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Abstract
Objectives:  Age-related cognitive changes can be influenced by both brain maintenance (BM), which refers to the relative 
absence over time of changes in neural resources or neuropathologic changes, and cognitive reserve (CR), which encom-
passes brain processes that allow for better-than-expected behavioral performance given the degree of life-course-related 
brain changes. This study evaluated the effects of age, BM, and CR on longitudinal changes over 2 visits, 5 years apart, in 3 
cognitive abilities that capture most of age-related variability.
Methods:  Participants included 254 healthy adults aged 20–80 years at recruitment. Potential BM was estimated using 
whole-brain cortical thickness and white matter mean diffusivity at both visits. Education and intelligence quotient (IQ; 
estimated with American National Adult Reading Test) were tested as moderating factors for cognitive changes in the 3 
cognitive abilities.
Results:  Consistent with BM—after accounting for age, sex, and baseline performance—individual differences in the pres-
ervation of mean diffusivity and cortical thickness were independently associated with relative preservation in the 3 abil-
ities. Consistent with CR—after accounting for age, sex, baseline performance, and structural brain changes—higher IQ, 
but not education, was associated with reduced 5-year decline in reasoning (β = 0.387, p = .002), and education was asso-
ciated with reduced decline in speed (β = 0.237, p = .039).
Discussion:  These results demonstrate that both CR and BM can moderate cognitive changes in healthy aging and that the 
2 mechanisms can make differential contributions to preserved cognition.

Keywords:   Cortical thickness, Diffusion MRI, Mean diffusivity, Memory, Reasoning
  

Age-related cognitive decline has been documented in life-
span epidemiological studies (Hartshorne & Germine, 
2015; Hughes et  al., 2018) with the majority of studies 
examining only a truncated age range rather than the whole 

life span (Singh-Manoux et al., 2012). The pattern of age-
related changes varies across cognitive abilities (Salthouse, 
1998; Tucker-Drob, 2019) in both cross-sectional (Tucker-
Drob, 2009; Whitley et  al., 2016) and longitudinal (De 

https://orcid.org/0000-0002-3268-3438
https://orcid.org/0000-0003-3177-6357
https://orcid.org/0000-0001-9961-7446
https://orcid.org/0000-0001-7542-3241
mailto:YL2107@cumc.columbia.edu?subject=


Vis et al., 2018; Hughes et al., 2018; Singh-Manoux et al., 
2012) studies. Processing speed usually exhibits the steepest 
decline (Salthouse, 2019), whereas vocabulary is well main-
tained until late adulthood (Singh-Manoux et  al., 2011). 
Longitudinal changes in cognition have been associated 
with baseline age, indicating that older participants show 
greater accelerated decline in global cognition (Singh-
Manoux et al., 2011), reasoning (De Vis et al., 2018), and 
memory abilities (Salthouse, 2016). After accounting for 
age, there is still large variability in the rate of cognitive 
decline, ranging from rapid decline to even some improve-
ment (Wilson et al., 2009). The concepts of brain mainte-
nance (BM) and cognitive reserve (CR) have been used to 
explain these individual differences (Stern, 2012). Here we 
evaluate the differential effect of age, BM, and CR on cog-
nitive decline in a life-span sample of healthy adults initially 
ranging from age 20 to 80 years old.

According to a recent consensus Framework (Stern et al., 
2023), BM can be defined as “the relative absence over time 
of changes in neural resources or neuropathologic changes 
as a determinant of preserved cognition in older age” and 
CR as “a property of the brain that allows for cognitive 
performance that is better than expected given the de-
gree of life-course-related brain changes and brain injury 
or disease.” In addition to genetic components, both BM 
and CR can be influenced by lifetime exposures such that 
certain life experiences may increase a person’s BM and/
or CR (Stern et al., 2020). Life experiences can be indexed 
with individual difference factors. Here we included years 
of education and estimated intelligence quotient (IQ), two 
factors most often examined in the literature as individual 
difference factors.

