstrate the excellent capability of the

ACS method in reconstructing fast MRI data with varying acqui-

sition protocols by exploring the 100-s-level scan for a static or-

gan (e.g., brain and knee) without compromising the SNR or

inducing artifacts in reconstructed images. The results of the

100-s-level fast MRI study are shown in Figures 4A, 4B, and

S3. Specifically, ACS enables reasonable image reconstruction

from k-space data acquired by transversal T2w fast spin echo

(FSE), transversal T2w FLAIR, transversal T1w FLAIR, and

sagittal T2w FSE in 19.2, 30.4, 55.0, and 16.6 s, respectively,

with the accelerated scanning protocol using subsampled

k-space data (Figure 4A). Therefore, the total scan time for brain

MRI using these four sequences is 121.2 s, which is only 30%–

40% of the time spent when using conventional PI (5–6 min in to-

tal). For knee imaging, similarly, ACS allows reconstruction of

data acquired by proton density-weighted (PDw) FSE, sagittal

PDw FSE, sagittal T1w FSE, and transversal PDw FSE in 30.0,

30.0, 25.2, and 27.0 s, respectively (Figure 4B). The total scan

time of these four sequences is 112.2 s with �60% time saving

compared with that using PI. Meanwhile, ACS reconstruction

of the 100-s-level fast MRI scans is shown in Figure S3 for other

static organs, including the cervical spine, lumbar spine, hip, and

ankle joint. Further, ACS enables high-quality reconstruction

from single breath-hold chest MRI, which can address the prob-

lem of a spatial mismatch from physiological movement, and can

accurately reconstruct small lesions in locomotive organs. As
rmance under different acceleration factors

data from the testing dataset (left) and from 33 down-sampled k-space data

f reconstructed images from six methods (i.e., ACS, PI, AI, PI + AI, MoDL, and



Figure 3. ACS reconstruction performance under different acceleration factors in the external validation dataset

(A) Representative T1w FLAIR and T2w FLAIR head images reconstructed from fully sampled k-space data from the external validation dataset and from down-

sampled k-space data with acceleration factors of 2, 3, and 4 using ACS and PI methods.

(B) NRMSE of ACS- and PI-reconstructed images under different acceleration factors for external validation dataset. Statistical analyses are performed using

paired t tests (n = 78), ***p < 0.001. Significant differences are observed in all acceleration factors.

See also Table S4.
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shown in Figure 4C, a focal lesion is missed in the 3-breath-hold

T2w FSE acquisition (a net acceleration factor of 1.803) recon-

structed by PI but is successfully captured in the same slice in

the single-breath-hold acquisition (a net acceleration factor of

33) reconstructed by ACS. In addition, the liver in the

3-breath-hold images reconstructed by PI is significantly dis-
torted in the slice direction, while the single-breath-hold images

reconstructed by ACS preserve anatomical structures of the liver

(Figure 4D).

In this fast MRI reconstruction study, we demonstrate that

ACS consistently outperforms PI in terms of acquisition time

and image quality. By combining DL’s capability in denoising
Cell Reports Medicine 4, 101119, July 18, 2023 5



Figure 4. ACS reconstruction for 100-s-level MRI scans and single-breath-hold MRI scans

(A and B) Representative images of the head (A) and knee (B) reconstructed by ACS (at a 100-s level) and PI using four pulse sequences.

(C and D) Reconstruction of the chest MR images by ACS with data acquired in a single breath hold and by PI with data acquired in three breath holds at the

transversal (C) and sagittal (D) sections. The red circle in (C) labels a focal lesion, which is missed in the three-breath-hold acquisition reconstructed by PI while

being successfully captured in the single-breath-hold acquisition reconstructed by ACS. The reference in (D) is acquired with a spoiled gradient echo sequence in

a single breath hold. Red circles highlight the focal lesions in the liver.

See also Figure S3.
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and IR’s strengths in fidelity and generalizability in the ACS

framework, we enable both fast MR scans with a higher acceler-

ation factor and superior quality in reconstructed images.

Deep IR for low-dose CT scans
In the reconstruction of low-dose CT images, bothMBIR andDL-

based reconstruction have been extensively studied.5,8,11,17,19,24

MBIR relies on the regularization function to reduce noises and

artifacts in the reconstructed images. Unfortunately, traditional

regularization functions inMBIR need to be determinedmanually

and empirically and may result in blurred, plastic, or cartoonish

images in low-dose CT scans.5 On the other hand, DL-based

reconstruction normally operates on the low-dose CT images re-

constructed by FBP and estimates the normal-dose image.42

However, when ultra-low doses are applied, anatomical struc-

tures are often overwhelmed by mottled noises and noise-

induced streaking artifacts, especially in the shoulder and pelvis,

causing the failure of DL-reconstructed images in meeting diag-

nostic criteria.

To overcome the above problems, we propose deep IR, a

hybrid reconstruction algorithm integrating DL-based recon-

struction and MBIR, to reconstruct high-quality images from

low-dose CT scans (Figure 5). In this algorithm, reconstruction

uses MBIR as the backbone to transform the data acquired

in the projection domain into the images in the spatial

domain. Deep IR innovatively incorporates a 3D DL denoiser
6 Cell Reports Medicine 4, 101119, July 18, 2023
(DenseUNet)43 to replace the traditional regularization function

for improved denoising performance (Figure 5A). We hypothe-

size that such a design would allow deep IR to have superior

reconstruction performance in low-dose CT scans, with reduced

image noise and streak artifacts, increased spatial resolution,

and improved low-contrast detectability (LCD).

