Skip to main content
. 2023 Aug 1;19:77. doi: 10.1186/s13007-023-01062-6

Table 2.

Performance comparisons and evaluation of different segmentation models

Model Backbone Optimizer Learning rate Weight decay Recall Precision Mean intersection over union Mean pixel accuracy
CABM-HRNet hrnetv2_w32 Adam 0.0005 0 0.9116 ± 0.099 0.9204 ± 0.107 0.8521 ± 0.034 0.9116 ± 0.099
hrnetv2_w18 Adam 0.0005 0 0.9061 ± 0.097 0.9174 ± 0.138 0.8500 ± 0.027 0.9061 ± 0.097
hrnetv2_w32 SGD 0.004 0.0001 0.8953 ± 0.099 0.9122 ± 0.123 0.8360 ± 0.023 0.8953 ± 0.099
hrnetv2_w18 SGD 0.004 0.0001 0.8939 ± 0.100 0.9053 ± 0.168 0.8302 ± 0.029 0.8939 ± 0.100
HRNet hrnetv2_w32 Adam 0.0005 0 0.9100 ± 0.110 0.9189 ± 0.131 0.8510 ± 0.042 0.9100 ± 0.110
hrnetv2_w18 Adam 0.0005 0 0.9097 ± 0.125 0.9176 ± 0.142 0.8505 ± 0.040 0.9097 ± 0.125
hrnetv2_w32 SGD 0.004 0.0001 0.8910 ± 0.126 0.9140 ± 0.130 0.8341 ± 0.043 0.8910 ± 0.126
hrnetv2_w18 SGD 0.004 0.0001 0.8896 ± 0.175 0.9064 ± 0.139 0.8278 ± 0.056 0.8896 ± 0.175
PSPNet MobileNetv2 Adam 0.0005 0 0.8995 ± 0.149 0.8883 ± 0.124 0.8221 ± 0.052 0.8995 ± 0.149
ResNet50 Adam 0.0005 0 0.9018 ± 0.230 0.8939 ± 0.119 0.8278 ± 0.052 0.9018 ± 0.230
MobileNetv2 SGD 0.01 0.0001 0.8566 ± 0.498 0.8554 ± 0.177 0.7718 ± 0.239 0.8566 ± 0.498
ResNet50 SGD 0.01 0.0001 0.8777 ± 0.315 0.8900 ± 0.148 0.8082 ± 0.122 0.8777 ± 0.315
DeeplabV3 +  MobileNetv2 Adam 0.0005 0 0.9101 ± 0.151 0.9118 ± 0.147 0.8468 ± 0.051 0.9101 ± 0.151
Xception Adam 0.0005 0 0.9060 ± 0.135 0.9100 ± 0.143 0.8425 ± 0.038 0.9060 ± 0.135
MobileNetv2 SGD 0.007 0.0001 0.8994 ± 0.265 0.8826 ± 0.148 0.8178 ± 0.064 0.8994 ± 0.265
Xception SGD 0.007 0.0001 0.8945 ± 0.265 0.8843 ± 0.109 0.8158 ± 0.055 0.8945 ± 0.265
U-Net ResNet50 Adam 0.0001 0 0.9055 ± 0.103 0.9172 ± 0.145 0.8473 ± 0.035 0.9055 ± 0.103
VGG Adam 0.0001 0 0.9045 ± 0.044 0.9198 ± 0.162 0.8484 ± 0.014 0.9045 ± 0.044
ResNet50 SGD 0.01 0.0001 0.8892 ± 0.303 0.8944 ± 0.142 0.8192 ± 0.084 0.8892 ± 0.303
VGG SGD 0.01 0.0001 0.8948 ± 0.084 0.9057 ± 0.137 0.8312 ± 0.020 0.8948 ± 0.084

Different backbone, optimizers, and learning rates were used according to different segmentation models. The evaluation indicators were measured on the test set with ten-fold cross-validation (mean ± standard deviation). The best results of each network are shown in bold