Even though BM can take place at any level of the neural 
structure, from microscopic synaptic architecture to macro-
scopic measure of cortical thickness (Nyberg et al., 2012), 
common brain measures for approximating BM include 
relative changes in grey matter cortical thickness and white 
matter mean diffusivity. Studies have reported associations 
between changes in whole-brain and regional brain vol-
umes with changes in global as well as specific domains of 
cognition (Gorbach et al., 2017; Persson et al., 2016). There 
is some support for life experiences influencing BM; IQ and 
education have been related to brain structural measures 
(Cox et al., 2016; Zarnani et al., 2019). A recent study re-
ported that performance changes in a German intelligence 
test were associated with changes in both area and thick-
ness of caudal middle frontal gyrus, bank of superior tem-
poral sulcus, and fusiform gyrus (Sele et al., 2021). Another 
study found that a cross-sectional estimate of BM, quanti-
fied by gray matter volume and thickness and white matter 
tract fractional anisotropy, was correlated with both edu-
cation and IQ score estimated from the American National 
Adult Reading Test (NART-IQ; Habeck et al., 2016).

In both cross-sectional and longitudinal studies, sev-
eral individual difference factors including education and 
IQ have been shown to moderate the relationship between 

age-related brain changes and cognitive performance; these 
factors have thus been hypothesized to contribute to CR. 
Cross-sectional studies consistently showed the protective 
effect of CR, mostly approximated with education, in cog-
nitively normal older adults (Singh-Manoux et  al., 2011; 
Wilson et al., 2009; Zahodne et al., 2015). However, ex-
cept for a few studies (Zahodne et al., 2015), longitudinal 
studies showed education to be a poor predictor of cogni-
tive decline, both when education was used on its own or as 
part of a composite score (Karlamangla et al., 2009; Soldan 
et al., 2017). Other individual difference factors such as IQ 
and occupational attainment have been reported to exhibit 
protective effect on the rates of cognitive decline (Then 
et al., 2015).

While many studies have examined the effects of indi-
vidual difference factors on cognitive decline, few studies 
have differentiated the effects of CR from BM (Bertola 
et al., 2019; Zahodne et al., 2019). Dissociating the effects 
of BM and CR on cognitive decline necessitates testing the 
associations between cognitive changes with an individual 
difference factor while accounting for changes in brain 
structure, which most studies were lacking. For example, in 
the recent study by Bertola et al. (2019), the effect of educa-
tion on memory decline was tested without accounting for 
any brain changes. Even if longitudinal change in a brain 
structural measure is not associated with an individual 
difference factor, individual variability in brain structural 
changes can still be associated with differential cognitive 
decline. Thus, controlling for individual differences in the 
change in brain structural metrics can enable a more accu-
rate delineation of cognitive changes most protected by CR, 
which is hypothesized to contribute to variability in cogni-
tive decline beyond that accounted for by BM.

The goal of the current study was to determine the roles 
of age, BM, and CR in the longitudinal performance tra-
jectories of three independent cognitive abilities—episodic 
memory, reasoning, and processing speed. The study fol-
lowed a group of healthy adults for 5 years; they initially 
spanned age 20 to 80 years rather than the truncated age 
range used in most of the previous studies. Latent change 
score model (LCSM; Kievit et  al., 2018), a robust statis-
tical approach that estimates changes over a comprehensive 
set of cognitive tests covering the three abilities, was used 
to examine the cognitive changes. Years of education and 
NART-IQ (Grober & Sliwinski, 1991) were used as poten-
tial factors influencing BM and CR. Even though NART-IQ 
is likely influenced by years of education, including both 
factors in the models allowed us to evaluate the factors’ 
independent effects. To assess BM and CR as potential pro-
tective factors in cognitive decline, cortical thickness and 
white matter mean diffusivity at both baseline and fol-
low-up, along with NART-IQ and education, were included 
in the LCSM as potential moderators of cognitive change. 
To explore BM, we tested whether change in brain meas-
ures was associated with change in cognition, and whether 
the change in brain measures was moderated by education 
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or NART-IQ. To explore CR, we tested whether change in 
cognition was moderated by education or IQ, and then re-
peated this analysis controlling for the two brain measures. 
We hypothesized that the rate of cognitive changes would 
accelerate with older age, and that thicker cortex, lower 
white matter mean diffusivity, and higher NART-IQ would 
be associated with less cognitive decline.

Method

Participants

A total of 254 participants were drawn from our ongoing 
studies at Columbia University Irving Medical Center: The 
Reference Ability Neural Network study and the CR study 
(Stern et al., 2014, 2018). The two studies recruited healthy 
adults from 20 to 80  years old. Please see Supplementary 
Information S11 for screening procedure and inclusion criteria.

