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Abstract 

Background  Grain count is crucial to wheat yield composition and estimating yield parameters. However, traditional 
manual counting methods are time-consuming and labor-intensive. This study developed an advanced deep learning 
technique for the segmentation counting model of wheat grains. This model has been rigorously tested on three dis-
tinct wheat varieties: ‘Bainong 307’, ‘Xinmai 26’, and ‘Jimai 336’, and it has achieved unprecedented predictive counting 
accuracy.

Method  The images of wheat ears were taken with a smartphone at the late stage of wheat grain filling. We used 
image processing technology to preprocess and normalize the images to 480*480 pixels. A CBAM-HRNet wheat grain 
segmentation counting deep learning model based on the Convolutional Block Attention Module (CBAM) was con-
structed by combining deep learning, migration learning, and attention mechanism. Image processing algorithms 
and wheat grain texture features were used to build a grain counting and predictive counting model for wheat grains.

Results  The CBAM-HRNet model using the CBAM was the best for wheat grain segmentation. Its segmentation 
accuracy of 92.04%, the mean Intersection over Union (mIoU) of 85.21%, the category mean pixel accuracy (mPA) 
of 91.16%, and the recall rate of 91.16% demonstrate superior robustness compared to other models such as HRNet, 
PSPNet, DeeplabV3+ , and U-Net. Method I for spike count, which calculates twice the number of grains on one side 
of the spike to determine the total number of grains, demonstrates a coefficient of determination R2 of 0.85, a mean 
absolute error (MAE) of 1.53, and a mean relative error (MRE) of 2.91. In contrast, Method II for spike count involves 
summing the number of grains on both sides to determine the total number of grains, demonstrating a coefficient 
of determination R2 of 0.92, an MAE) of 1.15, and an MRE) of 2.09%.

Conclusions  Image segmentation algorithm of the CBAM-HRNet wheat spike grain is a powerful solution that uses 
the CBAM to segment wheat spike grains and obtain richer semantic information. This model can effectively address 
the challenges of small target image segmentation and under-fitting problems in training. Additionally, the spike 
grain counting model can quickly and accurately predict the grain count of wheat, providing algorithmic support 
for efficient and intelligent wheat yield estimation.
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Introduction
Traditional wheat yield estimation is obtained by manu-
ally investigating the number of spikes per unit area and 
the number of grains per spike and multiplying them 
with the conventional 1000-grain weight before wheat 
harvest. However, this method is time-consuming, inef-
ficient, and prone to human error [1–3]. Image process-
ing, machine learning, and computer vision can perform 
wheat yield estimation quickly and accurately. These 
technologies offer technical support and a solid founda-
tion for obtaining phenotypic information about wheat 
plants [4], which can significantly enhance the timeliness 
and accuracy of wheat yield estimation.

Crop yield estimation is a critical scientific issue, with 
spike grain number being one of the most key param-
eters. Zhao et  al. [5] have made a significant break-
through in this field using a measuring method that 
better explains the correlation between the structural 
image features of rice spikes and the number of grains, 
providing a basis for estimating the number of grains of 
rice spikes. Wang et al. [6] combined phenotypic analy-
sis, image processing, and deep learning to develop an 
intelligent phenotypic analysis algorithm that examined 
the number of grains per spike and various spike grain-
related traits from rice spike images without threshing. 
Du et  al. [7] have demonstrated the feasibility of study-
ing spike grain number through structural features of the 
wheat spikelets, indirectly measuring it through the rela-
tionship between the number of pixels of wheat spikelet 
area and spike grain number. These studies have brought 
us closer to more accurate crop yield estimation.

Image processing and machine learning development 
has provided an important monitoring tool for segment-
ing and recognizing wheat and spike grain counts [8]. 
Although image processing techniques are widely used to 
identify the number of wheat ears and grains, there are 
still efficiency and practical application issues due to the 
extraction of texture, color, and morphological features. 
Du et  al. [7] combined agronomic knowledge to seg-
ment wheat spikelets using fitted parabolas and counted 
the number of wheat spikelets and grains to obtain high 
accuracy of 97%. Fernandez-Gallego et  al. [9] used the 
local maximum peak method to calculate the number 
of wheat spikes on RGB color images of large fields with 
a more than 90% success rate. However, current image 
processing techniques require a large amount of manual 
image feature extraction, which places high demands on 
the environment and technology. Machine learning has 
shown significant advantages in image segmentation 
and recognition. Liu et  al. [10] proposed an algorithm 
for counting wheat ears based on K-means clustering of 
color features, with a recognition accuracy of 94%. Xu 
et  al. [11] automatically extracted the contour features 

of wheat ears based on the K-means clustering algorithm 
and later built a Convolutional Neural Network (CNN) 
model to improve the accuracy of wheat ears recogni-
tion to 98.3%. Nevertheless, traditional image processing 
techniques and machine learning methods still face chal-
lenges, such as long recognition segmentation time, low 
efficiency, and poor complex image recognition segmen-
tation effect [5, 12].

Modern methods of image analysis based on deep 
learning can achieve end-to-end detection of features in 
different domains, scenes, and scales. This method also 
has good feature extraction and generalization capabili-
ties, widely used to identify the number of wheat ears and 
spikelets. Wei et al. [13] constructed a Faster R-CNN net-
work model through the TensorFlow framework and used 
a counting model for migration learning techniques. By 
optimizing wheat seed detection, these authors achieved 
an error rate of less than 3% for the model. Hu et al. [14] 
proposed a generative adversarial network based on an 
attention mechanism to count the number of wheat ears 
and spikelets, achieving 84.9% of the F1 value for iden-
tifying wheat ears and segmenting spikelets. Dandrifosse 
et  al. [15] used wheat images at the filling stage as the 
research object. They combined deep learning methods 
with wheat RGB images to achieve wheat ear counting in 
the field. The average F1 values for wheat ears detection 
and segmentation were 0.93 and 0.86, respectively. Zhao 
et  al. [16] proposed an improved YOLOv5 method for 
accurately detecting wheat ears in UAV images, achiev-
ing 94.1% average accuracy (AP) of wheat ears detection. 
Although deep learning techniques have incomparable 
advantages in extracting wheat phenotypic informa-
tion and achieving higher accuracy in image segmenta-
tion and recognition [17], acquiring images of wheat ears 
grain necessitate professional equipment such as CMOS 
cameras, which can be challenging to operate in complex 
production [18]. Furthermore, dense small targets pose 
challenging tasks for image recognition and segmenta-
tion because the adhesion between targets will likely 
occur, making accuracy improvement challenging [4, 14].

