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Abstract

Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular 

relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite 

donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and 

erectile dysfunction. Based on NO’s vast biological functions, it further can treat tumors, 

bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, 

delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under 

five seconds. With advanced biotechnology and the development of nanomedicine, NO donors 

packaged with multifunctional nanocarriers by physically embedding or chemically conjugating 

have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we 

review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and 

the challenges of NO nanomedicines for future scientific studies and clinical applications. As 

NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including 

COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines 

for anti-pandemic efforts. This review aims to provide deep insights and practical hints into design 

strategies and applications of NO nanomedicines.
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INTRODUCTION

In 1982, nitric oxide (NO) was discovered by Furchgott, Ignarro, and Murad as a 

signalling molecule named endothelial-derived relaxing factor (EDRF).1 Whereafter, this 

great discovery inaugurated extensive research on the key roles of NO in many physiological 

systems, earning the Nobel Prize in Physiology or Medicine for the three scientists in 

1998.2 L-Arginine (L-Arg) is the endogenous NO donor, under the catalysis of NO 

synthase (NOS) to produce the NO required by the body. In the human body, various 

biological processes such as vasodilation, platelet aggregation, immune response, and 

neurotransmission are related to NO.3–6 Due to its indispensable role in physiology, 

defects in nitric oxide biosynthesis are related to many disease states. Despite forty years 

of extensive research, the complicated mechanism of NO in the human body remains 

uncovered. Fortunately, the strategies for the delivery of exogenous NO have been used in 

many life-saving biomedical applications. Inhaled NO is an FDA-approved treatment for 

clinical pulmonary hypertension.7,8 The direct inhalation of NO cannot yet therapy other 

diseases due to critical concern for its in vivo distribution and high reactivity. Thus, the 

design syntheses of NO donors have become more efficient at delivering NO to specific 

disease lesions, thereby expanding NO applications. Organic nitrates (RONO2s) (e.g., 

glyceryl trinitrate and isosorbide mononitrate) are widely used clinically to treat diseases 

including angina, heart failure, anal fissures, and pulmonary hypertension. Still, they are 
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common side effects, such as the risk of hypotension, headaches, and evolving tolerance 

(Table 1).9 Nitrosothiols (RSNOs) (e.g., S-nitrosoglutathione (GSNO), S-nitrosocysteine, 

S-nitrosoalbumin, and Snitroso-N-acetylpenicillamine (SNAP)) can be antiplatelet agents, 

vasodilators, or cell cytoprotective agents for reduction of oxidative stresses. In addition, 

NONOates have therapeutic efficacy in pulmonary hypertension, arterial smooth muscles, 

and traumatic brain injury.10 However, low molecular weight species of NO donors have had 

limited clinical application in other diseases owing to the rapid systemic clearance.11

The efficacy of NO-based therapeutics largely depends on the concentration profile of 

NO in the disease region vs. the general body. At low concentrations, NO interacts with 

transition metal-containing proteins, such as those carrying heme groups or metal regulatory 

transcription factors, to regulate various biological processes and the progression of diseases. 

In addition to such direct effects on biomolecules, NO can generate biologically active 

intermediates and reactive nitrogen species (RNS) at high concentrations, such as nitrogen 

dioxide (NO2
.). NO is further oxidized by NO2

. to form dinitrogen trioxide (N2O3) and 

rapidly decomposes into NO+, which nitrates electrophilic compounds (e.g., thiols, phenols, 

secondary amines) and causes deamination of DNA bases. NO can also react with reactive 

oxygen species (ROS) to generate peroxynitrite (ONOO−), which can modulate protein 

function by nitration. More importantly, these RNS can directly kill invading microbe and 

malignant cells.12 However, when exposed to excessive levels of ROS and RNS, normal 

cells also experience damaging stresses that are oxidative (hydroxylation, lipid peroxidation, 

DNA strand breaks) and nitrosative (nitration, nitrosylation, DNA deamination). These 

stresses can damage DNA/RNA, proteins (e.g., heme groups), lipids, and other molecules, 

leading to impaired cellular functions, enhanced inflammatory reactions, inhibition of 

mitochondrial respiration, cell apoptosis, and genotoxicity. Therefore, controlling these 

parameters (e.g., delivery sites, concentration, and release rate) of NO remains critical in 

the development of advanced NO therapeutics.13 Toxic side effects will increase when the 

NO drugs cannot be specifically applied to the disease lesion where self-tolerance may 

also develop. To solve this main challenge, nano-delivery systems of NO donors provide 

possibilities for specific targeting and control release of NO.14 For example, NO at the 

micromolar level can directly affect nitric/oxide mitochondria or DNA for cancer therapy. 

NO at the Picomolar lever contributes to the angiogenesis of cell proliferation. In addition, 

since the half-life of NO is extremely short (less than 5 seconds), the delivery of NO must be 

highly targeted and selective, and the distance of NO donors to reactants is limited to about 

100 microns.15 More importantly, researchers have developed a series of activable precision 

NO delivery systems based on the endogenous (pH, glutathione (GSH), H2O2, enzyme) and 

exogenous (light, heat, X-ray, ultrasound) stimulus for the disease treatment.16 Therefore, 

developing multifunctional NO delivery systems is significant for disease treatment.

This review discusses primary NO-treatable diseases such as cancer, anti-bacterial/biofilm, 

wound healing, eye diseases, and osteoporosis. The strategies of design synthesis of nano-

sized NO-delivery platforms and their therapeutic mechanism are introduced in detail 

(Scheme 1). We also evaluate the potential challenges of NO nanomedicine in clinical 

translation. Nowadays, the COVID-19 pandemic has affected our lives all over the globe. 

The NO has been considered a promising therapeutic gas currently undergoing COVID-19 

clinical trials, due to its capability of replication inhibition of the DNA and RNA viruses, 
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including coronaviruses.17,18 Thus, we especially highlight potential NO drug applications 

for COVID-19. We also note more broadly that NO nanomedicine may have important roles 

in fighting other forms of infections including parasitic malaria.

CANCER

Cancer remains to be the second worst disease in the world by the fatality rate.19 The 

current primary treatment modalities for clinical cancer include chemotherapy, surgery, 

and radiotherapy. Newer therapeutic modalities for cancer include phototherapy, ultrasound 

therapy, gas therapy, immunotherapy, and starvation therapy. However, these treatments 

still have drawbacks and limitations. For example, surgery is difficult to remove the small 

residual tumors and tumour cells scattered in the blood vessels and lymphatics, which easily 

induce tumor recurrence and further metastasis. Failure of chemotherapy mainly follows 

the development of drug resistance by the cancer cells. Hypoxia tumor environment also 

hampers the therapeutic efficacy of radiotherapy, sonodynamic and photodynamic. NO has 

an anti-cancer effect within the concentration range of 1 μm to mm by oxidation and 

nitrosative stress with few adverse effects.20 Fabrication of NO prodrug achieves on-demand 

release of NO in the tumor microenvironment (TME) not only can inhibit the expression 

of mammalian HIF-1α, base-excision DNA repair enzyme and multidrug transporter P-

glycoprotein (P-gp), but also normalize tumor blood vessels, even react with other ROS to 

generate highly reactive ONOO− to sensitize chemotherapy, radiotherapy, phototherapy,21 

and chemodynamic therapy.22 But NO concentration higher than 1 mM may cause NO 

poisoning.23 Picomolar NO has anti-apoptotic effects and promotes angiogenesis, thereby 

increasing nutrient delivery and promoting tumor growth.24 This section covers the recent 

advanced development of NO-based nanomedicine for tumor therapy (Table 2).

NO enhances tumor chemotherapy

NO inhibits P-gp to reverse multi-drug resistance (MDR)—Modern chemotherapy 

has achieved a huge positive impact on pain relief for cancer patients and lifetime extension, 

but further improvements are necessary to overcome multi-drug resistance (MDR). Recently, 

several works related to NO) are the potential function to overcome MDR have been 

reported.25 Chen et al. enlisted the mechanism by which NO could reverse the chemotherapy 

resistance (Figure. 1A).26 NO could suppress DNA repair, reduce detoxification capacity, 

inhibit the activation of HIF and NF-kB, and enhance the nuclear transport of drugs.27,28 

In addition, the overexpression of the drug efflux P-gp to continuously pump the chemo 

drug outside of cancer cells broadly hinders cancer chemotherapy.29,30 Sung et al. reported a 

pH-responsive NO-generating hollow microsphere (HM) system to overcome the resistance 

of MCF-7 breast cancer cells to the anticancer agent irinotecan (CPT-11) by inhibiting the 

P-gp expression of cancer cells (Figure. 1B).31 The HM simultaneously carries CPT-11 and 

a NO-donor (EDTA NONOate), in acidic tumor tissue, acidic protons infiltrate HMs and 

generate NO bubbles from the encapsulated NONOate, triggering CPT-11 release and inhibit 

P-gp expression to enhance chemotherapy.