Demographic information for the participants is pre-
sented in Table 1. We did not find any systematic difference 
between the participants who had and had not completed 
the functional Magnetic Resonance Imaging (fMRI) pro-
cedures. Supplementary Table S5 details the missing data. 
One hundred and seventy-five participants had at least one 
task measure missing and 79 participants had complete set 
of 18 task data in the study. Two participants did not re-
ceive any MRI scans and were excluded from cortical thick-
ness and mean diffusivity analyses.

Cognitive Tasks

To estimate robust estimation of latent abilities of the 
three abilities, each ability was estimated with three meas-
ures from out-of-scanner and three from in-scanner tasks 
for a total of 24 measures included in the analysis. Out-
of-scanner tasks consisted of traditional paper-and-pencil 

tests, and in-scanner tasks were neuropsychological tests 
adapted for computer testing in the fMRI. Details of the 
tasks can be found in Supplementary Information S11.

MRI Acquisition and Processing

fMRI scans and several structural MRI scans were ac-
quired on a 3.0-T Philips Achieva Magnet. Details of the 
scan parameters along with the data processing details can 
be found in Supplementary Information S11. T1 structural 
data were analyzed in FreeSurfer v5.1 and visually checked 
and corrected, then the mean whole-brain cortical thick-
ness was calculated for each participant. For diffusion MRI 
data, analysis was performed with MRtrix3 to quantify 
whole-brain white matter mean diffusivity. The two brain 
measures were used in subsequent analyses.

Statistical Analysis

For descriptive statistics, mean, standard deviation, me-
dian, minimum, and maximum were reported for contin-
uous variables and frequency and percent were reported for 
categorical variables. The correlation among demographic 
variables was examined using Spearman’s correlation and 
two-sample t test assuming unequal variances between 
males and females.

Change Point Analysis in Cognitive Abilities

To determine whether there are nonlinear effects in age-
related changes in cognitive abilities, we tested whether 
there were inflection points in the association between age 
and changes in the abilities by estimating the latent change 
scores from the LCSM without adjusting for any covariate. 
The LCSM estimates the changes in latent scores rather 
than the observed scores. A  piece-wise linear regression 
with one inflection point was performed for the inflection 
points ranging from 30 to 70 years. To evaluate the fit of 
the model, we compared the model to a linear regression 
model without any inflection point, and to the most basic 
model, a model with only the respective baseline cognitive 
abilities as covariate. The best inflection point was selected 
based on Bayesian Information Criterion (BIC).

Testing IQ and Education Moderation 
Using LCSM

To test whether individual difference factors (IQ—esti-
mated with American National Adult Reading Test—and 
years of education) were associated with cognitive changes 
beyond demographic variables, a multiple indicator LCSM 
(Kievit et al., 2018) was used as depicted in Supplementary 
Figure S2. We modeled the three abilities in the manner of 
traditional confirmatory factor analysis as described in pre-
vious studies (Stern et al., 2014).

Table 1.  Demographic Characteristics (n = 254)

Age, years Mean (SD) 53.1 (17.1) 
Median [min, max] 60.0 [20.0, 

80.0]
Follow-up 
interval, years

Mean (SD) 4.87 (0.635)
Median [min, max] 5.00 [4.00, 

7.00]
Sex, n (%) Females 142 (55.9%)

Males 112 (44.1%)
Ethnicity Caucasian 155 (61.0%)

African American 61 (24.0%)
Others 38 (15.0%)

Education, years Mean (SD) 16.3 (2.40)
Median [min, max] 16.0 [11.0, 

24.0]
NART-IQ Mean (SD) 117 (8.27)

Median [min, max] 120 [94.2, 131]

Notes: NART-IQ  =  IQ score estimated from the American National Adult 
Reading Test; SD = standard deviation.
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Moderating factors
Given that changes in cognition are modeled with LCSM, 
any associations between a factor and cognitive change 
scores are moderating factors of cognitive change over time. 
Age, sex, education, and IQ were included in the model to 
test each factor’s moderation of the change scores for each 
ability. We reported the parameter estimates of associations 
as well as the overall goodness-of-fit measures for both 
models (comparative fit index [CFI], Tucker-Lewis index 
[TLI], root mean square error of approximation [RMSEA]).