The primary objective of this study is to enhance the 
precision and effectiveness of wheat spikelet identifica-
tion, segmentation, and counting, designing three varie-
ties of field experiments: ‘Bainong 307’, ‘Xinmai 26’, and 
‘Jimai 336’, using mobile terminals to capture images of 
wheat spikelets. This study also constructs a deep learn-
ing segmentation model for wheat spikelet grain count, 
which is further processed by applying image processing 
techniques and combining the segmentation results of 
spike grains with the texture features of wheat spikelets. 
This process builds a spike grain count model that accu-
rately predicts the grain count of wheat spikelets. The 
main goal of this approach is to obtain fast and efficient 
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segmentation results and achieve a precise wheat yield 
estimation.

Materials and methods
Experimental design
The experiment was conducted at the Yuanyang Science 
and Education Park of Henan Agricultural University 
(35°6′46 ʺN, 113°56′51 ʺE). The main wheat varieties 
selected were ‘Bainong 307’, ‘Xinmai 26’, and ‘Jimai 336’. 
A split-zone design was used, with nitrogen application 
as the main zone and varieties as secondary zones. Nitro-
gen fertilizer treatments included N15 (225 kg/hm2) and 
N19 (285  kg/hm2). The trials were randomly arranged 
between varieties and replicated three times, with an area 
of 49.33  m2 per plot. The seeding rate of wheat was the 
best sowing rate proposed locally, i.e., 12.5  kg/acres for 
‘Bainong 307’, 12.5  kg/acres for ‘Xinmai 26’, and 9.5  kg/
acres for ‘Jimai 336’, with a sowing date of 23 October 
2021 and a row spacing of 20 cm. The trial was fertilized 
with urea (46%) for nitrogen fertilizer, Calcium super-
phosphate (12%) for phosphate fertilizer, and Potassium 
chloride (60%) for potash, with a 6:4 ratio of base to 
chase nitrogen fertilizer. The chase fertilizer was applied 
at nodulation. The phosphate and potash fertilizers were 
applied as base fertilizers. Other field management was 
similar to those general high-yielding fields.

Data acquisition
The experiment was performed to sample wheat during 
the filling stage. We used two image acquisition devices: 
HUAWEI Mate 40 Pro (50-megapixel primary camera 
and 20-megapixel secondary camera) and Realme Q3 
with 48-megapixel primary camera and 8-megapixel 
secondary camera. The specific shooting time was con-
ducted from 9:00 a.m. to 4:00 p.m. The experiment used 
two types of image acquisition: off-body sampling in 
the laboratory environment and in  situ sampling in the 
field environment to increase the model’s complexity, 
diversity, and generalization level [4]. Each wheat ear’s 
spikelets and seeds were counted manually after image 
acquisition. To acquire the image, we held the mobile 
device parallel to the wheat ears and adjusted the vertical 
height until the ears were entirely in view, showing a clear 
image of the ears. Refer to Fig. 1 for the original image of 
the ears of wheat obtained according to this method.

We selected 30–40 plants for each wheat variety with 
each nitrogen fertilizer treatment and different shooting 
backgrounds, resulting in 660 original wheat ears images. 
Table 1 shows the wheat ears dataset.

In addition to the data listed in Table 1, five additional 
wheat varieties were selected for image acquisition in 
May 2023 at the Yuanyang Science and Education Park 
of Henan Agricultural University. The five wheat varieties 

selected were ‘Bainong 4199’, ‘Kexing 3302’, ‘Yangmai 15’, 
‘Yunong 904’, and ‘Zhengmai 136’. The image acquisition 
devices we used was HUAWEI Mate 40 Pro and a total of 
50 images were taken to verify the generalization ability 
of the model.

Technical route
Figure  2 depicts the proposed technical route. The first 
crucial step is preprocessing the wheat spikelet images 
and forming a dataset. Then, a deep learning segmenta-
tion network is used to segment the image of wheat spike 
grain, followed by training the prediction model. Subse-
quently, the prediction model is used to test the test set. 
Then, image processing techniques are employed to con-
struct a spike grain count model and obtain accurate pre-
diction and counting of wheat spike grains.

Data processing
Data normalization
Data normalization is a crucial step in preparing images 
for model training, employed to convert all images into a 
uniform size to make the model’s training process more 
efficient. The original wheat images are too large and 
demanding for the equipment. Thus, normalizing the 
original images is crucial to balance the device’s comput-
ing power with the number and quality of images [16]. 
By normalizing the image size in the dataset to 480*480 
before model training, we can reduce the number of 
model operations and the risk of overfitting.

Data enhancement
The number of images can significantly impact the test 
accuracy and results when training a machine learning 

Fig. 1  Original wheat ear image. a images obtained by in situ 
sampling b images obtained by off-body sampling. the distance 
is adjusted to provide a clear image of the whole wheat ear 
while shooting
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model. Insufficient images can decrease test accuracy, 
making data enhancement an essential technique to 
address the issues of insufficient images, using images 
from the original dataset for expansion [14]. Random 
cropping may remove feature information from the 
wheat images and enhance the dataset by rotating the 
images by 90°, 180°, and 270°, flipping them horizontally 
and vertically. Additionally, Gaussian blur was used to 
reduce image noise and detail by constantly resizing the 
Gaussian convolution kernel to find the most suitable 
Gaussian blur process. After comparing images at differ-
ent scale sizes, the size of the Gaussian convolution ker-
nel was set to 5*5. This process is the most effective way 
to enhance the image at different scale sizes.