NO is reactive with superoxide (O2
.−) to generate more highly reactive ONOO−.32 Hu et al. 

designed cocktail polyprodrug nanoparticles (CPNs) that, in response to reductive cytosolic, 
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can release NO and generate ONOO− to kill cisplatin-resistant cancers (Figure. 1C).33 Inside 

cancer cells, CPNs are degraded so that the released cisplatin activates nicotinamide adenine 

dinucleotide phosphate oxidase (NOXs) to catalyze oxygen to O2
.−, which further reacts 

with in-situ released NO to produce ONOO−. In vitro and in vivo analyses demonstrate that 

CPNs can efficiently inhibit P-gp expression to overcome cisplatin resistance and enhance 

therapy efficiency for resistant cancer.

Dong et al. reported a general approach to the integration of heat-sensitive NO 

donors, chemotherapeutic DOX, and photothermal conversion attributes into polypeptide 

nanocomposite (PNOC-PDA/DOX) for overcoming MDR (Figure 1D).34 Under NIR 

irradiation, PNOC-PDA/DOX induces photothermal therapy(PTT), NO, and chemotherapy 

(PTT-NO-CT) synergistic triple therapy, which produced a superior synergistic effect of 

NO release characteristics, light-to-heat conversion and chemotherapy on MDR reversal 

and killing MCF-7/ADR cells in vitro, and the P-gp expression level was down-regulated 

to about half. Notably, after tail-vein injection of the nanocomposites followed by single 

near-infrared laser irradiation, triple-modality therapy of mild PTT, NO therapy, and 

chemotherapy achieves complete ablation of MCF-7/ADR tumors without tumor recurrence 

and skin damage in a month.

NO promotes tumor environment normalization and enhances tumor 
chemotherapy—The abnormal neovessels in TME contribute to metastasis, 

immunosuppression, and other aspects of malignant progression, leading to resistance to 

chemotherapy and cancer immunotherapy.35–37 Regulating TME by normalizing tumorous 

vascular functions is becoming a promising treatment method to combine with other 

traditional therapeutics to enhance overall anti-cancer efficacy.38,39 NO can normalize tumor 

vasculature by regulating angiogenesis and homeostasis.40,41 However, useful NO delivery 

schemes must overcome the limitation of a short half-life and the inability to sustain 

the release. Chen et al. developed a nano-scale carrier NanoNO that can continuously 

release NO into hepatocellular carcinoma (Figure 2A).42 Low-concentration NO treatment 

normalized tumor vessels, promoted tumor tissue uptake of chemotherapeutic drugs, and 

improved therapy effectiveness against primary tumors and metastases through tumor 

necrosis factors and apoptosis. In addition, low-dose NO from NanoNO reprogrammed 

the TME to improve the immune efficacy of cancer vaccine immunotherapy, providing a 

concept for NO-based cancer therapy.

The poor permeability of nanoparticles in solid tumors is considered the main factor limiting 

the clinical applications of nanomedicine.43,44 Nanoparticles can accumulate at the tumor 

site through the enhanced penetration and retention (EPR) effect.45,46 However, it is difficult 

to deliver nanoparticles into tumor parenchyma with a dense interstitial matrix containing 

collagen and hyaluronan. Fang et al. designed a collagen depletion strategy based on NO-

active endogenous matrix metalloproteinases (MMP-1 MMP-2) to deliver chemotherapeutic 

into solid tumors. The NO-releasing nanoparticles (N@MSN and DN@MSN) were created 

by loading mesoporous silica nanoparticles (MSN) with NO donor S-nitrosothiol and DOX 

(Figure 2B).47 The formation of ONOO− is the key to the activation of MMP, causing 

a nearly 2-fold increase of 3-nitrotyrosine, indicating the generation of ONOO−, and up 

to a 3.5-fold increase of MMP-1 and −2 in tumors. Notably, nanoparticles (N@MSN and 
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DN@MSN) significantly reduced collagen I expression and degraded collagen in the tumor 

TEM, leading to the enhanced penetration of chemotherapeutic DOX and antitumor efficacy 

without toxic side effects.

NO enhances tumor radiotherapy—Radiotherapy is conventionally used for 50–60% 

of tumor patients.48,49 However, selectively enhancing the radiation damage to tumor tissues 

over healthy tissues remains a challenge.50 Radiosensitizers are promising in targeting 

tumor tissue by producing free radicals and accelerating DNA damage locally.51 Zhao et 

al. reported a multifunctional nano-radiosensitizer by loading UV-responsive NO donors 

Roussin’s black salt into scintillating nanoparticles (SCNPs) (Figure 3A).52 Upon X-ray 

irradiation, the nanocomposite can simultaneously produce NO and O2
.−, due to high X-

ray-absorbing properties and the radioluminescence of SCNPs. NO and O2
.− react further 

to form a more toxic ONOO− for sensitizing tumor radiotherapy by damaging DNA, 

inhibiting DNA-repair enzyme, and reversing hypoxia-associated radiotherapy resistance. 

T-SCNPs + X-ray significantly up-regulated the production of a marker of radiotherapy, 

Phospho-Histone H2A.53 In most cases, poly (ADP-ribose) polymerase (PARP) can promote 

the repair of damaged DNA by ionizing radiation.54 These results suggested that ONOO− 

can inhibit PARP expression by directly targeting zinc-finger motifs on PARP proteins, 

increasing the radiation-induced DNA damage by suppressing the PARP-related DNA repair 

process that decreases the efficiency of radiotherapy. Importantly, RBS-T-SCNPs under 

X-ray irradiation produce ONOO−, leading to nitrification of PARP protein and ultimately 

promoting cell death. In addition, Shi et al. also proved that NO reduced the expression level 

of HIF-1α and enhanced the radiotherapy of hypoxic cancer (Figure 3B).55

NO enhances tumor phototherapy

NO enhances photodynamic tumor therapy—Photodynamic therapy (PDT) uses a 

photosensitizer and light energy to generate ROS to kill disease cells (Table 3).56 PDT 

is highly biocompatible, highly spatiotemporal selective, and minimally invasive. Under 

the irradiation of suitable wavelength, the photosensitizer can absorb photons and activate 

from the ground state to an unstable excited singlet state that quickly transitions into a 

relatively stable triplet excited state through the intersystem crossing. Excited triplet-state 

photosensitizers can then transfer electrons to oxygen and other substances to form free 

radicals, such as O2
•−, hydroxyl radical (OH•), and hydroperoxyl radical (HO2

•) (Type-I 

process),57 or directly transfer energy to oxygen molecules (the ground state is the triplet 

state) to form singlet oxygen (1O2) (Type-II process). Thus, Oxygen is the critical factor 

in photodynamic therapy relying on these ROS. Unfortunately, the hypoxic environment 

of cancer tissues decreases the concentration of oxygen and ROS production in PDT.58,59 

Interestingly, NO can provide synergistic therapeutic efficacy to other treatment modalities 

via the following three mechanisms. Firstly, NO and ROS can interact to yield ONOO−, 

which is more highly reactive and induces oxidation of DNA and proteins,60 thereby 

sensitizing radiotherapy, PDT, and chemodynamic therapy (CDT). Secondly, NO inhibits 

the expression of P-glycoprotein (P-gp) and DNA repair enzymes, thereby improving the 

therapeutic effect of chemotherapy and radiotherapy. Finally, NO can suppress hypoxia-

inducible factor-1α (HIF-1α), thereby reversing the hypoxic TME for the enhancement 

of PDT and radiotherapy.61 NO can reverse hypoxia by inhibiting cell respiration and 
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metabolism by competitively binding to the oxygen-binding site of mitochondria.62–64 

Zhang et al. designed a PDT-specific O2 economizer by loading a NO donor and a 

photosensitizer into poly (D, L-lactide-co-glycolide) for PDT of hypoxia tumors (Figure 

4A).65 NO donor release NO in the tumor’s reduction environment to inhibit cell respiration, 

allowing more O2 in tumor cells and profound enhancement of PDT.22 This O2 restoration 

stops hypoxia-induced tumor resistance to PDT interventions. In addition, NO can inhibit 

HIF-α expression to enhance PDT efficacy.66

More importantly, Type-I PDT can generate O2
•−, which further reacts with nitric oxide 

to generate more toxic ONOO− to improve the PDT of hypoxia tumors.67–70 Wang et 

al. reported an organic molecule, DANO, which possesses a functional π-conjugated 

donor-acceptor (D-A) backbone, an N-nitrosamine substituent, and two amphiphilic 

triphenylphosphines (TPP) ligands (Figure 4B).71 The DANO can specifically target to 

mitochondria of tumor cells. Under LED light irradiation, it can simultaneously produce 

hydrogen radicals (H•), O2
•-, and 1O2 through the dual PDT process. In addition, the DANO 

releases NO in response to the glutathione (GSH), which further reacts with O2
•− to generate 

ONOO−. This cascade reaction by NO and H• can effectively improve the photodynamic 

therapy of hypoxia tumors.