Accounting for Potential Effects of BM

To fully understand the effects of CR and BM on changes 
in cognition, for any individual difference factor showing 
a moderating effect on cognitive decline, we tested: (1) 
whether the individual difference factor also moderated 
brain structural changes, and (2) if the individual difference 
factor’s moderation of cognitive changes is independent of 
brain structural measures (using whole-brain cortical thick-
ness and white matter mean diffusivity at two time points).

The first question was examined for each of cortical 
thickness and mean diffusivity as dependent variables using 
mixed-effects linear modeling. Each model included age, time 
(baseline/follow-up), sex, IQ, years of education, time × age, 
and time × IQ as fixed effects, and a random intercept to ac-
count for within-subject correlation due to repeated meas-
urements. Significant time × IQ effect would indicate that IQ 
moderates changes in brain structure. The second question 
was addressed by adding cortical thickness and mean diffu-
sivity measures at both baseline and follow-up as time-varying 
covariates to the LCSM with the regression coefficients at 
both time points constrained to be the same, as illustrated in 
Supplementary Figure S2. To stabilize model fitting, the cor-
tical thickness and mean diffusivity measures were standard-
ized using their baseline means and standard deviations.

Results

Demographic Characteristics

Table 1 provides a summary of participant characteristics at 
baseline. Participants aged 20 to 80 years at baseline were fol-
lowed for approximately 5 years on average. IQ was correlated 
with baseline age (ρ = 0.31, p < .001) and with years of edu-
cation (ρ = 0.51, p < .001). IQ was also higher in males (male: 
119 ± 7.5; female: 116 ± 8.7; t(249.94) = −2.58, p = .01) while 
no sex difference was found for age and education (ps > .1).

Longitudinal Changes in Cognitive Abilities

Bottom of Figure 1 shows the aging trajectory for each of 
the cognitive abilities. As expected, even after controlling for 
their baseline cognitive abilities, the three cognitive abilities 
showed decline over time (reasoning: β = −0.81, p < .001; 
memory: β = −0.15, p = .028; speed: β = −0.68, p < .001).

Age Moderation on Changes in Cognitive 
Abilities

As shown in the top of Figure 1, for all cognitive abilities, we 
found age moderation of changes in the abilities after adjusting 
for the respective baseline ability performance. With older age, 
there was larger decline in reasoning (β  =  −0.79, p < .001), 
memory (β = −0.29, p < .001), and speed (β = −0.57, p < .001).

Change Point Analysis of Cognitive Abilities

We further explored whether there is a peak age and inflec-
tion point in the rate of change for each ability across the 
life span. A linear mixed-effect model was tested with each 
of the cognitive abilities as the dependent variable, age as 
the fixed effect, and random intercept to account for within-
subject correlation due to repeated measurement. For all 
cognitive abilities, the quadratic trend with one inflection 
point performed the best as supported by the lowest BIC 
across all models. As illustrated in the bottom of Figure 1, 
decline in reasoning and speed showed accelerated decline 
after age 58 (indicated by vertical line in Figure 1). Memory 
showed a much later change point, at the age of 70 years, 
after which decline accelerated steeply.

Moderating Effects of Education and IQ on 
Changes in Cognitive Abilities

After adjusting for age and baseline abilities, higher IQ was 
associated with smaller declines in reasoning (β  =  0.36, 
p < .001) and memory (β  =  0.14, p  =  .039), but not in 
speed (β = 0.02, p = .88). With education being added to 

Figure 1.  (Top) Age moderation on changes in cognitive abilities. For all 
three abilities, the rate of change decreases with age. All models were 
adjusted for intelligence quotient, sex, and the two other baseline refer-
ence abilities. (Bottom) Performance on each ability at both time points 
against increasing age. Peak detection and inflection points are shown. 
Decline in reasoning, speed, and memory were accelerated after the re-
spective inflection points of the quadratic b-spline (vertical lines).
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the model, education did not show significant modera-
tion effect on changes in any of the cognitive abilities (ps 
> .05). Statistical details are listed in Supplementary Table 
S1. Figure 2A illustrates the changes in reasoning plotted 
against IQ after adjusting for all covariates.