Dataset construction
This study adopts a supervised learning model, entail-
ing a deep learning model with manually annotated 
data samples to create a network model with specific 

generalization capabilities for computer vision tasks 
such as target classification, target detection, and image 
segmentation [19]. The Labelme image annotation tool 
manually marks and converts two types of segmentation 
objects, wheat spike grain and background, into masked 
images. These images, along with their mask images, 
formed the dataset required for the deep learning seg-
mentation model. The number of images processed was 
evenly distributed for each of the three varieties in the 
dataset. The wheat ears dataset was divided into a train-
ing set and a test set in a ratio of 9:1 [11], with 594 images 
and 66 images in the test set. Finally, the test set was used 
as the validation set with 66 images.

Model construction
Segmenting wheat spike grain is an incredibly challeng-
ing task, as the grains are located close to each other in 
terms of pixel points. This issue makes the images heav-
ily sticky, which calls for high resolution and global 

Table 1  Wheat ear dataset information

Each side of the wheat ears was photographed to expand the dataset

Wheat varieties Nitrogen 
fertilizer 
treatment

Shoot 
background

Shoot data Weather Resolution/
mm

Image size Shoot device Focal 
length/
mm

Number 
of 
images

Bainong 307 N15 Wheatfield 15/05/2022 Sunny 0.26–0.56 3072 4096 HUAWEI Mate 
40 Pro

7 10

N15 Wheatfield 15/05/2022 Sunny 0.35–0.54 3000 4000 Realme Q3 5 10

N15 White paper 08/06/2022 Cloudy 0.26–0.56 3680 5408 HUAWEI Mate 
40 Pro

4 90

N19 Wheatfield 15/05/2022 Sunny 0.26–0.56 3072 4096 HUAWEI Mate 
40 Pro

7 10

N19 Wheatfield 15/05/2022 Sunny 0.35–0.54 3000 4000 Realme Q3 5 10

N19 White paper 08/06/2022 Cloudy 0.26–0.56 3680 5408 HUAWEI Mate 
40 Pro

4 90

Xinmai 26 N15 Wheatfield 15/05/2022 Sunny 0.26–0.56 3072 4096 HUAWEI Mate 
40 Pro

7 10

N15 Wheatfield 15/05/2022 Sunny 0.35–0.54 3000 4000 Realme Q3 5 10

N15 White paper 08/06/2022 Cloudy 0.26–0.56 3680 5408 HUAWEI Mate 
40 Pro

4 90

N19 Wheatfield 15/05/2022 Sunny 0.26–0.56 3072 4096 HUAWEI Mate 
40 Pro

7 10

N19 Wheatfield 15/05/2022 Sunny 0.35–0.54 3000 4000 Realme Q3 5 10

N19 White paper 08/06/2022 Cloudy 0.26–0.56 3680 5408 HUAWEI Mate 
40 Pro

4 90

Jimai 336 N15 Wheatfield 15/05/2022 Sunny 0.26–0.56 3072 4096 HUAWEI Mate 
40 Pro

7 10

N15 Wheatfield 15/05/2022 Sunny 0.35–0.54 3000 4000 Realme Q3 5 10

N15 White paper 08/06/2022 Cloudy 0.26–0.56 3680 5408 HUAWEI Mate 
40 Pro

4 90

N19 Wheatfield 15/05/2022 Sunny 0.26–0.56 3072 4096 HUAWEI Mate 
40 Pro

7 10

N19 Wheatfield 15/05/2022 Sunny 0.35–0.54 3000 4000 Realme Q3 5 10

N19 White paper 08/06/2022 Cloudy 0.26–0.56 3680 5408 HUAWEI Mate 
40 Pro

4 90
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information acquisition ability of deep learning models. 
This study constructed CBAM-HRNet based on CBAM, 
HRNet, PSPNet, DeeplabV3+ segmentation model, and 
U-Net for accurate segmentation and computational 
efficiency.

CBAM‑HRNet
CBAM-HRNet is the ultimate solution for achieving 
strong semantic information and accurate positional 
information by parallelizing multiple resolution branches 
and constant information interaction between branches 
without losing much valid information during constant 
upsampling. After converting the spikelet images in the 
dataset into feature maps, different fusion outputs are 
obtained by the Stage structure, parallel convolutional 
branching, and multi-resolution fusion modules. For the 
semantic segmentation task, the representation branch 
is structured so that low-resolution features are up-
sampled to increase the resolution, stacked, and fused to 
form a spike grain prediction map [20].

The CBAM is incorporated to achieve optimal results 
in the upsampling process of the representation branch. 
CBAM combines channel attention and spatial attention 
mechanisms, proving more efficient than using attention 
mechanisms as it focuses only on channels or space. The 
channel and spatial attention mechanisms process the 
input feature layer. The channel attention mechanism 
performs global average pooling and maximum global 
pooling on the individual feature layers of the input, 
which are then processed using a shared fully connected 
layer. After this, the Sigmoid activation function is used 
to obtain a weight (between 0 and 1) of each channel of 
the input feature layer. Then, this weight is multiplied by 
the original input feature layer to complete the process. 

The spatial attention mechanism takes the maximum and 
average values for the input feature layer on each channel 
of the feature point. Then, the results are stacked, and the 
number of channels is adjusted using a convolution with 
one channel at a time [21].

CBAM-HRNet network architecture is the perfect fit 
for location-sensitive semantic segmentation tasks. Its 
ability to maintain high resolution from start to finish is 
unmatched. The interaction of information from different 
branches can supplement the information loss caused by 
the reduced number of channels. Additionally, the adap-
tive attention to the network offers significant advan-
tages. Figure  3 presents the CBAM-HRNet network 
structure.