NO enhances tumor photothermal therapy—Photothermal therapy (PTT) is an 

extension of the PDT, converting light energy into heat through photothermal agents 

(PTA).72,73 To completely ablate the tumor, it usually was heated to more than 50 oC 

by high-power lasers, thus severely damaging normal tissues.74,75 Zhao et al. reported 

multifunctional nanoparticles composited from bismuth sulfide (Bi2S3) and thermal-

responsive NO donor (bis-N-nitroso compounds, BNN) for NO-sensitized mild PTT (Figure 

5A).76 Upon near-infrared (NIR) irradiation, Bi2S3 can absorb light energy and transform 

it into heat to increase the temperature of the tumor site and realize mild PTT, and 

simultaneously trigger-releasing of NO that could not only damage the mild PTT-induced 

autophagic of tumor cells in situ but also can directly kill surrounding cells by NO. In 

the meantime, Liu et al. also designed NIR light-controlled and organelles-targeted NO 

delivery nanoplatform for enhancing PTT.77,78 NIR-II (1000–1700 nm) laser possesses 

lower photon scattering, tissue absorption, and deeper penetration for tissue; thus, it is 

better spatial resolution and is more suitable for the treatment of deep tissues diseases, 

compared to the NIR-I (650–950 nm).79 Liu et al. further presented NIR-II responsive 

hydrogel angiogenesis inhibition agents (WB@hydrogel) based on NO-releasing donors 

(Figure 5B).80 The wild-type p53 protein was activated by NO generation, to alternate 

pro-angiogenic to anti-angiogenic TEM. This method completely inhibited tumor growth 

and achieve an anti-recurrence purpose.

NO sensitizes tumor photoacoustic therapy—High-intensity focused ultrasound 

(HIFU) is being used to treat disease by itself or in combination with other therapies. 

Chen et al. demonstrated ultrasound could activate H2O2 to generate more reactivity ROS 

for oxidizing L-Arg to generate NO for suppressing one of the most aggressive and 

lethal cancers.81 Recently, pulsed laser-triggered ultrasound wave for disease treatment has 

received widespread attention, which is utilized the probe’s PA effects (shockwave) to target 
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selectively disease tissue with minimal regular cell damage and therapy resistance.82–85 

Wang et al. constructed a multi-functional nanocapsule (NO-NCPs) by loading a NO 

donor, EDTA NONOate into an acid-responsive NIR-absorbing polymer (Figure 6).86 

Upon entering tumor cells by lysosome-mediated endocytosis, NO-NCPs release NO 

responsively to the acidic environment. Pulsed laser irradiation generates photoacoustic 

(PA) cavitation and splits water into H• and OH•, in which H• further reacts with O2 to 

generate hydroperoxyl radical (HO2
•) and then dissociating to form O2

•−. In addition, the 

photoacoustic effect accelerates NO-releasing, which recombines with in situ generated 

O2
•− to produce ONOO−, thereby significantly promoting mitochondrial depolarization, 

apoptosis-related proteins expression, and DNA fragmentation to initiate cancer cell death. 

PA signal of the NO-NCPs also can provide precise guidance for pulsed laser treatment 

during diagnosis and treatments. In vivo anti-tumor experiments demonstrated that NO-

NCPs had superior tumor inhibition capability and even complete tumor ablation after 

treatment of 18 days. Precise control of ROS and RNS generation in tumor tissues was 

achieved and visualized by PA and fluorescence imaging.

NO enhances tumor chemodynamic therapy—Chemodynamic therapy (CDT) is a 

developing cancer treatment that utilizes advanced nanotechnology to catalytic hydrogen 

peroxide in TME into •OH through Fenton and Fenton-like reactions, inducing cell 

apoptosis and necrosis.87,88 Ding et al. designed a nanoscale coordination polymer (Fe(II)-

BNCP) that a glutathione(GSH)-sensitive NO donor (1,5-bis[(L-proline-1-yl)diazen-1-

ium-1,2-diol-O2-yl]-2,4-dinitrobenzene, BPDB) was co-coordinate to irons by precipitation 

and partial ion exchange process ( Figure 7).89 The NO of Fe (II)-BNCP was not leaked 

in the blood circulation, only the high concentration of GSH in cancer cells led to the 

specific release of NO, reducing the damage to normal tissues. An overproduction of H2O2 

reacts with Fe2+ ions to generate •OH to realize the CDT of the tumor. In addition, the 

Haber-Weiss reaction of Fe2+ ions with H2O2 generates O2
•−, which can further react with 

NO to produce ONOO−. The combined therapy effect of CDT and NO and biocompatibility 

of the Fe (II)-BNCP was proven in Heps xenograft ICR mouse models. In the meantime, 

Zhao et al. reported a versatile Cu2+ nanocomposite (UMNOCC-PEG) for luminescence 

(UCL), CT, and MRI trimodal imaging-guided synergistic CDT/PDT/NO therapy.90 As 

a result, specifically generated ROS/RNS (NO, •OH, ONOO−) to respond TME by the 

Fenton-like catalytic reaction to cause DNA damage, improving the therapeutic effect.

BACTERIA AND BACTERIAL BIOFILMS

Bacterial infections are a major threat to human health due to their high pathogenicity 

and fatality, causing increasing economic losses worldwide.91 Although the emergence 

of antibiotics has effectively suppressed bacterial infections, the emergence of bacterial 

resistance has exacerbated the deterioration of the situation.92 Developing a new generation 

of antimicrobial drugs and methods to combat bacterial infections is an urgent priority. 

NO is an excellent antibacterial candidate because of its critical role in the mammalian 

immune response to pathogens (Table 4).12,93,94 More importantly, NO has a broad 

spectrum of activity, inducing oxidative and nitrosative damage to DNA, metabolic enzymes, 

microbial proteins, and membrane structures.95,96 Chemical alteration of DNA by RNS 
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is the main mechanism of NO-mediated antimicrobial action, which is demonstrated by 

three mechanisms: 1, RNS directly reacts with DNA to inhibit the DNA repair capacity 

and increase the neration of genotoxic alkylating agents and H2O2. 2, N2O3 can deaminate 

cytosine, adenine, and guanine. 3, ONOO− and NO2
. cause DNA strand breaks and abasic 

sites. Schoenfisch et al. reported a variety of NO carriers based on macromolecules to 

combat bacterial infections.97–100 NO can also sensitize PTT,101 PDT, and CDT to bacteria 

and enhance their efficacy.102,103 For example, Hu et al. synthesized NO/ formaldehyde 

(FA) -releasing polymer PEO-b-PNNBM (PNOFA) and self-assembled it into nanoparticles 

(Figure 8A).104 The nanoparticle simultaneously released NO and FA under irradiation of 

visible light and could combat both Gram-negative and Gram-positive bacteria without side 

effects. Xue et al. constructed another nanocomposite by combining photothermal and NO 

release to achieve a more effective antibacterial effect (Figure 8B).105

Other gaseous signalling molecules (GSMs), including carbon monoxide (CO) and hydrogen 

sulfide (H2S), have shown promising therapeutic potential.106,107 Hu et al. synthesized a 

NO/CO-releasing donor by grafting the NO-releasing N-nitrosamine group108 onto the CO 

donor 3-hydroxyflavone (3-HF) derivatives (Figure 8C).109 The co-release NO and CO 

under irradiation of visible light showed excellent antibacterial effects on Gram-positive 

bacteria, with a combination index of 0.053. Moreover, their design efficiently eradicated 

methicillin-resistant Staphylococcus aureus (MRSA) infection.