To evaluate the clinical value of deep IR for low-dose CT

scans, phantom and clinical experiments are performed. For

the phantom study, dose reduction is measured based on the

model observer LCD evaluation method. Images reconstructed

by FBP and deep IR from low-dose CT scans (0.60–0.75 mGy)

are obtained and compared with those reconstructed by con-

ventional FBP in reference-dose (6.28 mGy) CT scans. The

receiver operator characteristic (ROC) curves are drawn for

different doses and contrast objects (Figure 5B). The ROC

curves show that deep IR with a dose reduction of 88%–90%

can achieve a comparable image quality to the FBP with the

reference dose under varied conditions, demonstrating that

deep IR can effectively improve LCD.

For the clinical low-dose CT study, a total of 142 cases are

collected by CT scanners (uCT 760/780). Among all cases, 98

cases (from institute B) and 44 cases (from institute C) are

used for training and testing, respectively. The reference images

are reconstructed by the non-regularization IR method with a

reference dose, while the low-dose CT images are collected

with lower doses and reconstructed by deep IR and FBP
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seperately. A series of experiments are designed to compare the

reconstruction performance of the FBP and deep IR. Qualitative

comparisons are shown in Figures 5C–5E. Results show that

deep IR allows improved reconstruction at a lower CT dose

with higher resolution and fewer noises and artifacts than the

FBP reconstruction. It should be noted that deep IR can suc-

cessfully reconstruct the chest CT images with only 10% radia-

tion dose (0.61 mGy). Also, reconstructed images of the chest

and abdomen are independently evaluated by two radiologists

(denoted as R1 and R2) (Figure 5F). The mean opinion scores

are graded on a scale of 1–5 points considering the following

three aspects: noise suppression, streaking artifact reduction,

and image structure fidelity. Therefore, higher mean opinion

score can be associated with better diagnostic interpretation.

By applying multiple Mann-Whitney U tests, we notice that the

mean scores of images reconstructed by deep IR are signifi-

cantly higher than those of FBP reconstruction in all three as-

pects. Our results indicate that the images reconstructed by

deep IR may improve diagnostic decisions.

In conclusion, deep IR achieves promising performance in re-

constructing ultra-low-dose CT images with high spatial resolu-

tion, reduced noise and artifacts, and also improved LCD, which

can fulfill the diagnostic requirement.

HYPER DPR for fast PET scans
For PET imaging, shortening acquisition time is one of the key

factors to effectively improve patient comfort and reduce motion

artifacts. However, a shorter acquisition time in PET imaging

usually leads to reduced image quality and amplified noise.

The DL-based reconstruction strategy has attracted significant

attention in image denoising for fast PET scans.44,45 However,

it has been reported that the denoising operation performed

via CNNs may increase the risk of blurring small lesions, espe-

cially in the low SNR images reconstructed from fast PET

scans.17,46–48 Therefore, directly learning of the end-to-end

mapping from fast PET scans reconstructed images to standard

PET scans reconstructed images can be unstable.

To address the limitation of existing DL-based reconstruction

methods, HYPER DPR, a hybrid DL-IR reconstruction strategy

integrating the DL-based image reconstruction algorithm and

the OSEMalgorithm (Figure 6), is presented for fast PET imaging.

DPR uses a chain of CNN blocks, where OSEM reconstruction is

refined by a CNN-based feedback network (FB-Net),49 and then

fused with the CNN outputs according to a weighting parameter

as an adjustable variable. The optimal numbers of blocks, itera-

tions, and subsets were determined via phantom study, as

shown in our previous work.50 Specifically, the OSEM algorithm

defines subsets as 20 and fixes the iteration number at 2. DPR is

implemented with two types of blocks, with the first block using

subsets and iteration numbers of 20 and 2, respectively, and the

second block using subsets and iteration numbers of 5 and 1,
Figure 5. Deep IR reconstruction for low-dose CT scans

(A) The schematics of deep IR reconstruction framework.

(B) The ROC curves of three models, including FBP with reference dose, FBP wi

(C–E) Representative images reconstructed by FBP and deep IR at 8.00 mGy (40

(F) Mean opinion score from two radiologists evaluating the chest and abdomen p

Mann-Whitney U tests with ****p < 0.0001.
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respectively. Only one of the denoising CNNs (CNN-DEs) and

enhancement CNNs (CNN-EHs) is applied within each block,

and they are alternated between different blocks to perform

the tasks of image denoising and image enhancement alter-

nately (Figure 6A). Therefore, in a CNN-DE block, CNN-DE

maps the images reconstructed by OSEM to denoised images.

In the following enhancement block, OSEM gradually recovers

small lesions, while the CNN-EH is used to further enhance

detailed structures in the reconstructed images. The enhanced

images will be sent to the next denoising block, and so on and

so forth, until the reconstruction converges.