Differentiating CR and BM as Mechanisms 
Underlying IQ Moderation

Differential rate of change in cognition could be attrib-
uted to CR, BM, or both. We first examined the possibility 
that IQ moderated changes in cognition via an association 
with differential structural brain change by testing for the 
effects of IQ on the two brain measures separately. This 
was examined in two separate models, with each of the 
brain measures as outcome, and age, time (baseline and fol-
low-up), sex, IQ, education, time × age, and time × IQ as 
independent variables. While age was associated with the 
change in both cortical thickness (β(Time × Age) = 0.172, 
p < .001) and mean diffusivity (β(Time × Age) = −0.185, 
p < .001), IQ was not associated with the change in ei-
ther (p(Time × IQ) > 0.895). Statistical details are listed in 
Supplementary Table S1. Time × education was not exam-
ined because education did not moderate rate of cognitive 
change in the LCSM in Table 2.

Even though IQ was not associated with structural 
changes, individual differences in structural changes might 
influence cognitive changes, so the structural measures 
were included in the LCSM (see Supplementary Figure S2). 
The model estimates are shown in Table 3. Bivariate cor-
relations between the 18 measures of cognitive tests and 
each of education, NART-IQ, mean diffusivity, and mean 
thickness are shown in Supplementary Information S3 ta-
bles. The estimated loadings for the measures in the LCSM 
are shown in Supplementary Table S4.

Table 3 shows that the two structural measures moder-
ated cognitive changes. In the presence of age, sex, educa-
tion, IQ, and mean diffusivity, cortical thickness showed a 
moderation effect on cognitive changes in reasoning and 
memory but not in speed. After accounting for covariates 
including cortical thickness, mean diffusivity showed 

moderation effects on cognitive changes for reasoning and 
speed, with each ability showing negative βs, suggesting 
that better preservation of white matter (lower mean dif-
fusivity) was associated with better cognitive performance. 
Associations between brain measures and performance for 
the reasoning ability are illustrated in Figures 2B and C.

With the brain structural measures at both time points 
in the model (Table 3), IQ moderation of cognitive changes 
that was observed in the original model remained signif-
icant for reasoning (β = 0.387, p =  .002) but the moder-
ation effect became marginally significant for memory 
(β = 0.156, p = .073). Education showed moderating effect 
on declines for speed only (β = 0.237, p =  .039). Results 
of a supplementary analysis testing the interaction of IQ 
and brain measures (mean diffusivity and thickness sepa-
rately) were included in Supplementary Information S6 for 
completeness.

Sensitivity Analysis

Missing data
The missing data were due to issues with response pad-
dles, MR scanner, participant discomfort, and to dis-
ruptions from the coronavirus disease 2019 pandemic. 
Supplementary Information S5 shows the number of 
missing data for each test measure and the statistical tests 
for differences in demographics for participants with and 
without complete data sets. There was no difference in 
age, sex, education, NART-IQ, and follow-up interval 
between participants with and without complete data. 
Sensitivity analysis results for including only participants 
with five or less missing test measures (n = 158) are shown 
in Supplementary Information S7. With the smaller n, ef-
fect of NART-IQ was still significant for reasoning when 
controlling for cortical thickness but became trend level for 
reasoning and memory when controlling for mean diffu-
sivity. However, the direction and effect sizes remain similar 
to the results for the full sample.

In- versus out-of-scanner
We also conducted sensitivity analysis by in-scanner and 
out-of-scanner variables separately. Results are shown 
in Supplementary Information S8. We further exam-
ined the effects of IQ and education in separate models 
(Supplementary Information S9). We also adjusted for 
the time elapsed between baseline and follow-up visits 
(Supplementary Information S10). The findings remain 
similar to that in the fully adjusted models. There was one 
outlier who showed a large decline; when we reran the 
LCSM after removing this participant the results did not 
change. Overall results were similar.

Collinearity between IQ and education
To ensure the models were not affected by strong collin-
earity between IQ and education, we examined variance 
inflation factors for four factors: age = 1.083, IQ = 1.448, 

Figure 2.  (A) Effect of intelligence quotient (IQ) on changes in reasoning 
ability adjusted for age, sex, education, the other two baseline cogni-
tive abilities, and whole-brain cortical thickness and white matter mean 
diffusivity at both time points. (B and C) Association between whole-
brain mean diffusivity and baseline (red dots) and follow-up (green 
dots) and of mean cortical thickness on changes in the reasoning ability. 
bl = baseline; fu = follow-up; MD = mean diffusivity; NART-IQ = IQ score 
estimated from the American National Adult Reading Test.
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education = 1.336, and sex = 1.030. These values showed 
that the models did not contain too much multicollinearity 
among these factors, although IQ and education had 
slightly larger variance inflation factors than age and sex.