The formation of biofilm makes bacteria less susceptible to antibiotics.110 Studies have 

shown that the dose of antibiotics used to kill bacteria in biofilms is 1,000 times higher 

than in the suspension of cells.111 Interestingly, Schoenfisch et al. proved microbial cells 

could be killed effectively by NO-releasing silica nanoparticles inside P. aeruginosa and 
E. coli biofilms, S. aureus, S. epidermidis biofilms, and fungus C. Albicans biofilm.112 

Hu et al. reported amphiphiles polymer with NO-releasing property, poly(ethylene oxide)-

b-polyCouNO (PEO-b-PCouNO), in which CouNO is a NO donor with a coumarin 

chromophore, featuring visible-light-triggered NO-release (Figure 9A).113 The amphiphilic 

polymer could load the antibiotic ciprofloxacin (Cip) to achieve co-delivery of NO and 

Cip by self-assembly into nanoparticles. NO specifically generated in biofilm under light 

irradiation can efficiently eradicate the biofilm of Pseudomonas aeruginosa, and Cip release 

in lesions to further strengthen biofilm eradication. Light is a promising excitation source 

that can be precisely fixed to the treatment site without causing normal tissue damage 

due to its high spatiotemporal resolution. However, most photo-sensitive NO donors are 

responsive to UV light, which shows low penetration and high toxicity to tissues,114 so Hu 

and co-workers developed a red-light responsive NO donor delivery micelle (Figure 9B).115 

The micelles could efficiently load Cip to collaborate with NO to combat Pseudomonas 
aeruginosa (P. aeruginosa) infections, completely eradicated bacteria, and promoted wound 

healing.

Phototherapy based on photosensitizers and photothermal agents has received more and 

more attention in antibacterial applications due to its spatiotemporal controllability, non-

invasiveness, and avoidance of drug-resistant bacteria.116–118 However, during phototherapy 

therapy, high local temperatures not only kill bacteria of the lesion tissues but also 

would destroy the normal cells. In addition, the uneven heat distribution in the biofilm 
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limits its ablation.119 Therefore, the use of low-power laser-triggered phototherapy to 

eradicate biofilms remains an urgent problem. Cai et al. reported an NO/phototherapeutic 

nanoplatform (AI-MPDA) by mesoporous polydopamine (MPDA) to load L-arginine (L-

Arg) and indocyanine green (ICG) to eliminate established biofilm (Figure 10A).120 Under 

NIR irradiation, AI-MPDA can generate mild heat (≤45 °C) and ROS, catalyze L-Arg 

to release NO, and finally achieve severe destruction of the bacterial members. The 

multifunctional phototherapeutic platform could efficiently eliminate biofilm in a model of 

the abscess. Ji et al. designed a charge switchable supramolecular nanocarrier with loading 

NO and a photosensitizer to synergistic NO and PDT to eradicate MRSA formation biofilm 

(Figure 10B).121

NO can cooperate with phototherapy to combat biofilms; NO could react with O2
.− to 

generate more reactive ONOO− to completely eradicate biofilm infection. Wu et al. designed 

a multifunctional titanium implant (Ti-RP/PCP/RSNO) for co-delivery of a hydrophilic 

and viscous hydrogel of poly (vinyl alcohol) modified chitosan, polydopamine, and a red 

phosphorus nanofilm (Figure 10C).122 Under the irradiation of NIR light, NO and ROS 

were generated for eradicating MRSA biofilms. The results confirmed that synergistic 

phototherapy, immunotherapy, and NO therapy have excellent osteogenic and biofilm 

clearance effects.

WOUND HEALING

The wound-healing process is an integration of these overlapping stages: hemostasis, 

inflammation, proliferation, and tissue remodeling leading to wound resolution.123,124 NO is 

a promising wound healing agent,125,126 attributed to regulating various biological processes 

during wound healing, such as inflammatory response,127 cell proliferation, angiogenesis, 

microbial elimination, and collagen formation (Table 5).128,129 Shen et al. prepared the 

biocomposite mats by electrospinning S-nitrosated keratin (KSNO) with polyurethane (PU) 

and gelatine (Gel) (Figure 11A).130 The mats released NO that promoted the proliferation of 

L929 murine fibroblasts and human umbilical vein endothelial cells (HUVECs), accelerated 

the cell adhesion and growth along the random arrangement of electrospun fibers as ECM-

mimicking scaffolds for cells. These results showed that the NO-releasing mats could 

accelerate wound healing without stimulating inflammation. Liu et al. also proved NO 

released can accelerate the scarless repair of burned skin by inhibiting microorganisms and 

pro-vascularization activities.131 NO can combine other antibacterial methods to accelerate 

wound healing.132 For example, Cai et al. reported a ROS-responsive NO generation system 

(Ce6@Arg-ADP) for synergistic combat bacteria, eventually accelerating wound healing 

(Figure 11B).133 NO is a vasodilator that stimulates the development of new blood vessels 

and improves collagen deposition. Yeh et al. reported a NO-loaded Prussian blue nanocube 

(PBNO) (Figure 11C).134 Blood perfusion improved in a controllable fashion following 

multi-delivery PBNO colloids to the wound and NIR light irradiation, effectively enhancing 

the angiogenesis and collagen deposition. Bacterial infection is one of the most limitations 

of wound healing.135

Accelerating wound healing is critical for the diabetic.136 Cu2+ generation in the lesion 

can develop wound healing.137 Xu et al. designed synergistically released NO and Cu2+ 
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nanoplatforms to accelerate diabetic wound healing.138 The prepared nanocomposites 

accelerated the diabetic wound healing, owing to NO releasing at the wound site promoting 

angiogenesis, collagen deposition, and endothelial cell growth without stimulating 

inflammation.139

EYE DISEASES

Glaucoma is a leading cause of blindness in over 70 million people worldwide.140 Ocular 

hypertension is the primary risk factor, and reduction of intraocular pressure (IOP) is 

the most effective clinical method to prevent glaucoma vision loss.141 NO could reduce 

outflow resistance and IOP in animal models and human patients by relaxing trabecular 

meshwork (TM) containing Schlemm’s cells (Table 6).142 Stevens et al. developed targeting 

the conventional efflux pathway NO nanoparticle to therapy for glaucoma by specifically 

controlling NO release in the lesion site (Figure 12A).143 These results have shown that the 

as-prepared platform can target delivery of NO to the lesion tissue, and achieve a control 

NO-releasing. Therefore, endogenous stimuli-responsive NO nanomedicine is promising for 

glaucoma treatment. Chen et al. designed an endogenous NO nanotherapeutic (HOS-JRLO) 

by biodegradable hollow SiO2 nanoparticles for efficient co-delivery of JS-K and L-Arg for 

inducing appreciable IOP reduction. This nanotherapeutic was dual stimuli-responsive in 

that releasing NO by hydrophobic JS-K in response to ascorbic acid, and by L-Arg catalyzed 

by endothelial NO synthase (Figure 12B).144

NO participates in the process of wound healing of the cornea.145,146 Kim et al. designed a 

light-responsive gatekeeper (pH@MSN-CaP-NO) for spatiotemporal-controlled NO delivery 

(Figure 12C).147 The developed gatekeeper system can store NO stably prior and can 

promote cornea wound healing. Polymersomes have attracted extensive attention to transport 

both hydrophilic and hydrophobic drugs.148 Hu et al. constructed NO-releasing vesicles 

(BP Vesicles) via the self-assembly of NO donor-anchored amphiphiles polymer (Figure 

12D).149 The photo-mediated NO release increased cell migration and viability, synergizing 

the faster corneal healing process.

OSTEOPOROSIS

Osteoporosis can make bones more prone to sudden and unexpected fractures. 

NO can alleviate osteoporosis by promoting the proliferation and differentiation of 

osteoblasts.150,151 Sung et al. formulated an injectable microparticle (MP) system to 

deliver NO donor (NONOate) by integrating phase-change materials capric acid (CA) and 

octadecane (Figure 13A).152 The CA/OD MPs undergo a solid-to-liquid phase transition, 

resulting in leakage of the NONOate encapsulated inside. CA could provide an acid 

environment by deprotonating to promote NONOate decomposition to generate NO. 