PSPNet
PSPNet is an enhanced version of a Fully Convolutional 
Network, using a ResNet network with added dilated 
convolution as the feature extraction network for the 
input wheat image. The extracted features are fed into the 
Pyramid Pooling Module to obtain pyramid features of 
different depths and reduce dimensionality. These pyra-
mid features are then upsampled and merged to produce 
a final spike grain feature map [22]. Figure 4 depicts the 
network structure of PSPNet.

DeeplabV3+ segmentation model
The DeeplabV3+ segmentation model is an encoder–
decoder structure [23] that enables the most accurate 
wheat spikelet images. In the encoder part, the model 
uses Backbone and Atrous Spatial Pyramid Pooling to 
obtain five feature maps and fuse them, utilized as input 
to the decoder [24]. The decoder part involves channel 
downscaling, interpolation upsampling, and convolution 

Fig. 2  Original wheat ear image. the spike grain count model and data processing are implemented through the image processing library 
in python. labelme achieves data annotation and label format conversion
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block to generate a spike grain prediction map with the 
same resolution size as the original map [25]. The net-
work structure of the DeeplabV3+ segmentation model 
is shown in Fig. 5.

U‑Net
U-Net is an exceptional deep learning network with an 
encoder–decoder architecture. The encoder extracts 
spike grain features from the wheat images in the data-
set, using a convolution module and a pooling layer to 
obtain a high-level feature vector of the input image. 
This vector is then input into the decoder [26], which 

Fig. 3  Network structure of wheat grain segmentation based on CBAM-HRNet. the convolutional block attention module is added 
to the upsampling process of the representation branch

Fig. 4  Network structure of wheat grain segmentation based on PSPNet
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increases the feature image resolution through decon-
volution and decodes using a decoding module. This 
softmax layer determines the probability that a pixel in 
the feature map belongs to the spike grain class, which 
determines the class of the pixel accordingly. The final 
result of the spike grain segmentation is generated 
[27]. Figure  6 provides details of the U-Net network 
structure.

Spike grain count model
The wheat grains are generally present in pairs on both 
sides of the rachilla. Two methods are used to count the 
grains based on the geometric and textural characteris-
tics of the wheat ears. Method I involves doubling the 
number of grains on one side of the ears to determine the 
total number of spike grains. Method II involves adding 

Fig. 5  Network structure of wheat grain Segmentation based on DeeplabV3+ model

Fig. 6  Network structure of wheat grain segmentation based on U-Net
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the grains on both sides of the total number of spike 
grains [5, 7, 12].

The distance between the mobile device and the spike-
let was kept essentially the same during image acquisi-
tion, excluding the effect of different shooting distances 
on the wheat spike grains [5, 7]. After the deep learning 
segmentation model has predicted the selected samples 
of wheat ears from each variety, there will be instances 
of adhesion between the individual spike grains requiring 
image processing methods to eliminate the overlap and 
adhesion. The prediction results undergo grayscale pro-
cessing with a color space conversion from RGB to GRAY 
via OpenCV and NumPy [28]. Then, a threshold of 120 
is applied for binarization, with pixels greater than those 
threshold set to 255 (i.e., White) and those less than 
this threshold set to 0 (i.e., Black). The binarized image 
must undergo erosion transformation to eliminate noise 
and calculate the distance between the pixel point in the 
image and the nearest zero pixel point. The outline skel-
eton is obtained after the distance transformation, and 
the binarization effectively removes the overlapping part. 
Next, the dimensioned expression is converted into a 
dimensionless expression using normalization to become 
a scalar, and the grayscale value of the image is obtained 
between 0 and 1.0 after normalization. Subsequently, 
the grayscale image is processed into a binarized image 
through binarization and open operations. The origi-
nal overlapping parts no longer overlap, and the shape 
is drawn according to the boundary points provided for 
contour extraction. The number of contours extracted is 
the number of wheat spike grains on one side [29]. The 
process of the spike grain count model is outlined in 
Fig. 7.

Evaluation indicators
Several indicators are used to evaluate the segmentation 
model’s accuracy: Precision, Recall, Mean Pixel Accuracy 
(mPA), and Mean Intersection over Union (mIoU). The 
evaluation indicators are calculated from the parame-
ters in the confusion matrix. In evaluating model accu-
racy, the confusion matrix is mainly used to compare the 
predicted and true values, which is used to compare the 
position of each true image element with the predicted 
image element [9]. Precision measures the proportion of 

the predicted values that are true. Recall is the propor-
tion of true values that are predicted correctly. Intersec-
tion over Union is a standard metric used to evaluate the 
accuracy of semantic segmentation. However, mPA is the 
proportion of pixels per category that are correctly clas-
sified; mIoU is the average of all categories of IoU. The 
formulas are as follows:

 where TP is the number of positive samples predicted to 
be true by the segmentation model; TN is the number of 
negative samples predicted to be false by the segmenta-
tion model; FP is the number of negative samples pre-
dicted to be true by the segmentation model; FN is the 
number of positive samples predicted to be false by the 
segmentation model; k is the total number of categories; 
Pk is pixel accuracy per category.

The number of grains per sample was counted manu-
ally as the true value. The image segmentation algorithm 
obtained the number of grains per sample, and the spike-
grain prediction model was used as the predicted value. 
To quantify the accuracy of the counting model, we used 
root mean square error (RMSE), mean absolute error 
(MAE), mean relative error (MRE), and coefficient of 
determination (R2) [30] as our metrics. These metrics can 
determine the accuracy of the segmentation and counting 
models when analyzing the number of grains per sample. 
We can improve the models by analyzing these metrics 
and optimizing their performance for better accuracy.

(1)Precision =
TP

TP+ FP
.

(2)Recall =
TP

TP+ FN
.

(3)IoU =
TP

TP+ FP+ FN
.

(4)mPA =
sum(Pk)

k
.

(5)mIoU =
1

k + 1

i= 0
∑

k

TP

TP + FP + FN
.