Discussion
This paper explored the potential contributions of age, BM, 
and CR on individual differences in rates of age-related 
cognitive decline in a life-span sample. As expected, age 
was related with more rapid decline in memory, reasoning, 
and processing speed. The results further demonstrated 
differential contributions of BM and CR to the cognitive 
abilities. For BM, changes in white matter mean diffusivity 
moderated differential changes in reasoning and speed; 
changes in mean cortical thickness moderated differential 
changes in reasoning and memory. These findings are con-
sistent with the concept of BM in that individual differences 
in cognitive changes are associated with the degree to which 
the brain is “maintained.” With regards to CR, after taking 
individual brain changes into account, IQ was most influ-
ential in reasoning changes and was marginally associated 
with changes in memory, but not in processing speed. The 
contribution of IQ to differential ability to preserve cogni-
tive function in the presence of age-related brain changes 
is consistent with the concept of CR. Thus, our data found 
that both BM and CR metrics contributed to individual dif-
ferences in the rate of cognitive decline.

Although changes in whole-brain cortical thickness and 
white matter mean diffusivity were not related to IQ, they 
were nevertheless related to differential cognitive decline. 
Our results align well with several previous longitudinal 
studies, which reported changes in grey and white matter 
volumes being associated with changes in various cognitive 
abilities (Gorbach et al., 2017; Persson et al., 2016). Vinke 
et al. (2018) conducted a large epidemiological study on the 
aging trajectories of a number of brain structural changes 
and found that mean diffusivity had the second steepest de-
clining slope among all of the brain measures, after total 

brain volume. The association between changes in white 
matter mean diffusivity and changes in two of the three 
abilities likely indicates the sensitivity of mean diffusivity 
to early microstructural damage that underlies early age-
related cognitive changes. This greater sensitivity to struc-
tural decline enables the observation of BM in differential 
cognitive decline.

We included education in all models and observed a sig-
nificant relationship between education and changes in the 
speed ability and a marginally significant association for 
reasoning. Education has been a commonly debated factor 
in cognitive decline for healthy aging. Most studies that 
used education either as the sole factor (Karlamangla et al., 
2009; Proust-Lima et al., 2008) or as part of a composite 
score (Soldan et al., 2017) reported association between ed-
ucation and the level of cognitive performance, but there 
has been minimal evidence of education’s association with 
age-related cognitive declines (Lovden et al., 2020). These 
studies suggest that years of education is not guaranteed 
to be a good estimator of someone’s CR for healthy older 
adults. There may be several reasons for this observation. 
Years of education stabilizes in young adulthood and do 
not increase with an individual’s experience, as CR might. 
Neither does years of education capture the qualitative dif-
ferences in the nature of the educational experience. Apart 
from the complication that education is still ongoing for 
younger participants of life-span studies, assessment of ed-
ucation can be inconsistent across individuals and studies, 
depending on whether the cumulative years of schooling 
or the equivalent years of education for degrees earned is 
reported. Also, many samples may include only a limited 
range of education masking possible associations with cog-
nitive decline, which manifest more clearly in studies of 
wide education ranges (Zahodne et al., 2015). In contrast, 
however, many studies have demonstrated that education 
moderates the effect of Alzheimer’s disease pathology on 
cognition or clinical disease severity (Stern et  al., 1999; 
Verlinden et  al., 2016), although some have argued that 
this may be partially due to selection effects (Lovden et al., 

Table 2.  Statistical Results for the Mixed-Effects Linear Model Testing Individual Difference Factors on Brain Structural 
Measures Across Two Time Points, Baseline and 5-Year Follow-Up

 Mean diffusivity Cortical thickness

Predictors β Standardized CI p β Standardized CI p 

Intercept 0.078 −0.063 to 0.218 <.001 0.201 0.058 to 0.343 <.001
Time points −0.042 −0.121 to 0.037 .254 −0.256 −0.336 to −0.176 .524
Age 0.422 0.312 to 0.533 <.001 −0.389 −0.502 to −0.277 <.001
Sex (male) −0.165 −0.371 to 0.040 .114 −0.176 −0.384 to 0.033 .099
NART-IQ 0.06 −0.068 to 0.189 .358 0.096 −0.033 to 0.226 .145
Education 0.052 −0.068 to 0.171 .395 −0.052 −0.171 to 0.067 .393
Time * Age 0.172 0.089 to 0.254 <.001 −0.185 −0.270 to −0.101 <.001
Time * NART-IQ 0.005 −0.076 to 0.087 .895 −0.004 −0.088 to 0.080 .930

Notes: β = standardized coefficient; CI = confidence interval; NART-IQ = IQ score estimated from the American National Adult Reading Test. Time = baseline and 
follow-up. Bolded = p <.001.
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2020). Our finding of an association between education and 
speed should be considered with these limitations in mind.