To evaluate the clinical utility of the HYPER DPR for fast PET

scans, a total of 131 cases are collected from two hospitals using

different PET scanners. Briefly, 80 PET scans are performed in

institute B using a total-body digital time-of-flight (TOF) PET/

CT scanner (uEXPLORER), serving as the training dataset. The

other 51 PET scans are performed in institute C using uMI 780,

serving as the testing dataset. For the training dataset, all photon

counts acquired from the 900-s scans are used to reconstruct

the reference PET images, in which the CNN-DE is trained to re-

move noises from the input image, with a training target of im-

ages acquired 15 min, and the CNN-EH is trained to map low

convergent images to high convergent images, with a training

target of images with high iterations (>4 iterations). Fast PET

scans are simulated by uniformly and retrospectively sampling

10% of the total counts from the list-mode data. For the testing

dataset, each patient is scanned with a standard OSEM protocol

with 120-s-per-bed position (s/bp). HYPER DPR is applied to

reconstruct images from PET data retrospectively rebinned cor-

responding to acquisition times of 30–120 s/bp. Compared with

images reconstructed by OSEM_120 s/bp, images recon-

structed by DPR from the 40-s/bp acquisition show comparable

contrast and SNR (Figure 6B). Note that although some small le-

sions seem vague and blurry in the images reconstructed by

OSEM (120 s/bp), they become prominent with sharp delineation

in the images reconstructed by DPR (90–120 s/bp). Further, to

quantitatively evaluate the efficacy of reconstructed images in

small-lesion detection, the maximum standardized uptake value

(SUVmax) of
18F-FDG within 78 identified volumes of interest

(VOIs) is measured. The median SUVmax of images recon-

structed by OSEM_120, DPR_120, DPR_90, DPR_60, DPR_40,

and DPR_30 s/bp are 9.42, 11.42, 11.14, 11.17, 11.25, and

10.99, respectively, demonstrating that DPR can statistically

improve small-lesion detectability (Figure 6C; Table S5) in all

acquisition times. The SUVmax decreases with the acquisition

time, with details of statistical analyses shown in Figure S6.

The efficacy of HYPER DPR for small-lesion detection has also

been investigated by a phantom study in our previous work,

which suggested that DPR can enhance SUVmax but not surpass

the limit.50 Also, the liver SNR is calculated to evaluate the

denoising capability of different reconstruction algorithms. The
th a lower dose, and deep IR with a lower dose.

% of a normal dose) (C) and ultra-low doses of 0.67 (D) and 0.61 mGy (E).

arts of the images. Statistical analyses are performed between R1 and R2 using
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SNR values of OSEM_120, DPR_120, DPR_90, DPR_60,

DPR_40, and DPR_30 s/bp are 7.91 ± 1.57, 13.53 ± 2.65,

11.99 ± 2.48, 10.14 ± 2.30, 8.16 ± 1.78, and 6.79 ± 1.65, respec-

tively (Table S3). From Figure 6D, we find that DPR with 60- to

120-s/bp scans significantly improves the SNRs, while there is

no statistically significant difference between DPR with 40-s/

bp scans and OSEMwith a 120-s/bp scan. Therefore, both qual-

itative and quantitative evaluations confirm that DPR can

achieve better or comparable image contrast for small lesions

with 2- to 4-fold scan accelerations.

In conclusion, HYPER DPR is an effective reconstruction tech-

nique for fast PET imaging. It enables a 2- to 4-fold-accelerated

PET scan while preserving SNR in reconstructed images, as well

as details and contrasts of small tumor lesions.

DISCUSSION

Wedemonstrate that the proposed hybrid DL-IR couples DLwith

domain-specific IR and provides a perspective for accurate and

high-quality image reconstruction. We present evidence that the

proposed DL-IR reconstruction strategy is general and flexible

and can be customized and adapted to different specific recon-

struction tasks. (1) In fast MRI, the image is sequentially recon-

structed by DL-based reconstruction and an IR process in which

IR is used to refine the detailed structures of initial reconstructed

images; (2) in low-dose CT, the image is first reconstructed by

the IR process and then DL-based reconstruction, in which DL

is used to reduce noise effect and remedy details of the recon-

structed images; (3) and in fast PET, both denoising and

enhancement networks are incorporated into the iteration pro-

cess so as to simultaneously improve the image contrast and

noise performance.

Prior works indicated that DL-based reconstruction may be

superior to the IR algorithm in terms of reduced noise,

increased spatial resolution, and improved LCD.51–56 For

example, Parakh et al. reported that in a dataset containing

200 abdominal CT images (from 50 patients), sinogram-based

DL image reconstruction showed improved image quality, su-

perior to IR both subjectively and objectively.51 Park et al.

compared the reconstruction performance of two methods in

lower-extremity CT angiography images (from 37 patients),

demonstrating that DL-reconstructed images owned signifi-

cantly higher SNR values and lower blur metrics.52 Meanwhile,

the radiation dose of cardiac CT angiography was significantly

lower with DL-based reconstruction (6.9 ± 3.2 mGy) than with

the IR algorithm (11.5 ± 2.2 mGy).53 In addition, DL-based

reconstruction also showed better performance in contrast-

enhanced CT images of the upper abdomen with a <50% radi-

ation dose (7.1 ± 1.9 mGy).54 It is important to underline the

need for reducing the radiation dose. Indeed, with the
Figure 6. HYPER DPR reconstruction for fast PET scans

(A) Schematics of HYPER DPR.