Fig. 7  Spike grain count model. the model is mainly implemented with OpenCV and NumPy in python and requires the prediction results 
of the deep learning model as input
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where Pi is a relative error for a single sample; xi is the 
true number of grains on the spike; yi is the predicted 
number of grains on the spike; x is the average of the true 
values of the number of grains on the spike; n is the num-
ber of samples per variety.

Performance analysis
For this study, we used a CPU with an Intel(R) Xeon(R) 
Silver 4114 CPU @ 2.20-GHz processor, 64 GB of mem-
ory, and a GPU provided by an NVIDIA Corporation 
GP104G with 16 GB of video memory. We ran all com-
parison algorithms in the same environment, which 
included the Ubuntu operating system and the PyTorch 
1.12 deep learning framework compiled in Python 3.9.12.

Based on our analysis, the network is poorly trained 
when starting from 0, as the random weights impact the 
feature extraction [30]. A freeze-unfreeze mechanism 
was constructed based on transfer learning to address 
this issue. The pretraining weight of the model is shared 
across different datasets for the effectiveness of the fea-
tures extracted. Without pretraining this weight, the 
backbone feature extraction part of the neural network 
may contain random weights leading to a poor network. 
The pretraining weight must be used in most cases. Oth-
erwise, the weight in the backbone part may be too ran-
dom for the feature extraction to be effective, making the 
network training results negative. In contrast, freezing 
up the training can significantly speed up the training 
efficiency and prevent the weight from being corrupted 
[31]. In the freezing phase, the model backbone is frozen; 
the feature extraction network remains unchanged, and 
the occupied video memory becomes small. However, 

(6)pi =

∣

∣xi − yi
∣

∣

xi
× 100%.

(7)R2
= 1−

n
∑

i=1

(

xi − yi
)2

n
∑

i=1

(

xi − yi
)2

.

(8)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

xi − yi
)2
.

(9)MAE =
1

n

n
∑

i=1

∣

∣xi − yi
∣

∣.

(10)MRE =
1

n

n
∑

i=1

pi × 100%.

only the network is fine-tuned to meet the training 
needs of different machine performances. In the unfro-
zen phase, the model backbone is no longer frozen; the 
feature extraction network is altered, The occupied video 
memory becomes larger, and all network parameters are 
changed.

The training parameters for the freeze phase are as 
follows: the current training generation of the model 
(Init_Epoch = 0), the number of iterations of the model 
freeze training (Freeze_Epoch = 50), and the batch size of 
the model freeze training (Freeze_batch_size = 16). The 
training parameters for the unfreezing phase are as fol-
lows: the total number of iterations of the model training 
(UnFreeze_Epoch = 300) and the batch size of the model 
after unfreezing (Unfreeze_batch_size = 8).

Training results of the wheat spike grain segmentation 
model
After thoroughly analyzing the wheat ears training set 
using the CBAM-HRNet, HRNet, PSPNet, DeeplabV3+ 
segmentation model, and U-Net, we compared the mIoU 
and loss values. It is evident from Fig. 8 that all five mod-
els steadily increased the mIoU values during the con-
tinuous iterations, which gradually converge steadily with 
the increase in the number of iterations. The mIoU value 
of the CBAM-HRNet based on the CBAM was stable at 
around 0.85, indicating a superior segmentation effect on 
the wheat ears dataset. Additionally, the loss value of the 
model in the training and validation sets decreased rap-
idly and gradually converged to around 0.021. The net-
work converged quickly, with no sudden increase in the 
error, and the magnitude of the error change was very 
gentle. The difference in error between the two datasets is 
negligible, indicating that the model can find the appro-
priate gradient direction quickly and accurately during 
the gradient calculation, thereby offering stable perfor-
mance and a good learning effect. The trend of loss values 
in the training and validation sets is the same, indicating 
that the model has good generalization ability.

Performance comparison of wheat spike grain 
segmentation models
Different backbone networks, optimizers, and learning 
rates were used following various segmentation mod-
els to measure the effectiveness of the proposed models. 
Table  2 shows the results of our evaluation, using vari-
ous indicators to compare the performance of the model 
training. The values were calculated as the means over 
the ten folds, providing a comprehensive overview of the 
model’s performance.

The results indicate that the CBAM-HRNet model with 
hrnetv2_w32 as the backbone network and Adam as the 
optimizer outperformed the other models in terms of 
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Fig. 8  Performance curves of different models in the training process. The backbone and optimizers for these models are optimal, and the training 
process for these models is shown as examples
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segmentation accuracy, achieving a remarkable mIoU 
of 0.8521. The HRNet model with hrnetv2_w32 as the 
backbone network and Adam as the optimizer came 
second with mIoU = 0.851. The PSPNet model with 
MobileNetv2 as the backbone network and SGD as the 
optimizer had the lowest segmentation accuracy (mIoU 
= 0.7718). The CBAM-HRNet model demonstrates supe-
rior segmentation accuracy in almost all cases, proving 
that the CBAM generates more affluent spatial attention 
that complements the channel attention effectively. The 
overall CBAM model’s overhead is minimal in terms of 
both parameters and computation, as shown in Table 3, 

making CBAM-HRNet achieve better results than 
HRNet with slightly increased parameter and computa-
tional overhead. The five models trained using the Adam 
optimizer outperformed those using the SGD optimizer 
because Adam solved the problem of the SGD opti-
mizer’s slow descent rate and could obtain local optimal 
solutions by combining first-order and second-order 
momentum with adaptive learning rates [9].