After controlling for structural changes, IQ, another 
commonly used factor for estimating CR, moderated 
changes in reasoning and marginally in memory, such that 
individuals with higher IQ showed slower decline. This 
is in contrast to education’s association with changes in 
speed, which suggests that different life experiences may 
influence cognitive abilities in unique ways. CR is hypothe-
sized to exert protective effects in the presence of age- or 
disease-related brain changes through providing greater 
processing efficiency and capacity, more flexibility in solu-
tion strategy, and/or through compensatory processes that 
provide alternative networks when the primary network 
is damaged (Stern, 2012). Our findings suggest education 
may influence abilities relying more on processing speed 
while IQ may influence abilities requiring more reasoning 
processes.

While the best test of CR is to examine the modera-
tion of a CR proxy on the brain-to-cognition association 
as stated by the Reserve and Resilience Framework (Stern 
et  al., 2023). However, the Framework allows for two 

operationalizations of CR: apart from a moderating role 
of CR implemented via a CR × structure interaction, there 
can also be a direct influence of CR beyond brain struc-
ture, implemented by an additional main effect. We picked 
the latter and chose to control for brain structure because 
including the brain structural measures as time-varying 
covariates enabled us to use the whole sample, whereas 
using brain changes in the IQ moderation approach would 
result in a substantial reduction of sample size.

The neurobiological mechanisms contributing to CR’s 
protective effect are an active area of study (Buss et al., 
2021). Our finding that IQ, a measure highly correlated 
with semantic knowledge, is associated with reduced rate 
of cognitive decline, combined with the common obser-
vation that semantic knowledge increases with age, sug-
gests that some aspects of CR may increase with age: 
accumulation of semantic knowledge may enable older 
adults to shift toward reliance on semantic knowledge as 
their general cognition declines (Spreng & Turner, 2019). 
Older adults to use their previously acquired knowledge 
to aid performance of tasks such as episodic memory 
(Musielak et  al., 2014) and decision making (Li et  al., 

Table 3.  Statistical Parameters for Age and NART-IQ Moderation of Changes in Reference Abilities With Sex, Education, 
Cortical Thickness, and Mean Diffusivity (MD) as Covariates

RA Parameters Estimate SE Z p Value 95% LCI 95% UCI β 

Reasoning Intercept* −0.546 0.215 −2.538 .011 −0.967 −0.124 −1.837
Age*** −0.173 0.043 −4.059 <.001 −0.256 −0.089 −0.565
Sex 0.029 0.053 0.543 .587 −0.076 0.133 0.049
Education 0.025 0.013 1.920 .055 −0.001 0.050 0.205
BL reasoning*** −0.219 0.050 −4.416 <.001 −0.317 −0.122 −0.569
NART-IQ** 0.116 0.038 3.048 .002 0.041 0.190 0.387
Thickness** 0.062 0.024 2.616 .009 0.016 0.109 0.082
MD* −0.066 0.028 −2.344 .019 −0.122 −0.011 −0.086

Speed Intercept* −0.548 0.223 −2.460 .014 −0.985 −0.111 −1.901
Age* −0.110 0.048 −2.302 .021 −0.203 −0.016 −0.370
Sex −0.099 0.057 −1.741 .082 −0.210 0.012 −0.171
Education* 0.028 0.013 2.069 .039 0.001 0.054 0.237
BL speed** −0.153 0.053 −2.905 .004 −0.257 −0.050 −0.401
NART-IQ 0.012 0.037 0.327 .743 −0.060 0.084 0.042
Thickness 0.047 0.025 1.883 .060 −0.002 0.096 0.063
MD** −0.092 0.030 −3.116 .002 −0.151 −0.034 −0.123

