Table 2.
Model | Backbone | Optimizer | Learning rate | Weight decay | Recall | Precision | Mean intersection over union | Mean pixel accuracy |
---|---|---|---|---|---|---|---|---|
CABM-HRNet | hrnetv2_w32 | Adam | 0.0005 | 0 | 0.9116 ± 0.099 | 0.9204 ± 0.107 | 0.8521 ± 0.034 | 0.9116 ± 0.099 |
hrnetv2_w18 | Adam | 0.0005 | 0 | 0.9061 ± 0.097 | 0.9174 ± 0.138 | 0.8500 ± 0.027 | 0.9061 ± 0.097 | |
hrnetv2_w32 | SGD | 0.004 | 0.0001 | 0.8953 ± 0.099 | 0.9122 ± 0.123 | 0.8360 ± 0.023 | 0.8953 ± 0.099 | |
hrnetv2_w18 | SGD | 0.004 | 0.0001 | 0.8939 ± 0.100 | 0.9053 ± 0.168 | 0.8302 ± 0.029 | 0.8939 ± 0.100 | |
HRNet | hrnetv2_w32 | Adam | 0.0005 | 0 | 0.9100 ± 0.110 | 0.9189 ± 0.131 | 0.8510 ± 0.042 | 0.9100 ± 0.110 |
hrnetv2_w18 | Adam | 0.0005 | 0 | 0.9097 ± 0.125 | 0.9176 ± 0.142 | 0.8505 ± 0.040 | 0.9097 ± 0.125 | |
hrnetv2_w32 | SGD | 0.004 | 0.0001 | 0.8910 ± 0.126 | 0.9140 ± 0.130 | 0.8341 ± 0.043 | 0.8910 ± 0.126 | |
hrnetv2_w18 | SGD | 0.004 | 0.0001 | 0.8896 ± 0.175 | 0.9064 ± 0.139 | 0.8278 ± 0.056 | 0.8896 ± 0.175 | |
PSPNet | MobileNetv2 | Adam | 0.0005 | 0 | 0.8995 ± 0.149 | 0.8883 ± 0.124 | 0.8221 ± 0.052 | 0.8995 ± 0.149 |
ResNet50 | Adam | 0.0005 | 0 | 0.9018 ± 0.230 | 0.8939 ± 0.119 | 0.8278 ± 0.052 | 0.9018 ± 0.230 | |
MobileNetv2 | SGD | 0.01 | 0.0001 | 0.8566 ± 0.498 | 0.8554 ± 0.177 | 0.7718 ± 0.239 | 0.8566 ± 0.498 | |
ResNet50 | SGD | 0.01 | 0.0001 | 0.8777 ± 0.315 | 0.8900 ± 0.148 | 0.8082 ± 0.122 | 0.8777 ± 0.315 | |
DeeplabV3 + | MobileNetv2 | Adam | 0.0005 | 0 | 0.9101 ± 0.151 | 0.9118 ± 0.147 | 0.8468 ± 0.051 | 0.9101 ± 0.151 |
Xception | Adam | 0.0005 | 0 | 0.9060 ± 0.135 | 0.9100 ± 0.143 | 0.8425 ± 0.038 | 0.9060 ± 0.135 | |
MobileNetv2 | SGD | 0.007 | 0.0001 | 0.8994 ± 0.265 | 0.8826 ± 0.148 | 0.8178 ± 0.064 | 0.8994 ± 0.265 | |
Xception | SGD | 0.007 | 0.0001 | 0.8945 ± 0.265 | 0.8843 ± 0.109 | 0.8158 ± 0.055 | 0.8945 ± 0.265 | |
U-Net | ResNet50 | Adam | 0.0001 | 0 | 0.9055 ± 0.103 | 0.9172 ± 0.145 | 0.8473 ± 0.035 | 0.9055 ± 0.103 |
VGG | Adam | 0.0001 | 0 | 0.9045 ± 0.044 | 0.9198 ± 0.162 | 0.8484 ± 0.014 | 0.9045 ± 0.044 | |
ResNet50 | SGD | 0.01 | 0.0001 | 0.8892 ± 0.303 | 0.8944 ± 0.142 | 0.8192 ± 0.084 | 0.8892 ± 0.303 | |
VGG | SGD | 0.01 | 0.0001 | 0.8948 ± 0.084 | 0.9057 ± 0.137 | 0.8312 ± 0.020 | 0.8948 ± 0.084 |
Different backbone, optimizers, and learning rates were used according to different segmentation models. The evaluation indicators were measured on the test set with ten-fold cross-validation (mean ± standard deviation). The best results of each network are shown in bold