Based on the statistical analysis performed in Table 2, 
Paired t-tests were used to determine whether the mIoU 
of CBAM-HRNet and HRNet were significantly different. 
The null hypothesis is rejected if the p-Value < α < 0.5, 

Table 2  Performance comparisons and evaluation of different segmentation models

Different backbone, optimizers, and learning rates were used according to different segmentation models. The evaluation indicators were measured on the test set 
with ten-fold cross-validation (mean ± standard deviation). The best results of each network are shown in bold

Model Backbone Optimizer Learning rate Weight decay Recall Precision Mean 
intersection 
over union

Mean pixel 
accuracy

CABM-HRNet hrnetv2_w32 Adam 0.0005 0 0.9116 ± 0.099 0.9204 ± 0.107 0.8521 ± 0.034 0.9116 ± 0.099
hrnetv2_w18 Adam 0.0005 0 0.9061 ± 0.097 0.9174 ± 0.138 0.8500 ± 0.027 0.9061 ± 0.097

hrnetv2_w32 SGD 0.004 0.0001 0.8953 ± 0.099 0.9122 ± 0.123 0.8360 ± 0.023 0.8953 ± 0.099

hrnetv2_w18 SGD 0.004 0.0001 0.8939 ± 0.100 0.9053 ± 0.168 0.8302 ± 0.029 0.8939 ± 0.100

HRNet hrnetv2_w32 Adam 0.0005 0 0.9100 ± 0.110 0.9189 ± 0.131 0.8510 ± 0.042 0.9100 ± 0.110
hrnetv2_w18 Adam 0.0005 0 0.9097 ± 0.125 0.9176 ± 0.142 0.8505 ± 0.040 0.9097 ± 0.125

hrnetv2_w32 SGD 0.004 0.0001 0.8910 ± 0.126 0.9140 ± 0.130 0.8341 ± 0.043 0.8910 ± 0.126

hrnetv2_w18 SGD 0.004 0.0001 0.8896 ± 0.175 0.9064 ± 0.139 0.8278 ± 0.056 0.8896 ± 0.175

PSPNet MobileNetv2 Adam 0.0005 0 0.8995 ± 0.149 0.8883 ± 0.124 0.8221 ± 0.052 0.8995 ± 0.149

ResNet50 Adam 0.0005 0 0.9018 ± 0.230 0.8939 ± 0.119 0.8278 ± 0.052 0.9018 ± 0.230
MobileNetv2 SGD 0.01 0.0001 0.8566 ± 0.498 0.8554 ± 0.177 0.7718 ± 0.239 0.8566 ± 0.498

ResNet50 SGD 0.01 0.0001 0.8777 ± 0.315 0.8900 ± 0.148 0.8082 ± 0.122 0.8777 ± 0.315

DeeplabV3 +  MobileNetv2 Adam 0.0005 0 0.9101 ± 0.151 0.9118 ± 0.147 0.8468 ± 0.051 0.9101 ± 0.151
Xception Adam 0.0005 0 0.9060 ± 0.135 0.9100 ± 0.143 0.8425 ± 0.038 0.9060 ± 0.135

MobileNetv2 SGD 0.007 0.0001 0.8994 ± 0.265 0.8826 ± 0.148 0.8178 ± 0.064 0.8994 ± 0.265

Xception SGD 0.007 0.0001 0.8945 ± 0.265 0.8843 ± 0.109 0.8158 ± 0.055 0.8945 ± 0.265

U-Net ResNet50 Adam 0.0001 0 0.9055 ± 0.103 0.9172 ± 0.145 0.8473 ± 0.035 0.9055 ± 0.103

VGG Adam 0.0001 0 0.9045 ± 0.044 0.9198 ± 0.162 0.8484 ± 0.014 0.9045 ± 0.044
ResNet50 SGD 0.01 0.0001 0.8892 ± 0.303 0.8944 ± 0.142 0.8192 ± 0.084 0.8892 ± 0.303

VGG SGD 0.01 0.0001 0.8948 ± 0.084 0.9057 ± 0.137 0.8312 ± 0.020 0.8948 ± 0.084

Table 3  The five networks that achieved the best results were compared regarding parameters and computational time over ten-fold 
cross-validation (mean ± standard deviation)

CBAM has a lower overhead and computational load

Model Backbone Optimizer Number of parameters/
million

Training time (s/epoch) Segmentation 
time (ms/image)

CABM-HRNet hrnetv2_w32 Adam 30.598 90.75 ± 0.825 12.75 ± 0.093

HRNet hrnetv2_w32 Adam 29.547 91.02 ± 0.559 12.65 ± 0.052

PSPNet ResNet50 Adam 2.377 108.56 ± 0.658 9.98 ± 0.076

DeeplabV3 +  MobileNetv2 Adam 5.818 89.29 ± 0.612 8.62 ± 0.105

U-Net VGG Adam 24.892 138.11 ± 1.744 9.59 ± 0.070
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indicating that the differences in the model results are so 
convincing at the 95% confidence level that they can be 
considered significant. The t-test on the mIou of CBAM-
HRNet and HRNet yields the p-Value of 0.0497, indicat-
ing that the null hypothesis is rejected and the mIou is 
significantly different. Therefore, we can conclude that 
the improvement in CBAM-HRNet accuracy is not due 
to network chance but improve the segmentation accu-
racy of the model.

Comparison of wheat spike grain segmentation effects
Figure  9 shows the segmentation results, which com-
pare and analyze the segmentation ability of the CBAM-
HRNet based on CBAM, HRNet, U-Net, PSPNet, and 
DeeplabV3+ segmentation model based on the wheat 
spikelet test set. The results indicate that the segmenta-
tion effect of PSPNet and DeeplabV3+ models is unsatis-
factory. Although they can distinguish between the wheat 
spike grains and the background, they are still stuck 
together. Divining spike grains and the pixel point values 
is challenging based on similarities in their grayscale fea-
tures. The difference in grayscale value between the back-
ground and the wheat spikelets is quite significant, with 
the background being much darker than the wheat spike-
lets. Thus, it is easy to distinguish and separate the two 

based on this background [28, 29]. In contrast, the U-Net 
model segmentation is better but loses some details in 
complex environments. However, the CBAM-HRNet 
based on CBAM with hrnetv2_w32 as the backbone net-
work and Adam as the optimizer is better for segmenting 
wheat ear images. Moreover, it is less susceptible to other 
noise, can accurately segment the spike grains, and can 
be used to calculate the number of spike grains.