Deprotonated CA captures the generation bubble to form stable micellar. This system 

can efficiently prevent NO bubbles from collapsing, prolong their half-life, exert a 

durable therapeutic function, and reverse ovariectomized-induced osteoporosis. Wang et 

al. developed a bone-targeting NIR photosensitizing NO-generating nanoplatform (UCPA) 

in response to NIR light (Figure 13B).153 The UV-light responsive NO donor (BNN) 

could release NO due to the upconversion property of the nanoparticle to convert an 
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irradiating NIR light (808 nm) into UV/blue light. Experiments both in vitro and in vivo 

showed that UCPA has a good affinity for the bone to directly release NO in bone and 

reverse osteoporosis. To achieve these targeting and therapeutic properties, upconversion 

nanoparticles (UCNPs) were carefully designed first with a core–shell–shell structure: (1) a 

monodisperse spherical core of NaYF4:Yb/Tm with a diameter of ∼26 nm from thermal 

decomposition, (2) a shell layer of ~2nm thickness containing Nd (NaYF4:Nd/Yb) to 

enable excitation by the deep penetrating 808 nm NIR light, (3) a further shell about 1 

nm thickness of NaYF4 to enhance its upconversion luminescence (UCL) performance. Next 

these uniform UCNPs were coated with mesoporous silica (MSN) layer of ∼15 nm thickness 

to make the surface hydrophilic and loadable of the NO donor BNN. And finally, the UCM 

surface was modified by an amino group to load the NO donor BNN and coated with the 

outer most layer of PAA-Ald, poly(acrylic acid) (PAA) covalently bond to Ald with a high 

bone affinity, to form the nanomedicine UCPA for effectively targeting to the bone. The NIR 

light can reach UCPA accumulated deep in the bone while avoiding the potential damage 

caused by the UV/blue light, so the release of NO could be precisely controlled to promote 

osteoblast differentiation and to reverse osteoporosis. Therefore, strategically designed smart 

NO nanoplatforms are promising in treating osteoporosis.

INFECTIOUS DISEASES: VIRUSES AND PARASITES

NO is utilized directly and through the immune system to eliminate many types of 

infectious agents without unduly harming the host cells and the hosts.154 COVID-19, which 

immerged in 2019 and was caused by severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2),155,156 is responsible for more than 6.5 million deaths according to the 

World Health Organization (WHO) globally. This pandemic also has resulted in the loss 

of individual livelihoods and a global economic depression due to prolonged shutdowns. 

Despite significant progress in clinical vaccines against COVID-19 and a much better 

understanding of SARS-CoV-2 and COVID-19 prevention and management, the emergence 

of new SARS-CoV-2 variants likely will overturn the major progress achieved so far in 

limiting the spread of the virus and its damage.157 Notably, NO can inhibit the replication of 

several DNA and RNA viruses owing to its high reactivity.158,159

Application of NO in the therapy of COVID-19

SARS-CoV-2 is the latest of the RNA viruses to cause the ongoing pandemic, whereas 

the therapeutic potential of NO delivery systems against infectious is unlimited based 

on fundamental mechanisms (Figure 14A).159 NO has been demonstrated to inhibit the 

replication of SARS-CoV-2 by two distinct mechanisms.160 Firstly, NO or its derivatives 

cause a reduction in the palmitoylation of nascent expressed spike (S) protein which affects 

the fusion between the S protein and its cognate receptor, angiotensin-converting enzyme 

2. Secondly, NO and its derivatives cause a reduction in viral RNA production in the early 

steps of viral replication, and this may attribute to an effect on one or both cysteine proteases 

encoded in Orf1a of SARS-CoV-2. But peroxynitrite does not affect the replication cycle of 

AARS-CoV-2.
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Mirazimi et al. found that NO can effectively curb the replication of SARS-CoV-2 in a 

manner proportional to its concentration. This was achieved by suppressing the production 

of both viral proteins and RNA (Figure 14B)161. Moreover, inhaling NO has been shown 

to improve oxygen levels in patients with severe acute respiratory distress syndrome 

and decrease pulmonary vascular resistance. 162,163 Lundkvist et al. also explored NO’s 

antiviral properties against SARS-CoV-2 in vitro and found that SNAP (NO donor) could 

successfully suppress the virus’ replication in Vero E6 cells in a dose-dependent manner. 

Additionally, the authors observed that NO could decrease the activity of the SARS-CoV-2 

protease by nitrosation of its active site cysteine. Although the virus was not fully eradicated 

at concentrations of 200 μM and 400 μM, SNAP treatment delayed the onset of the viral 

cytopathic effect in the treated cells, and the protective effect was positively correlated with 

the level of inhibition of virus replication. These findings provide a theoretical foundation 

for the potential use of NO in the treatment of COVID-19 in a clinical setting (Figure 

14C).164

Tandon et al. conducted a phase III clinical trial to assess the efficacy of NO in eliminating 

SARS-CoV-2 RNA from the nasal passages.165 The study involved 306 adults (aged 18 to 

70) with mild symptomatic COVID-19, with a focus on patients at a high risk of illness 

progression. Participants self-administered NO through a nasal spray (NONS), using two 

sprays in each nostril (0.45 mL solution/dose) six times daily for 7 days. The results 

showed that the high-risk population, defined as unvaccinated individuals over 45 years 

of age or with one or more comorbidities, experienced a significant reduction in SARS-

CoV-2 RNA burden of 93.7% at 24 hours and 99.0% at 48 hours with use of NONS. 

Inhaling NO was crucial for alleviating COVID-19 symptoms, especially in light of the 

shortage of ventilators, and was granted emergency authorization by the US FDA to save 

COVID-19 patients.166 Furthermore, phase 2 clinical trials have been ongoing to evaluate 

NO for the specific treatment or prevention of COVID-19 (NCT04305457, NCT04306393, 

NCT04312243). Such approaches hold great promise, particularly for correcting nitric oxide 

deficiencies caused by infections.167–169

Guidelines for NO nanomedicines in infectious diseases

Beyond bacteria and viruses, the important role of NO is known in parasitic infections 

where malaria is the biggest human burden.170 Interestingly several anti-malaria drugs 

including Hydroxychloroquine (HCQ) and Artemisinin-based combination therapies (ACTs) 

were front-runner candidate drugs to combat COVID-19 at least during its onset.171,172 The 

mechanisms of action again all infectious agents include the direct killing of microbes and 

their growth inhibition via the immune system.173,174 Strong evidence has been accumulated 

that NO has many beneficial effects on hosts’ defense against parasites including malaria 

protozoans but also requires tight control to limit damage to the body’s cells either by 

cytotoxicity or by inflammation (Figure 15).175

Fighting infectious diseases like COVID-19 and malaria requires faster and more dynamic 

application of NO gas or NO donor systems. Inhaled NO content is in the mM range, 

orders of magnitude higher than endogenously produced NO (μM–nM). However, such 

high NO concentrations (> 1 mm) may cause NO poisoning especially if utilized in 
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emergency rooms or intensive care units. Developing smart NO nanomedicine loaded with 

NO donors via FDA-approved liposomes or polymersomes, administered as a nasal spray 

or injection, facilitates the sustained release of NO in the lungs and other targeted organs 

for effective treatment under life-threatening situations of patients with COVID-19, severe 

malaria, and other dangerous infections. However, careful guidelines must be developed to 

ensure the safe and effective use of NO nanomedicine in this setting. (1) Determining the 

optimal amount of NO to effectively treat COVID-19: The optimal level of NO required 

to effectively treat COVID-19 is not yet known and will likely vary based on the severity 

of the illness. It is important to determine the minimum effective concentration of NO 

for the treatment of COVID-19 while minimizing potential toxicities. The concentrations 

and durations of NO undergoing clinical or preclinical trials of COVID-19 treatment are 

summarized in Table 7. (2) Delivery method and system: The delivery method and system 

for NO nanomedicine will depend on the severity of the illness and the stage of the 

disease. For example, inhaled NO may be appropriate for mild cases of COVID-19, while 

intravenous administration may be necessary for severe cases. (3) Potential toxicities: As 

with any therapeutic agent, it is important to minimize the risk of toxicity while delivering 

effective therapeutic concentrations of NO to the infection site. (4) Preclinical and clinical 

testing: Before NO nanomedicine can be used in humans to treat COVID-19, it must 

undergo rigorous preclinical testing and clinical trials to determine its safety and validate 

its efficacy. (5) Interactions with other therapies: It is important to consider the potential 

interactions between NO nanomedicines and other therapeutics used to treat COVID-19, 

such as antiviral drugs and immunomodulatory agents.

CHALLENGES IN NO NANOMEDICINE

The number of NO nanomedicines is rapidly increasing, but the efficiency of clinical 

translation is barely satisfactory. All NO nanomedicines face the same set of challenges. 