(B) Representative body images reconstructed by OSEM and DPR with varied a

(C and D) The SUVmax of the identified lesions (C) and SNR in the liver (D) for dif

measures one-way ANOVA followed by Turkey’s multiple comparisons tests (n = 7

Dunnett’s multiple comparisons tests (n = 51). Asterisk represents two-tailed ad

See also Figure S6 and Table S5.
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increasing number of examinations performed, the doses deliv-

ered to patients carry a potential risk of radiation-induced can-

cer, especially in radio-sensitive organs such as breasts,

myocardium, and coronaries.57–59

However, the classical DL-based methods, known as the im-

age-to-image mapping scheme or data-to-data mapping

scheme, may lead to over-smoothing and loss of anatomical de-

tails. Regarding this, our proposed hybrid DL-IR simultaneously

integrates the benefits of the robustness from the DL-based

reconstruction approach to avoid gross failure reconstruction

and the signals’ physical properties from IR to preserve the

anatomical details. Similar hybrid concepts have been proposed

in other papers and have achieved remarkable superiority over

other existing methods in reconstruction performance, mani-

fested in artifact suppression, tissue recovery, and edge preser-

vation.60–64 For example, Hata et al. combined DL-based

denoising and MBIR to reconstruct ultra-low-dose (0.3 ± 0.0

mGy) CT images of the chest (from 41 patients with 252 nodules),

showing that the hybridmethod outperformed a single method in

terms of image quality and Lung-RADS assessment.60 Instead of

directly deploying the regularization term on image space, Hu

et al. proposed a deep IR framework for limited-angle CT, which

combined iterative optimization and DL based on the residual

domain, significantly improving the convergence property and

generalization ability.61 Chen et al. also incorporated the benefits

from the analytical reconstruction method, the IR method, and

deep neural networks into AirNet, which was validated on a CT

atlas of 100 prostate scans, yielding good image quality and

further optimal treatment planning.62 The majority of hybrid

reconstruction strategies were designed for CT images and

rarely for MRI or PET images.60–62 Moreover, existing hybrid

strategies have only been validated on one specific imaging

modality, and their extendibility and generality remain to be as-

sessed. Based on the above challenges, we propose the gener-

alized hybrid DL-IR scheme for multiple imaging modalities that

can flexibly incorporate the modality-specific knowledge to

achieve customized applications. Notably, hybrid DL-IR can be

altered by a series of parameters, such as the IR algorithm, the

DL algorithm, the relative position and organic connection be-

tween two algorithms, DL structure (e.g., CNN layers, loss func-

tion), etc. We evaluate the hybrid DL-IR scheme in three of the

most widely used imagingmodalities in the clinic, and it achieves

high scan speeds (in MRI and PET) and low radiation doses

(in CT) comparable to state-of-the-art methods.65 Hybrid DL-IR

has the potential to benefit numerous challenging tasks. One

such task is abdominal MRI, which is often accompanied by mo-

tion artifacts resulting from involuntary patient movements such

as breathing, muscle contractions, or peristalsis. ACS can

empower this process by enabling fast MRI, thus reducing mo-

tion-associated artifacts.
cquisition times. The locations of small lesions are highlighted by red circles.

ferent methods. Statistical analyses on SUVmax are performed using repeated

8). Statistical analyses on SNR are performed using Friedman tests followed by

justed p value, with *p < 0.05, **p < 0.01, and ***p < 0.001.
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Limitations of the study
Although hybrid DL-IR demonstrates encouraging improvement

in fast and low-dose reconstructions, some issues are still to be

addressed. Firstly, although the clinical value of hybrid DL-IR is

evaluated in a large-scale MRI study, the study populations for

CT and PET are relatively small, with 142 and 51 patients,

respectively. Future studies may include a large clinical trial

with multiple clinical centers to better validate its clinical value.

Secondly, this study only includes limited scanners and imaging

protocols, such as specific magnetic field strength and PET im-

aging tracer. Further work could expand to include a wide range

of scanners and imaging protocols to increase its generaliz-

ability. Thirdly, there is still a challenge in balancing denoising ef-

fects and image details in fast or low-dose imaging scenarios.

For example, there may be a loss of details when the accelera-

tion factor significantly increases in ACS or a loss of small lesions

in DPR. Moving forward, we would continue to explore effective

ways to integrate the IRmethods with the state-of-the-art DL ap-

proaches for better outcomes. Lastly, the existing dual-modality

PET/CT and PET/MR systems could be benefited from the pro-

posed approach, i.e., by integrating the corresponding algo-

rithms in both imaging modalities. Further studies are warranted

to explore the possibilities of combing thesemodalities for better

performance. We anticipate that this generalized reconstruction

scheme can be applied to broad image reconstruction tasks,

such as low-contrast agent imaging. We expect that it can be

truly transformed in the clinic to realize the screening and diag-

nosis of diseases so as to provide reasonable treatment

planning.
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Materials availability
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Data and code availability
Data related to the experiments including MRI, CT, and PET are available publicly: https://doi.org/10.17632/j7khwb3z3r.1.

The custom code for training deep learning and iterative reconstruction models were written in Python with PyTorch. The code is

available publicly: https://github.com/simonsf/Hybrid-DL-IR. Any additional information required to reanalyze the data reported in

this work is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants
All data were collected from three centers, as Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China (Institute A), Zhong-

shan Hospital, Shanghai, China (Institute B), and China-Japan Union Hospital of Jilin University, Changchun, China (Institute C).

For the fast MRI study, a large-scale dataset of 6,066 fully sampled k-space data were retrospectively acquired from three centers.