Memory Intercept −0.387 0.421 −0.919 .358 −1.213 0.439 −0.514
Age −0.095 0.076 −1.248 .212 −0.244 0.054 −0.122
Sex −0.185 0.107 −1.726 .084 −0.395 0.025 −0.123
Education 0.020 0.025 0.798 .425 −0.030 0.070 0.067
BL memory*** −0.388 0.070 −5.526 <.001 −0.526 −0.251 −0.467
NART-IQ 0.118 0.066 1.791 .073 −0.011 0.247 0.156
Thickness*** 0.143 0.042 3.368 .001 0.060 0.226 0.159
MD −0.083 0.048 −1.720 .085 −0.178 0.012 −0.092

Fit CFI TLI BIC RMSEA 95% LCI 95% UCL p Value
0.8097 0.8032 13363.92 0.0747 0.0697 0.0796 <.001

Notes: Since the dependent variables are changes in cognition, all associations are moderations of the changes. BIC = Bayesian Information Criterion; BL = base-
line; CFI = comparative fit index; LCI = lower confidence interval; NART-IQ = IQ score estimated from the American National Adult Reading Test; RA = reference 
ability; RMSEA = root mean square error of approximation; SE = standard error; TLI = Tucker–Lewis index; UCI = upper confidence interval.
*p < .05. **p < .01. ***p < .001.
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2013). For example, in a task to recall grocery prices, 
older participants’ prior knowledge allowed them to re-
call the realistic prices well, which sufficiently minim-
ized age differences in task performance (Castel, 2005). 
Neurobiologically, Turner and Spreng (2015) proposed 
the default–executive coupling hypothesis of aging to ex-
plain the shift toward the reliance on semantic knowledge 
based on their observation that the functional coupling 
between the default mode network and lateral prefrontal 
regions, which was shown to increase with task demand. 
However, the semantic knowledge shift can also result in 
worsening performance when previous knowledge im-
pedes task performance (Spreng & Turner, 2019). Thus, 
while this theory may help explain some of IQ’s influence 
on maintaining cognitive performance in older adults, 
more research is needed to understand how experiences/
genetic dispositions leading to higher IQ provides protec-
tive effect on cognitive aging.

Understanding how CR and BM factors influence cog-
nitive aging will improve the accuracy in mapping cogni-
tive changes in the typical aging process, and thus enabling 
more sensitive detection of atypical aging status in clinical 
care for older adults. For example, if cognitive testing be-
comes part of older adults’ annual health checkup, devia-
tion from the norm may signal the need for further clinical 
evaluation. However, for the predicted aging trajectory 
to become a clinically meaningful tool, a fuller model 
incorporating more comprehensive set of CR and BM fac-
tors, such as additional lifestyle factors and more fine-grain 
brain measures, respectively, will greatly improve the pre-
dictive accuracy of cognitive changes in the aging process. 
Furthermore, given that the current sample of participants 
has a mean education of 16 years and NART-IQ of 117, 
replication is needed in a sample with a greater range of 
education and IQ levels.

All longitudinal studies are susceptible to practice effects 
which can confound the observed cognitive changes in this 
study. However, despite potential practice effects, robust 
cognitive decline was observed over 5 years for the three 
abilities across the life span and taking practice factor into 
account would only further strengthen the main effects. 
Due to the correlation between cognitive changes and other 
moderators such as age, education, and IQ, we also could 
not rule out the possibility of practice effects influencing in-
teraction effects. The decision to use the same test versions 
across study visits was made after carefully weighing the 
possibility of mismatch in task difficulty when using dif-
ferent versions of the same tests against the possibility of 
practice effects confounding the outcomes. The latter was 
seen as less problematic.

Given the differential patterns observed across the cog-
nitive abilities, future examination of factors contributing 
to cognitive decline should include multiple cognitive abil-
ities to fully explore the role CR and BM play in the decline 
of each ability. Without a comprehensive set of cognitive 
abilities being assessed for age by individual difference 

factor interactions, effects specific to certain abilities may 
be missed.

Overall, our findings provide support for BM and CR as 
mechanisms contributing resilience in cognitive aging and 
that differential life experiences contribute unique influ-
ences on the various cognitive trajectories. While education 
was found to exert an effect on speed changes, estimated IQ 
showed robust moderations of the effects of aging on rea-
soning changes, even after accounting for brain structural 
changes. The results also demonstrate that BM and CR can 
both simultaneously moderate the effect of age on the cog-
nitive abilities.
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