First, the safety issues of nanomedicine are the biggest for clinical application. The synthesis 

of nanocarriers is complex and uses many potentially hazardous chemicals that have yet 

to receive clinical backing for human use. Even the FDA-approved liposomes, which have 

been extensively studied, still face complex toxicity issues when combined with different 

clinical drugs. In addition, the physicochemical properties of nanomedicines, including 

dimension, shape, surface area, and aggregation, can impact biodistribution and interactions 

with cells and biomolecules at larger scales, adding to safety concerns. Second, NO is highly 

reactive and can damage healthy cells and tissues, thus carefully controlling the dosage to 

minimize its toxicity is crucial. Determining the minimum effective concentration of NO 

needed to treat the disease while minimizing potential toxicities must remain a key research 

and development focus. For example, Acute kidney injury (AKI) is a high-burden global 

disease partially caused by reactive oxygen/nitrogen species (RONS), so NO generating 

nanomedicines for disease therapy must prevent AKI and other side effects by various 

smart strategies such as co-development of NO scavengers. Finally, the optimal amount 

of NO for a specific disease varies with the disease state and severity. Thus, it is highly 

desirable to image the process of spatiotemporal controllable release of NO by the guidance 

of multi-model imaging (e.g., MRI, PET, CT, fluorescence imaging) from in vitro to in vivo, 

favoring the development of NO nanomedicines in the forms of multifunctional theranostics.
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OUTLOOK AND SUMMARY

NO is powerful and broad-spectrum in biology and medicine, so its relevance and 

application are seemingly limitless, and we touch upon just a few additional examples in 

this outlook below. Vascular stent implantation has become the central therapy to treat 

cardiovascular diseases, owing to the immediate reopening of acute vessel closure.176 

But the long-term clinical success of stenting is limited by in-stent restenosis (i.e., 

thrombosis and intimal hyperplasia around the implants).177 NO has antiplatelet aggregation 

and SMC inhibition capabilities.178 Therefore, organic nitrates and nitrites have been 

used as cardiovascular therapeutic agents to improve the dilation of vascular smooth 

muscle.179 Indeed, NO not only has been developed for decades for effective cardiovascular 

disease therapy but also to improve thromboresistance, anti-restenosis, and promote re-

endothelialisation after stent implantation.180–182 With active ongoing research on the 

biological mechanism of NO, scientists will surely report more and more NO nanomedicine 

candidates for the treatment of a variety of additional diseases.183

NO is powerful and broad-spectrum in medicine because its prime targets are sulfhydryl 

and iron which are central in the physiology and biochemistry of all life and because it is 

small and lipophilic few cells or microbes could block its entry. But the therapeutic effect 

of any NO-based drug is dependent on the concentration and duration of NO released.6 

Therefore, controlling NO concentration and release rate remains critical for developing 

helpful therapeutics. New biotechnology and nanomedicine have greatly improved the 

spatiotemporally controlled release of NO. Physically entrapping, adsorbing, or covalently 

linking small NO donors with liposomes, polymers, hydrogels, and inorganic/organic hybrid 

nanoparticles exhibits the following advantages: (1) Extended blood circulation time and 

enhanced permeability and retention in disease tissue, concurrent delivery of multiple drugs 

to the disease site for synergistic therapy, (3) the integration of diagnosis and treatment for 

precise disease therapy.

The development of multifunctional NO nanomedicines and further research on NO 

therapeutic mechanisms will provide theoretical guidance for clinical translation of next-

generation NO drug delivery systems. Although NO’s role in disease treatment and 

development will remain multi-facet and not wholly understood, NO therapy is an emerging 

research frontier and deserves much further exploration. In this review, we have detailed the 

significant recent progress in NO nanomedicines and their relevant biomedical mechanisms 

for the treatment of a variety of diseases such as cancer, bacterial biofilm, wound healing, 

eye disease, osteoporosis, and infectious diseases including COVID-19 and malaria. While 

NO nanomedicines still require much research and development to complete clinical 

translation, many NO nanomedicines will eventually become life-saving precision therapies.

ACKNOWLEDGMENTS

This research was supported in part by the Intramural Research Program of the NIH, including NIBIB (No. 
1ZIAEB000015), the Fujian Normal University Start-up Funds (Y0720302K13), Fujian China, and Innovation 
team of Photoelectric functional materials and devices for biomedical theranostics of Fujian Normal University 
(Y07204080K13).

Wang et al. Page 15

ACS Nano. Author manuscript; available in PMC 2023 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VOCABULARY

nitric oxide nanomedicine
the use of nanocarriers to deliver nitric oxide (NO) to specific areas of the body in a targeted 

and controlled manner

coronavirus
a virus class typified by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

that causes the current COVID-19 pandemic disease in humans

wound healing
a process by which the body repairs damage to tissues caused by injury or disease, including 

three main phases of wound healing: inflammation, proliferation, and remodeling

glaucoma
a type of eye disease with high intraocular pressure, which can damage the optic nerve and 

lead to loss of vision

osteoporosis
a bone disease in which bones become weak and brittle due to loss of tissue, increasing the 

risk of fractures
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Figure 1. 
NO inhibits P-gp expression to reverse MDR. A) Schematic mechanisms of nitric 

oxide (NO) against multidrug resistance (MDR). Reprinted with permission from ref 26. 

Copyright 2017 Elsevier. B) pH-responsive NO generating to reverse P-gp-mediated MDR. 

(I) Schematic composition of HMs and NO generating mechanism to responsive acid tumors 

environment. (II) Confocal images of P-gp expression levels after different treatments. 

Reprinted with permission from ref 31. Copyright 2015 WILEY-VCH. C) Polyprodrug 

nanoparticles (CPNs) using cisplatin and ONOO− to overwhelm cisplatin-resistant cancers. 

(I) Mechanism of CPNs to overcome cisplatin-resistant cancers. (II) P-gp expression level 
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for cells imaged after CPN and different treatments. Reprinted with permission from 

ref 33. Copyright 2020 Elsevier. D) Combined NO generation, mild photothermal, and 

chemotherapy to overcome MDR by PNOC-PDA/DOX. (I) Schematic mechanism. (II) 

Western blot detection of P-gp expression in MCF-7/ADR upon different treatments. 

Reprinted with permission from ref 34. Copyright 2019 American Chemical Society. P-

glycoprotein 1 (permeability glycoprotein), P-gp; multidrug resistance protein 1, MDR1; 

Hypoxia-inducible factor, HIF-1; Photothermal Therapy, PTT.
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Figure 2. 
NO promotes tumour environment normalization and enhances tumor chemotherapy. 

A) Schematic of the mechanism NanoNO to suppress hepatocellular carcinoma (HCC) 

progression in mice. The perivascular gradient produces nitric oxide (NO) and promotes 

the normalization of vessels and cancer suppression via apoptotic and programmed cell 

death ligand 1 (PD-L1) pathways in the tumor microenvironment (TME). Reprinted 

with permission from ref 42. Copyright 2019 Nature. B) NO inhibited collagen 

expression and improved chemotherapeutic penetration in tumors. (I) Mechanism of matrix 
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metalloproteinase aka matricin (MMP) production and collagen degradation induced by 

ONOO−. (II) NO-generating nanoparticles increased the production of MMP-1 and MMP-2 

shown by Western blots. (III) Confocal imaging for detecting collagenase activity under 

various treatments. (IV) immunofluorescent staining of Collagen I in tumors. Reprinted with 

permission from ref 47. Copyright 2019 American Chemical Society.
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Figure 3. 
NO enhances cancer radiotherapy. A) X-Ray-inducible ONOO− from nanosized scintillators 

of LiLuF4:Ce3+for radiosensitization. (I) Schematic illustration of RBS-T-SCNPs and the X-

ray-controlled ONOO− generation for improving radiotherapy. (II) Detection of cell viability 

of A549 cells, expression of γ-H2AX, and Nitro-Tyrosine with various treatments (scale 

bar= 20 μm). Reprinted with permission from ref 52. Copyright 2018 WILEY-VCH. B) 

X-ray-triggered depth-independent on-demand NO-release for hypoxic radiosensitization. 

(I) Construction of PEG-USMSs-SNO. (II) X-ray-triggered NO release in zebrafish larvae 

from PEG-USMSs-SNO. (III) X-ray dose-dependent NO release from PEG-USMSs-SNO 
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in one hour. (IV) Cumulative NO release during the first day from PEG-USMSs-SNO after 

dose-dependent X-ray irradiation. (V) Relative tumor growth and (VI) weight change curve 

of mice with 4T1 tumors after indicated treatments. Reprinted with permission from ref 55. 

Copyright 2015 WILEY-VCH.
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Figure 4. 
NO enhances hypoxia tumor photodynamic therapy by inhibiting HIF-α expression and 

generation of ONOO−. A) Schematic illustration of PDT-specific O2 economizer used to 

inhibit cellular respiration to combat hypoxia tumor. Reprinted with permission from ref 65. 

Copyright 2019 American Chemical Society. B) A cascade reaction of NO and hydrogen 

radicals for anti-hypoxia PDT. (I) Schematic generation of the H•, O2
•–/HO2

•, NO, ONOO–, 

and 1O2 from DANO and GSH upon light irradiation. (II) Cell viability images with DANO, 

calcein-AM, and PI staining under normoxic and hypoxic conditions with LED irradiation. 