Among 6,066 cases of MR data, 5,910 cases from Institutes A and B were randomly divided into the training dataset (4,728 cases,

80%) and testing dataset (1,182 cases, 20%) (Figure S1), and the rest 156 cases from Institute C were served as the external vali-

dation dataset. For the low-dose CT study, a total of 142 cases from two centers were included in this study, in which 98 cases
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(from Institute B) and 44 cases (from Institute C) were used for training and testing, respectively. For the fast PET study, a total of 131

cases from two centers were included in this study, and divided into the training dataset (80 cases from Institute B) and the testing

dataset (51 cases).

Ethics statement
This study was approved by the Research Ethics Committees in the China-Japan Union Hospital of Jilin University, Changchun,

China (No. 20201112) and Zhongshan Hospital, Shanghai, China (No. B2020-081R). Informed consent was waived because of

the retrospective nature of the study. The related systems of MRI, CT, and PET have been approved by the Chinese National Medical

Products Administration (NMPA, with certificate numbers of 20213060250, 20163062251, and 20163332251, respectively), and the

United States Food and Drug Administration (FDA, with certificate numbers of K193176, K193073, and K210001, respectively).

METHOD DETAILS

Study design
Three experiments were performed to evaluate the clinical use of Hybrid DL-IR. For each imaging modality, reference images,

k-space down-sampled MRI, low-dose CT, and fast-scanned PET images were acquired from corresponding scanners. DL network

and IR algorithm were connected to serve as the hybrid model and trained on the training dataset. The reconstruction performance

between ACS and PI, between Deep IR and FBP, and between HYPER DPR and OSEM in the testing datasets were compared qual-

itatively and quantitatively. The Hybrid DL-IR model was repeated five times, and the performances were average as the final results.

Image dataset acquisition and pre-processing
(1) Fast MRI: All MRI studies were performed on the 3.0 T whole-body MR scanner - uMR780. A total of 6,066 cases of fully

sampled k-space data were collected from 9 organs (i.e., ankle, breast, cardiac, cervical spine, head, hip, knee, lumbar spine,

pelvis) using 2 to 5 pulse sequences (i.e., T2w FSE, T2w FLAIR, T1w FLAIR, T1w FSE, PDw FSE). Breath-hold chest MR scans

were also performed. Detailed imaging protocols were listed in Table S1. Reference imageswere reconstructed by IFFT of fully

sampled k-space data. Down-sampling of k-space data was performed retrospectively to simulate fast MRI scans with accel-

eration factors of 2.00, 2.25, 2.50, 3.00, 3.25, 3.50, 3.75, and 4.00. Among 6,066 cases of MR data, 4,728 cases (from Institute

A), 1,182 cases (Institute B), and 156 cases (Institue C) were used as the training, testing, and external validation datasets,

respectively. For robust reconstruction and reliable validation, the training and testing data covered all possible organs, pulse

sequences, acceleration factors, and imaging orientations.

(2) Low-doseCT: A total of 142 caseswere collected byCT scanners - uCT 760/780, including non-contrast and contrast scans in

different phases. Among all cases, 98 cases of the training dataset (Institute B) were collected with a normal dose of 20 mGy,

and the testing 44 cases (Institute C) were collected with lower doses between 0.62 mGy and 20.45 mGy. In the training data-

set, reference images were reconstructed by the non-regularization IRmethod due to its improved capability over FBP in sup-

pressing streak artifacts and noises (Figure S4). In addition, low-dose CT data was simulated by adding noise to the 20-mGy

normal-dose data (Figure S5). The noise was modeled considering the Poisson and electronic noise features in the projection

raw data. A wide range of dose levels were simulated to ensure the robustness of the Deep IR algorithm.

(3) Fast PET: A total of 131 cases from two centers with different scannerswere included in this study, and divided into the training

dataset (80 cases from Institute B using uEXPLORER) and the testing dataset (51 cases from Institute C using uMI 780). For the

training dataset, the injected dose of 18F- FDGwas in the range of 3.7–4.4MBq/kg (3.7 MBq/kg for oncology patients), and the

uptake time was about 60 min. Total-body PET imaging was performed in a scan time of 900 s to provide high-quality refer-

ence images with a minimal amount of noise and sharp image contrasts. All photon counts acquired from the 900-s scan were

used to reconstruct the reference PET images. Fast PET scans were simulated by uniformly and retrospectively sampling 10%

of the total counts from the list-mode data. The DL module of the HYPER DPR algorithm was trained on 161,040 slice pairs

collected from these 80 cases, which were further augmented via flipping and rotation.

Image preprocessing were performed in different modalities accordingly. ForMRI images, they were normalized by subtracting the

mean intensity value and dividing by the variance of intensities. For CT images, original images were directly used. For PET images,

each image was globally Z score normalized. For all modalities, image resolution kept unchanged.

Deep learning architecture
(1) ACS: A CNNwas adopted to remove noises and aliasing artifacts from reconstructed images (Figure 2A). The CNN took noisy

and aliased images reconstructed by IFFT of down-sampled k-space data as the input. First, 3 down-sampling operations with

a stride of 2 were performed to expand the receptive field of the network to handle global aliasing artifacts. The network then

encompassedmultiple ‘‘CONV-BN-ReLU’’ blocks. Each block consisted of a 33 3 convolutional layer (CONV), batch normal-

ization (BN), and ReLU activation. Finally, 3 up-sampling operations with a stride of 2 were performed for recovered spatial

resolution in the CNN outputs. A skip connection was applied between input images and CNN outputs. Therefore, the noises

and aliasing artifacts could be modeled by CNN, and then subtracted from the input images via skip connection. A data
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consistency (DC) layer was further added to ensure that the k-space data of the denoised images were consistent with the

acquired k-space data, improving the fidelity of output images.