Gradient-weighted class activation mapping (Grad-
CAM) was applied to CBAM-HRNet and HRNet using 
images from the wheat ears test set to highlight impor-
tant regions and to make the role of CBAM in feature 
enhancement and performance improvement more 
apparent. Grad-CAM is a gradient-based visualization 
method that calculates the importance of spatial loca-
tions in a convolutional layer relative to a unique class 
[32]. We investigate how CBAM can help the network 
enhance discrimination by highlighting regions the net-
work considers important for predicting classes. The vis-
ualization results of CBAM-HRNet were compared with 
those of HRNet. The visualization results are shown in 
Fig. 10.

As shown in Fig.  10, CBAM-HRNet outperforms 
HRNet in accurately segmenting the wheat grain. CBAM 
helps HRNet extract more relevant information from 

Fig. 9  The segmentation effect of the different models on the test dataset. The backbone and optimizers for these models are optimal, 
and CBAM-HRNet has the best segmentation effect among them
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the wheat grain region and assists in aggregating its fea-
tures. The CBAM feature refinement process enables 
the network to utilize the given features efficiently and 
rectify their predictions. Therefore, CBAM-HRNet is an 
efficient deep learning model for better segmentation of 
wheat grains [33].

Accuracy analysis and evaluation of wheat grain counts
We selected 30 sample images of each wheat variety 
and segmented the spike grains, counted by the CBAM-
HRNet based on CBAM and the image processing algo-
rithm. Then, we calculated the number of individual 
wheat spikes grain using two methods obtained from the 
agronomic knowledge and compared results with manual 
counting (Fig.  11). The analysis of the counting results 
and the evaluation of the counting accuracy of wheat 

Fig. 10  Grad-CAM visualization results highlight the important 
regions of the training model predicted. We compared 
the visualization results of CBAM-HRNet and HRNet. The Grad-CAM 
visualization was calculated on the final convolutional output. 
Correctly predicted categories are shown in red and incorrectly 
predicted in blue. CBAM supports the network in correcting 
the predictions and improving the effect of target segmentation

Fig. 11  Analysis of counting results of the spike grain count model. Method I is two times the number of grains on one side of the ears; Method II 
is the sum of the grains on both sides

Table 4  Evaluation of counting accuracy of wheat spike grain

The counting accuracy of Method II is higher than Method

Wheat varieties Nitrogen fertilizer 
treatment

Counting accuracy of method I Counting accuracy of method II

Mean 
absolute 
error

Mean relative 
error/%

RMSE R2 Mean 
absolute 
error

Mean relative 
error/%

RMSE R2

Bainong 307 N15 1.42 2.52 1.66 0.85 0.80 1.35 1.18 0.95

N19 1.25 2.36 1.48 0.88 1.15 1.70 1.23 0.94

Xinmai 26 N15 1.75 3.25 2.16 0.84 1.20 2.17 1.26 0.92

N19 1.20 2.29 1.55 0.87 1.10 2.16 1.32 0.93

Jimai 336 N15 1.80 3.59 2.19 0.81 1.40 2.88 1.73 0.89

N19 1.75 3.47 2.31 0.82 1.23 2.26 1.74 0.91
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spike grains (Table 4) were conducted for the spike grain 
count model. From Fig.  11 and Table  4, Method I (two 
times the number of grains on one side of the spike as the 
total number of grains) was used to count the grains of 
the three varieties of wheat spike images with an RMSE 
of 1.89, an MAE of 1.53, an MRE of 2.91%, and an R2 of 
0.85. Method II (the sum of the number of grains on both 
sides of the spike as the total number of grains) was used 
with an RMSE of 1.41, an MAE of 1.15, an MRE of 2.09%, 
and an R2 of 0.92. Our results show that the method is 
more accurate than the traditional image processing 
algorithm in counting wheat spike grains, with lower 
MAE and MRE and a better fit between the predicted 
and true values. The results obtained for the same wheat 
varieties using the same method under different nitrogen 
fertilizer treatments do not differ significantly, indicat-
ing that different nitrogen fertilizer treatments have a 
small effect on the counting results. Therefore, by apply-
ing this method to different varieties of wheat spikes, the 
accuracy of counting the number of spike grains can be 
greatly improved, and the automatic counting of spike 
grains of a single wheat plant with higher accuracy can be 
achieved [34].

Repeatability across different varieties
The reproducibility and performance of the two count-
ing methods were further assessed by using 50 images 
of five wheat varieties taken in May 2023 at the Yuan-
yang Science and Education Park of Henan Agricultural 
University. As before, manual counts were used as the 
validation data. The statistical summary results of the 
two counting methods are given in Table 5.

The results show a high level of agreement between 
the 10 varieties (Fig.  12). While maintaining simi-
lar correlations, R2 decreased for both methods and 
the mean absolute error increased for both methods 
(Table  5). The R2 for these five varieties using both 
methods of counting was close to the previous three 
varieties, with Zhengmai 136 performing best (R2 = 

0.86, RMSE = 2.14, MAE = 1.60, Table 5) and Yangmai 
15 performing worst (R2 = 0.81, RMSE = 4.56, MAE 
= 3.60, Table 5) when counting using Method I; Yang-
mai 15 performed best (R2 = 0.92, RMSE = 2.02, MAE 
= 1.90, Table  5) and Zhengmai 136 performed worst 
(R2 = 0.87, RMSE = 2.88, MAE = 1.90, Table 5) when 
counted using Method II. This indicates that the geno-
types of the different varieties had less influence on the 
count results. These results suggest that more genotype 
images are needed to facilitate model training and to 
improve the accuracy of the segmentation model for 
achieving higher counting accuracy.

Discussion
The results showed that the CBAM-HRNet based on 
CBAM and image processing algorithm produced the 
wheat spike grain counts consistent with the manual 
counting results (Fig. 11 and Table 4). Alkhudaydi et  al. 
[35] showed that the deep learning segmentation model 
demonstrated excellent performance during the filling 
stage, indicating that high-quality images could be cap-
tured at the late filling stage of wheat grains.