Scale bars, 100 μm. Reprinted with permission from ref 71. Copyright 2021 American 

Chemical Society.
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Figure 5. 
NO enhances photothermal therapy for cancer. A) NIR light-triggered NO release for 

sensitizing mild photothermal therapy (PTT). (I) Schematic illustration of the synthesis 

of multifunctional BNN-Bi2S3 and NIR triggered NO and mild PTT in cancer therapy. 

(II) LC3-II, LC3-I, and p62 expression in BEL-7402 cells with different treatments by 

Western blot. Reprinted with permission from ref 76. Copyright 2018 WILEY-VCH. 

B) Schematic illustration of NIR-II -responsive NO-release anti-angiogenesis hydrogel. 

(I) Construction of WB@hydrogel and NIR-II laser-triggered anti-angiogenesis therapy 

of cancer. (II) Anti-angiogenesis mechanism of WB@hydrogel under laser irradiation. 

Reprinted with permission from ref 80, Copyright 2021 WILEY-VCH. Vascular endothelial 

growth factor, VEGF; Basic fibroblast growth factor, bFGF; Thrombospondins 1, TSP-1; 

Prolyl 4-hydroxylase subunit alpha-2, P4HA2.
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Figure 6. 
NO sensitizes photoacoustic therapy by generating ONOO−. A) Schematic illustration 

of photoacoustic (PA) cavitation-triggered ONOO− generation for cancer therapy. B) In 
vitro NO-releasing of NO-NCPs under different treatments. C) Western blotting analysis 

of apoptosis-related proteins (cleaved-caspase 3 and Nitro-Tyrosine proteins). D) Gel 

electrophoresis detected DNA fragmentation of EMT6 cells after different treatments. E) 

In vivo PA imaging of tumor-bearing mice following intravenous injection of NO-NCPs. 

F) Tumor response to various treatment processes. Reprinted with permission from ref 86. 

Copyright 2021 WILEY-VCH.
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Figure 7. 
NO enhances chemodynamic therapy for liver tumors. A) Illustration of Fe (III)-BNCP 

and Fe (II)-BNCP synthesis as nanoscale coordination polymers. B) The mechanism of 

NO-CDT synergistic therapy using Fe (II)-BNCP for tumor cells. C) NO release at different 

content of GSH. D) Tumor growth curves during various treatment processes: (a) saline, (b) 

Zn (II)-DNCP, (c) Fe (II)-DNCP, (d) Zn (II)-BNCP, and (e) Fe (II)-BNCP. Reprinted with 

permission from ref 89. Copyright 2019 American Chemical Society.
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Figure 8. 
NO for antibacterial applications. A) Illustration of visible light-triggered simultaneous 

release NO and formaldehyde as a broad-spectrum antibacterial. Reprinted with permission 

from ref 104. Copyright 2021 American Chemical Society. B) Synergistic photothermal 

and NO antibacterial research based on dendritic Fe3O4@Poly(dopamine)@PAMAM 

nanocomposite for NO-delivery. Reprinted with permission from ref 105. Copyright 2018 

WILEY-VCH. C) Synergistic NO and carbon monoxide (CO) for combating methicillin-

resistant Staphylococcus aureus (MRSA) infections. (I) Synthetic routes of PCNO diblock 
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copolymers and their mechanism for combating bacteria. (II) SEM images of E. coli 
(top) and S. aureus (bottom) incubated with PCNO micelles after irradiation (410 nm 

light). (III) Quantitative analysis of MRSA infection wound healing after receiving various 

treatments. (IV) Quantitative analysis of bacteria on days 1, 3, and 5 in wound tissues of 

MRSA-infected mice receiving different treatments. Reprinted with permission from ref 

109. Copyright 2021 WILEY-VCH.
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Figure 9. 
NO for antibiofilm eradication. A) Visible-light-triggered NO releasing to eradicate biofilm. 

(I) Illustration of PEO-b-PCouNO nanoparticle preparation and synergistic therapeutic 

mechanism of NO and antibiotic against P. aeruginosa biofilm. (II) Two-dimensional and 

3D confocal laser scanning microscopy (CLSM) images for detecting P. aeruginosa biofilms 

eradiation. (III) Quantitative analysis of biofilm viability. (IV) ATP assay for analysis of 

Planktonic bacteria. Reprinted with permission from ref 113. Copyright 2019 American 

Chemical Society. B) Red-light triggered NO release for efficient antibacterial treatment. 

(I) Illustration of the formulation of red-light triggered micelles and the NO-releasing 

mechanism of CouN(NO)-R derivatives responding to red light. (II) Representative images 

of the abscess during the treatment process in vivo. Reprinted with permission from ref 115. 

Copyright 2021 WILEY-VCH.
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Figure 10. 
NO enhances phototherapy against biofilms. A) NIR-mediated NO-enhanced photodynamic 

therapy (PDT) and mild photothermal therapy (PTT) for biofilm elimination. (I) Schematic 

illustration of the mechanism by which NIR triggers NO release to enhance PDT and 

PTT for biofilm ablation. (II) Scanning electron microscopy (SEM) images of biofilm 

after various treatments. (III) Live/dead stained 3D confocal laser scanning microscopy 

(CLSM) of biofilms challenged with other treatments. Reprinted with permission from ref 

120. Copyright 2020 American Chemical Society. B) supramolecular nanocarriers with a 

switchable surface charge for synergistic NO and PDT destruction of biofilms. Reprinted 

with permission from ref 121. Copyright 2020 American Chemical Society. C) Illustration 

of the mechanism of MRSA biofilm eradication via NO-triggered gene downregulation. 

Reprinted with permission from ref 122. Copyright 2020 American Chemical Society.
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Figure 11. 
NO accelerates wound healing. A) Keratin composite mats release NO based on S-nitrosated 

to accelerate wound healing. Reprinted with permission from ref 130. Copyright 2020 

Elsevier. B) ROS-triggered NO-releasing for synergistically combat bacterial infection 

and accelerate wound healing based on L-Arg-enriched amphiphilic peptide. Reprinted 

with permission from ref 133. Copyright 2021 WILEY-VCH. C) Photon-mediated NO-

releasing from hemin-derived colloids to promote angiogenesis, microcirculation, and 

collagen deposition during wound healing. (I) Illustration of a NO-carrying Prussian blue 

(PB-NO) nanocubes for NIR-responsive NO-release healing of incisional wounds. (II) In 
vivo assessment of NO release for incisional wound healing. Reprinted with permission 

from ref 134. Copyright 2019 American Chemical Society.
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Figure 12. 
NO for treatment of eye diseases. A) Localized and controlled delivery of NO for glaucoma 

therapy. Reprinted with permission from ref 143. Copyright 2017 WILEY-VCH. B) NO 

releasing in intraocular pressure (IOP) reduction pathway for precision glaucoma therapy. 

Reprinted with permission from ref 144. Copyright 2021 Elsevier. C) Smart NO delivery 

for corneal wound healing by light-induced acid generation from pH@MSN-CaP-NO. 

Reprinted with permission from ref 147. Copyright 2016 American Chemical Society. D) 

Light-triggered NO release from polymersomes for corneal wound healing. Reprinted with 

permission from ref 149. Copyright 2019 Royal Society of Chemical.
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Figure 13. 
Smart microparticles (MPs) release NO to reverse osteoporosis. A) After subcutaneous 

administration, MPs were converted into small micelles through a phase transition to 

generate NO to alleviate osteoporosis. (I) Illustration of fabrication, structure, and functional 

mechanism of MPs. (II) Micro-CT images and H&E staining images of bones from test rats 

under varying treatments. (III) Serum biomarker levels of alkaline phosphatase (ALP) and 

osteocalcin after multiple treatments. Reprinted with permission from ref 152. Copyright 

2017 WILEY-VCH. B) NIR-induced NO therapy for osteoporosis mediated by upconversion 

nanoparticle (UCPA-BNN). (I) Schematic illustration of NIR-triggered NO therapy for 

Osteoporosis based on UCPN-BNN. (II) Alizarin red staining photos of calcium nodules 

after varying treatments. (III-V) The expression of Col-1, Runx2, and ALP of MC3T3-E1 

cells after varying treatments. Reprinted with permission from ref 153. Copyright 2021 

American Chemical Society.
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Figure 14. 
Application of NO in the therapy of COVID-19. A) The mechanisms of nitric oxide (NO) 

antiviral. Reprinted with permission from ref 159. Copyright 2021 Elsevier. B) NO can 

efficiently inhibit viral RNA. Reprinted with permission from ref 161. Copyright 2005 