(2) Deep IR: The 3D DL denoiser had two inputs: the noisy image volume and its associated noise deviation map. In the noisy

image volume, strong denoising was performed by DL denoiser onto voxels with large deviations, while weak denoising

was performed on voxels with small deviations. Therefore, denoised CT images preserving as much detail as possible would

be output by the 3D DL denoiser. A variety of networks could be applied in this denoising task, such as U-Net, Dense-Net,

variational network, etc. In this study, we used 3D DenseUNet to serve as a denoiser.

(3) HYPER DPR: The denoising network (i.e., CNN-DE) and the enhancement network (i.e., CNN-EH) were trained separately. For

CNN-DE, PET images reconstructed from down-sampled counts were used as the input, and PET images with complete

counts were used as the training targets. For CNN-EH, PET images with insufficient iterations were used as input, and PET

images with sufficient iterations were used as the training targets. The weighting parameter for PET fusion was pre-deter-

mined.We used the sameweighting parameter for each block. Surely, it can be individual for each block tomeet the clinician’s

preference on image smoothness/sharpness. Both CNN-DE and CNN-EH were designed based on the FB-Net. The FB-Net

had three branches (Figure 6A) with H1, H2, and H3 denoting their respective outputs. Skip connections were applied between

the input and the intermediate output of each branch (green lines). Each branch of the FB-Net shared weights, which greatly

compressed the network’s size and reduced inference time. The output of the last branch was the final output of the network.

Inmore detail, each branch of the FB-Net consisted of several convolution layers and a feedback (FB) block.49 The FBblock in each

branch had multiple 1 3 1 convolution layers and duplicated modules with paired inverse convolution and convolution layers. The

1 3 1 convolution layer could reduce the number of feature maps and accelerate the inference process of the network. Dense con-

nections were applied among different modules to enrich the expression of high-level features (gray lines). The FB block took the

high-level features Ft� 1
out generated in the (t-1)th branch as an additional input, which served as FB information to guide the extraction

of low-level features Ft
out from Ft

in in the tth-branch and made the learning and expression ability of the network gradually enhanced.

Notably, the optimal number of blocks, iterations, and subsets were determined via phantom study in our previous work.50 For an

HYPER DPR implementation of two blocks, in the first block the subsets were 20 and the iteration number was 2, and in the second

block the subsets were 5 and the iteration number was 1. Only one of the CNN-EH and CNN-DE was applied within each block and

they were alternated between different blocks. Notably, The PET reconstruction was performed with 3D OP-OSEM. And the DPR

network employed a 2.5D architecture, which proved to be superior in accuracy compared to the 2D architecture, and more

cost-effective than the 3D architecture. To be specific, three adjacent slices of the input PET images corresponded to one slice of

the target PET image, utilizing both axial and trans-axial planes to incorporate spatial information in the network.

Training details
(1) ACS: The training objective of the AI module was to minimize the mean squared error (MSE) between the network outputs and

reference MR images. The network training was implemented in the PyTorch DL framework, using an ADAM optimizer with an

initial learning rate of 0.0002, betas of (0.9, 0.999), and a batch size of 1. The learning rate decayed by half every 100 epochs.

The whole slice was input to the ACS, so the patch size was the original size of the slice, which varied with scanning settings.

The regularization parameters of the model were determined via a hyperparameter tuning process that aimed to achieve

optimal performance on the validation dataset while avoiding overfitting on the training dataset. The regularization parameters

were initially set based on prior knowledge or experience with similar models and datasets. If the initial parameters performed

sub-optimally on the validation dataset, Bayesian optimization and grid search were used to further optimize the parameters,

takingmodel complexity and data volume into account. In this study, the network was trained with an NVIDIA Tesla V100GPU.

(2) Deep IR: The network was trained to denoise the images reconstructed by the IR module by minimizing the sum of MSE and

mean absolute error (MAE) between the network outputs and reference CT images. The network training used an ADAM opti-

mizer with a learning rate of 1e-3, weight decay of 1e-5, a batch size of 144, and a patch size of 643 643 64. This network was

trained with 8 3 NVIDIA TITAN RTX GPU.

(3) HYPER DPR: Both CNN-DE and CNN-EH used the same training settings and were trained separately. The training objective

was to minimize MAE between the network outputs and the reference PET images. Network training used an ADAM optimizer

with a cyclical learning rate, a batch size of 16, and a patch size of 2493 2493 3. The minimum and maximum values for the

cyclical learning rate were 1e-5 and 1e-4, respectively. The training was conducted on a computer cluster with 4 3 NVIDIA

Quadro RTX 6000 GPU.

Iterative reconstruction module
(1) ACS: Let us denote the output of de-aliased images by the AI module as xAI, and denote the acquired k-space data as y. The final

image was reconstructed in a CS module by solving the following optimization problem, as shown in Equation 1:

argmin
x

kEx � yk22+l1kVxk1 + l2kx � xAIk1 (Equation 1)
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Here,V denoted the wavelet transformation, and l1; l2 were scalar factors to perform trade-offs among the data consistency term

(i.e., kEx � yk22) and different regularization terms (i.e., kVxk1 and kx � xAIk1). The regularization term kx � xAIk1 was introduced to

incorporate the information obtained by the AImodule into the final reconstructed image. Based on the assumption that the predicted

image xAI was close to the true image x, the subtraction operation x � xAI could be taken as a sparse transform.