However, different varieties had a small effect on the 
segmentation and counting results (Fig. 12 and Table 5). 
Even though a small sample size of training data for the 
model was collected on May 15 and June 08 in 2022, the 
model still achieved good recognition results for images 
captured on other dates [5]. Capturing images using a 
mobile device parallel at a suitable height in a clear and 
cloudy environment is the most practical and convenient 
option, as it allows a clear view of the phenotypic wheat 
ear phenotypic details. Compared to CMOS industrial 
cameras [7] and UAVs for image acquisition, mobile 
devices are a more practical, convenient, and applicable 
option.

Zhao et al. [5] were the first to determine the correla-
tion between the structural image features of rice spike-
lets and the number of grains. Du et  al. [7] replicated 
this approach to wheat research and demonstrated the 

Table 5  Relationships between counting with methods I and II and manual counting of 5 varieties

Wheat varieties Counting accuracy of method I Counting accuracy of method II

Mean absolute 
error

Mean relative 
error/%

RMSE R2 Mean absolute 
error

Mean relative 
error/%

RMSE R2

Bainong 4199 2.90 2.78 3.27 0.83 2.10 2.56 2.51 0.90

Kexing 3302 1.60 2.41 2.14 0.85 1.40 2.32 1.67 0.91

Yangmai 15 3.60 3.04 4.56 0.81 1.90 2.56 2.02 0.92

Yunong 904 4.10 3.28 4.44 0.82 2.60 2.81 3.52 0.89

Zhengmai 136 1.60 2.37 2.14 0.86 1.90 2.47 2.88 0.87

All cultivars 3.74 4.23 3.74 0.81 1.98 2.75 2.60 0.91
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feasibility of indirectly obtaining the number of spike-
let grains through the number of spikelet area pixels. 
Compared with the indirect method, the direct count-
ing of wheat spike grains eliminates indirect errors and 
improves counting efficiency and accuracy. The spike 
grain count model uses the results predicted by the deep 
learning segmentation model as input and counts the 
spike grains directly through a series of image process-
ing algorithms. This approach allows faster and more 
accurate counting of wheat grains than using a processed 
RGB image as input.

The proposed CBAM-HRNet based on CBAM out-
performed other segmentation models such as HRNet, 
PSPNet, DeeplabV3+, and U-Net (mIoU = 85.21%, 
Table 2) in segmenting wheat spike grains during the fill-
ing period. With a slight increase in parameters and com-
putation, CBAM-HRNet reduced the training time and 
could predict a wheat image at around 12.75 ms (Table 3), 
achieving better prediction results. The OpenCV image 
processing algorithm was also used to segment the pre-
dicted image for counting wheat spike grains. Compared 
with traditional image processing algorithms [12], this 
method dramatically improves the accuracy of the spike 
grains recognition and enables the automatic counting of 
the grains of a single wheat ear with higher accuracy [36].

This research has contributed to developing a low-cost, 
rapid, easy-to-implement system for counting wheat 
spike grains. Current research has mainly used measures 
such as fixing the shooting height [37] or placing refer-
ences as ground standards [38], which reduces the meth-
od’s utility. Our future research will investigate using 
UAVs for low-altitude image acquisition for wheat spike 
grain counting.

Conclusion
This study proposes a CBAM-HRNet to accurately count 
wheat spike grain numbers, incorporating CBAM com-
bined and an image processing algorithm. The main con-
clusions are as follows:

1.	 A CBAM was added to the original HRNet to 
increase the efficiency of feature extraction and pre-
vent the weights from being too random. The goal is 
to address the problems of complex semantic infor-
mation of wheat ears and the severe phenomenon 
of sticking and covering between spike grains. After 
comparing various models, CBAM-HRNet took rela-
tively less time to train under slightly more param-
eters, improving training efficiency and slightly 
increasing prediction time but achieving better pre-
diction results. The CBAM-HRNet based on CBAM 
proved more robust than other network models in 
predicting better results.

2.	 Our study implemented the CBAM-HRNet to train, 
validate, and test images of the wheat ear dataset. 
We evaluated our segmentation accuracy using met-
rics like mIoU and achieved significant results. Our 
model outperformed other segmentation models, 
such as HRNet, PSPNet, DeeplabV3+, and U-Net, 
highlighting its superior generalization ability. Our 
segmentation accuracy of wheat spike grain of 
92.04%, the mIoU value of 85.21%, the mPA value 
of 91.16%, and the recall of 91.16% demonstrate our 
model’s exceptional performance.

3.	 The use of an image processing algorithm to count 
the grains of wheat spikes was thoroughly investi-
gated in this study. Two methods of calculating the 
total number of wheat spike grains are identified 
based on agronomic knowledge. By calculating the fit 
and error and comparing the manual count and the 

Fig.12  Analysis of counting results of for 5 different varieties of images using two different methods
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predicted value in the traditional image processing 
algorithm, Method I (the total number of grains is 
twice the number of grains on one side of the spike) 
and Method II (the sum of the number of grains on 
both sides of the spike is the total number of grains) 
can improve the recognition accuracy of the num-
ber of spike grains and realize the automatic count-
ing of the grains of a single wheat spike with higher 
accuracy. Method I is more convenient because it 
only requires one side of the spike image to achieve 
high accuracy. Contrarily, Method II is more complex 
because it requires a complete image of both sides of 
the spike, but its spike count is more accurate than 
that of Method I. Nevertheless, the accuracy of both 
methods is virtually unaffected by different nitrogen 
fertilizer treatments.

4.	 Our model can be used to estimate the number 
of wheat spike grains and improve the efficiency of 
wheat yield estimation. This model can revolutionize 
wheat yield estimation and provide agricultural work-
ers with a fast, automated, high-throughput counting 
system for the wheat spike grain. The method applies 
to the division and counting of wheat spike grains, 
which can be applied to the division and counting of 
other plants. Our future work is to reduce the cost of 
image acquisition and improve the counting accuracy 
and application of the method.
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