(2) Deep IR: Conventional MBIR method could be formulated as the following optimization problem (Equation 2):

argmin
U

kWS$ðAU � YÞk22 + bRðUÞ; (Equation 2)

where Y was the raw acquisition projection data, A was the system matrix, and U was the reconstructed image volume.

kWS$ðAU � YÞk22 was a weighted data-consistency term with the statistical weighting factors WS being inversely proportional to

the statistical noise estimated in the projection domain, and $ representing the element-wise multiplication. Therefore, a lower weight

was assigned to the unreliable noisy projection data yielded by X-ray photons passing objects with high attenuation coefficients. In

addition, RðUÞ was a regularization term to further reduce noises and artifacts in U, and b was a strength factor for regularization.

In Deep IR, Equation 2was split into two sub-problems of data consistency in the projection domain and regularization in the image

domain, as shown in Equation 3: 8>><>>:
Uk+1 = argmin

U

kWS$ðAU � YÞk2 +mkU � Xkk2;

Xk+1 = argmin
X

m

2
kX � Uk+1k2 + bRðXÞ;

(Equation 3)

where the two decoupled items U and X could be solved alternately. Deep IR estimated Xk+1 using the 3D DL denoiser as described

previously. The DL denoiser was trained to remove noise patterns specific to the first sub-problem, and its output Xk+1 was the

denoised image volume and could be served as the initial seed in solving Uk+2. With the application of DL denoiser, Equation 3 there-

fore became Equation 4 as follows:(
Uk+1 = argmin

U

kWS$ðAU � YÞk2;with the initial seed Uð0Þ = Xk ;

Xk+1 = 3D DL DenoisorðUk+1Þ;
(Equation 4)

(3) HYPER DPR:

The maximum likelihood estimate of the unknown image x could be calculated as

bx = arg max
x

�
LðyjxÞ � l

2
kx � zk2

�
(Equation 5)

where LðyjxÞ was the log likelihood function, and z = fðx; qÞ was a CNN representation of an image z with input image x and param-

eters q. The DPR algorithm suggested that the network f could be decomposed intomany sub-networks tomake the network training

easier. Our current implementation employed two sub-networks, that is, f = fDE+fEH, where fDE : x + v/x represented the denoising

network (CNN-DE) which could remove the noise v from the input image, and fEH : xðkÞ/xðk+qÞ represented the enhancement network

(CNN-EH) which mapped from a low convergent image xðkÞ to a high convergent image xðk+qÞ.

Experimental settings and evaluation metrics
(1) FastMRI: First, we compared the overall reconstruction performance of ACS and other methods (i.e., PI, AI, PI + AI, MoDL, and E2E-

VarNet) on the testing data down-sampled according to predefined acceleration factors between 23 and 33. Six metrics were calcu-

lated to quantitatively evaluate the error and similarity between the reference and reconstructed images, including mean squared error

(MSE), normalizedmean squared error (NMSE), normalized rootmean squared error (NRMSE), signal-to-noise ratio (SNR), peak signal-

to-noise ratio (PSNR), and structural similarity (SSIM) index. Theses metrics were defined as follows (Equations 6, 7, 8, 9, 10, and 11):

MSE =

PM
i = 1

PN
j = 1

kIfullðPi;PjÞ � IevaluationðPi;PjÞk2

M3N
; (Equation 6)
NMSE =

PM
i = 1

PN
j = 1

kIfullðPi;PjÞ � IevaluationðPi;PjÞk2

PM
i = 1

PN
j = 1

kIfullðPi;PjÞk2
; (Equation 7)
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NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kIfull � Ievaluationk22

kIfullk22

s
3 100%; (Equation 8)
SNR = 10 log10

0BBB@
PM
i = 1

PN
j = 1

kIfullðPi;PjÞk2

MSE

1CCCA; (Equation 9)
PSNR = 10 log10

�
MAXI

2

MSE

�
; (Equation 10)
SSIMðx; yÞ =

�
2mxmy+c1

��
2sxy+c2

��
mx

2+my
2+c1

��
sx

2+sy
2+c2

� ; (Equation 11)

where Ifull represented reference images reconstructed from fully sampled k-space data, and Ievaluation represented the reconstructed

image by different algorithms (i.e., ACS, PI, AI, PI + AI, MoDL, or E2E-VarNet) from down-sampled k-space data. Both images owned

sizes of M3 N. P was the intensity of the pixels, and ðPi;PjÞ was the position of the pixel in the selected area. MAXI denoted the

maximum value of the image point color. m and s represented mean and variance, respectively. Box-and-whisker plots of six metrics

were used to qualitatively compare the reconstruction performance of ACSwith other methods under each acceleration factor. Simi-

larly, we compared the overall reconstruction performance of ACS and PI on the external validation data down-sampled according to

predefined acceleration factors between 2 3 and 4 3. The mean and standard deviation of NRMSE under each acceleration factor

was plotted.

Next, bydown-sampling the same testingdatasetwith anacceleration factor of 53, weevaluated the feasibility of usingACSorPI to

reliably reconstruct images from multiple fast MRI scans performed at the 100-s level for various static organs (e.g., head, cervical

spine, lumbar spine, hip, knee), as well as from fast chest MR scan acquired within a single breath hold. Note that PI used uniform

k-space under-sampling along the phase encoding direction, and requires additional 24 reference lines in the center k-space to cali-

brate coil sensitivity maps. In contrast, ACS achieved an identical net acceleration factor with a pre-defined pseudo-random under-

sampling pattern in the phase encoding direction. Here,we listed the detailed imaging parameters usedby the head and knee scans in

the 100-s level fastMRI study. Head scans (Figure 4A): T2wFSE (matrix: 3343 384), transversal T2wFLAIR (matrix: 2503 288), trans-

versal T1w FLAIR (matrix: 264 3 304), and sagittal T2w FSE (matrix: 334 3 384). Knee scans (Figure 4B): coronal PDw FSE (matrix:

2593 288), sagittal PDw FSE (matrix: 2593 288), sagittal T1w FSE (matrix: 2883 288), and transversal PDw FSE (matrix: 2593 288).

(2) Low-dose CT: For in vivo validation, a CCT189 MITA CT IQ low contrast phantom (The Phantom Laboratory, Salem, NY), con-

taining four rods with different diameters and contrasts, was used. Following a helical CT protocol developed for the abdominal

scans, the uniform section (only background) and the section containing data rods were repeatedly scanned 10 times with varying

dose levels. For each dose level and contrast object, the corresponding region of interest (ROI) pairs were used as the input to a chan-

nelized Hotelling observer (CHO) with Gabor filters. SNR (i.e., detectability) was then calculated in the output of CHO and used as the

quantitative metric for the LCD comparison between images reconstructed by Deep IR and FBP. Note that FBP used a body sharp

kernel, because it could generate a similar spatial resolution to that achieved by the Deep IR method.

For in vivo validation, Deep IR-based reconstruction and FBP-based reconstruction were compared at different radiation doses,

including 40% of the normal dose (8.00 mGy), 0.67 mGy, and 0.61 mGy. The reconstructed images in the chest and abdomen area

were evaluated by two radiologists. The mean opinion scores were graded on a scale of 1–5 in terms of three aspects, i.e., noise

suppression, streaking artifact reduction, and image structure fidelity. The higher the score, the better the diagnostic interpretation.

(3) Fast PET: PET data acquired in list mode for 120 s/bp were rebinned to 90, 60, 40, and 30 s/bp to simulate fast PET scans. The

HYPER DPR algorithm was applied to the rebinned PET data, and the reconstructed images were compared to those using the stan-

dard OSEM algorithm with a 120 s/bp scan. For all reconstructions, TOF and resolution modeling techniques were used. To ensure

the optimal settings for both OSEM and DPR algorithms, the subsets and the number of iterations of the two algorithms are deter-

mined independently and differently. Specifically, the OSEM algorithm defined subsets as 20 and fixed the iteration number at 2. In

contrast, the DPR implementation involved 2 blocks, with the first block using subsets and iteration number of 20 and 2, respectively,

and the second block using subsets and iteration number of 5 and 1, respectively.
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For each patient, a volume of interest (VOI) with a diameter of 30 ± 3 mm was manually drawn on a homogeneous area of the right

liver lobe, and the liver SNRwere calculated as the ratio of VOI’smean value to its standard deviation.We calculated the SUVmax of 78

selected lesions, to quantitatively compare the efficacy of small lesion detection by DPR and OSEM. The median diameter of lesions

was 15.0 mm.

Implementation details
The modality-specific reconstruction algorithms, ACS, Deep IR, and HYPER DPR, were implemented on United Imaging (Shanghai

United Imaging Healthcare Co., Ltd., Shanghai, China)’s MRI, CT, and PET scanners, respectively. In this study, ACS was integrated

into the 3 T MR whole-body scanner uMR780. Deep IR was packaged into uCT760 and uCT780. HYPER DPR was embedded into

uEXPLORER and uMI 780.

QUANTIFICATION AND STATISTICAL ANALYSIS

For continuous variables that were approximately normally distributed, they were represented as mean ± standard deviation. For

continuous variables with asymmetrical distributions, they were represented as median (25th, 75th percentiles). To quantitatively

compare the reconstruction performance of ACS and other five methods (i.e., PI, AI, PI + AI, MoDL, and E2E-VarNet) in the testing

dataset, six quantitative metrics (i.e., MSE, NMSE, NRMSE, SNR, PSNR, and SSIM index) were calculated. Statistical analyses are

performed using two-way ANOVA followed by Sidak’s multiple comparisons tests. To quantitatively compare the reconstruction

performance of ACS and PI in the external validation dataset, statistical analyses were performed on the NRMSE of the two recon-

structed images using paired t-tests. To quantitatively compare the reconstruction performance of Deep IR and FBP, statistical an-

alyses were performed on the opinion scores of the two reconstructed images usingmultipleMann-WhitneyU tests. To quantitatively

compare the reconstruction performance of HYPER DPR and OSEM, statistical analyses were performed on SUVmax and SNR be-

tween two reconstructed images using the Friedman test, and all p values in this test were corrected by Bonferroni correction. All

statistical analyses were implemented using SPSS (version 26.0), with * indicating p < 0.05, ** indicating p < 0.01, *** indicating

p < 0.001, and **** indicating p < 0.0001.
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