American Society for Microbiology. C) Mitigation of the replication of SARS-CoV-2 by 

NO in vitro. (I) Comparison of the cytopathic effect development between cells treated with 

SNAP (a NO donor) and untreated controls. (II, III) Effect of NO generation on the activity 

of recombinant SARS-CoV-2 protease. Reprinted with permission from ref 164. Copyright 

2020 Elsevier.
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Figure 15. 
Physiological and Immunological mechanism of NO action. Reprinted with permission from 

ref 175. Copyright 2001 Elsevier. Nitric oxide synthase enzymes, NOS; lipopolysaccharide, 

LPS; interleukin-1, IL-1; Tumor necrosis factor alpha, TNF-α; Interferon, IFN; messenger 

RNA, mRNA.
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Scheme 1. 
The treatment mechanisms of nitric oxide (NO) for various diseases. In addition to the direct 

effects of NO on biomolecules, NO reacts with oxygen or other reactive oxygen species 

(ROS) to generate reactive nitrogen species (RNS) to act on proteins, lipids, nucleosides, and 

metals as well as to induce transnitration, which can cause DNA strand breaks, abasic sites, 

enzyme activity inhibitions, mitochondrial depolarization, mitochondrial dysfunction, and 

DNA/RNA replication inhibitions. High-intensity focused ultrasound, HIFU; Glutathione, 

GSH.
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Table 1.

Clinical NO Donors.

NO donor Disease Half-life Working mechanism of NO Side effects

Sodium 
nitroprusside

Hypertensive 
emergency, heart 
failure, decrease 
bleeding

< 2 minutes NO stimulates intracellular cyclic 
guanosine monophosphate (cGMP) 
production.

low blood pressure, cyanide toxicity, 
methemoglobinemia

Glyceryl trinitrate Angina pectoris, 
chronic heart failure

2 to 3 minutes Relaxation of vascular smooth 
muscles, arteriolar and venous 
dilatation.

Headache, dizziness, 
lightheadedness, nausea, flushing, 
and burning/tingling under the 
tongue

Isosorbide 
dinitrate

Angina pectoris, heart 
failure, esophageal 
spasms

1 hour Relaxation of vascular smooth 
muscle, dilatation of peripheral 
arteries and vein

Headache, dizziness, 
lightheadedness, nausea, and 
flushing

Pentaerythritol 
tetranitrate

Angina, heart 
conditions

4 to 5 hours Increased cellular cGMP 
concentration in vascular smooth 
muscle.

Flushing, dizziness, nausea, 
headache, hypersensitivity, rash, fast 
heart rate, low blood pressure 
(hypotension),

Molsidomine Angina pectoris, 
myocardial infarction

1 to 2 hours Increased cGMP levels and 
decreased intracellular calcium ions 
in smooth muscle cells.

Headache, low blood pressure
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Table 2.

NO Nanomedicines for Tumor Therapya

Nanomedicine NO donor Release condition Working mechanism of NO Refs

RBS-T-UCNPs Roussin’s black salt (RBS) 808 nm laser 
irradiation

Sensitizing chemotherapy by reducing 
tumorigenic ability: inhibiting cancer stem-like 
cells and mammosphere formation ability, 
reducing CD44+ / CD24− subsets.

184 

α-CD-Ce6-NO NPs α-CD-NO GSH Sensitizing PDT: depleting intracellular GSH, 
relieving hypoxia at tumor sites, and ONOO− 

generation to enhance ROS reactivity.

69 

RBS-UCNPs RBS 808 nm laser 
irradiation

Sensitizing chemotherapy: High NO 
concentration kills cancer cells; low NO 
concentration reduces P-gp level to overcome 
MDR.

30 

NanoNO DNIC [Fe(μ-SEt)2(NO)4] Physiological 
condition

Sensitizing chemotherapy: gradient NO 
generation efficiently reprograms tumor 
vasculature and microenvironments to improve 
chemotherapy

42 

NMOF−SNO R-SNO 808 nm laser 
irradiation

Sensitizing PTT: NO releasing to enhance PTT 
efficiency

185 

DN@MSN R-SNO Natural release Sensitizing chemotherapy: NO activating 
MMP-1 and MMP-2, promoting DOX delivery 
to more deep tumour tissues

47 

Peptide-HMSN-LA L-Arg ROS NO direct oxides proteins 81 

photoNORM/UCNP Metal-NO 794 nm laser 
irradiation

Low dose reduces HIF-1a, and high doses are 
cytotoxic

186 

PTNGs R-SNO 808 nm 
laser irradiation 
(Photothermal)

Sensitizing chemotherapy: NO reverses MDR by 
inhibiting Pgp expression

187 

GCZ@M nitrosoglutathione (GSNO) Ultrasound irradiation Sensitizing SDT: ONOO− generation, relieving 
tumour hypoxia

188 

IDDHN 2-(Nitrooxy)acetic 808 nm 
laser irradiation 
(Photothermal)

Sensitizing chemotherapy: NO improves the 
EPR effect

189 

L-Arg-HMON-GOx L-Arg H2O2 Starving-like/NO for synergistic cancer therapy 190 

BNN-Bi2S3 Bis-N-nitroso compounds 808 nm laser 
irradiation

NO impairs the autophagic self-repairing ability 
of tumor cells in situ

76 

PFTDPP-SNAP NPs R-SNO 808 nm 
laser irradiation 
(Photothermal)

Sensitizing PTT: NO generation enhances PTT 
efficiency

191 

Lip-SNAP S-nitroso-N-
acetylpenicillamine

GSH NO induces stromal depletion for improved 
nanoparticle penetration

192 

S–NO NPs Aryl N-nitrosamine 808 nm 
laser irradiation 
(Photothermal)

NO release activates photothermal agent for 
synergistic tumor treatment

193 

QM-NPQ@PDHN NPQ Glutathione S-
transferases π

Specific, high-efficacy, and low-toxic 
patocellular carcinoma therapy

194 

AL-SISIN-1 SISIN-1 Physiological 
conditions

Inhibiting tumour metastasis by inducing 
cytotoxicity preferentially on tumour cells in 
lymph nodes

195 

iCPDN R-SNO GSH Sensitizing chemoimmunotherapy: Reversing 
DOX resistance and enhancing antitumor 
immune responses by reprogramming the tumor 
microenvironments.

196 

WB@hydrogel BNN6 1064 nm 
laser irradiation 
(photothermal)

Anti-angiogenesis and tumor microenvironment 
reprogramming: activating wild type p53 

80 
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Nanomedicine NO donor Release condition Working mechanism of NO Refs

expression, alternating pro-angiogenic TME to 
anti-angiogenic TME.

pPTX/pCD-pSNO R-SNO Redox conditions Sensitizing chemoimmunotherapy: Enhancing 
dendritic cell activation, T cell expansion, 
cytotoxicity, and immunogenic cell death,

197 

TPE-RSNO micelles R-SNO H2O2 Reducing P-gp expression, reversing MDR, RNS 198 

FZ-SS-FZ@FA NPs phenylsulfonylfuroxan GSH Upregulating p53 and cleaved caspase-3 proteins 199 

Ce6/PDE5-i@FHMON-
O2

_ DE5-inhibited PDE5 
pathway to upregulate 
eNOS

RNS helps ROS to evade the hypoxia-induced 
resistance to ROS-based antitumor

200 

NPSD-IR NTC GSH Sensitizing chemotherapy: inhibiting Pgp 
expression to overcome MDR

25 

PIH-NO R-SNO Ultrosound ONOO− generation to enhance SDT, promote 
the maturation of dendritic cells, and increase 
immune cells infiltration

201 

PtR/CPG L-Arg H2O2 Enhancing anticancer chemoimmunotherapy: 
NO can trigger immunogenic cell death to 
produce tumor-associated antigens

202 

HFC/DTX/aPD1 L-Arg The environment of 
cancer cells

Promoting anticancer chemoimmunotherapy 203 

NO-DOX@PDA-TPGS-
Gal

N,N′-di-sec-butyl-
N,N′-dinitroso-1,4-
phenylenediamine (BNN)

808 nm 
laser irradiation 
(photothermal)

Enhancing chemo−photothermal therapy: 
inhibiting P-gp -the related efflux of DOX

204 

S1P/JS-K/Lipo JS-K Glutathione S-
transferases

Promoting glioblastoma multiforme cell death 20 

CMH-OBN Benzofuroxan GSH ONOO− generation enhances PDT/PTT/
immunotherapy

205 

Alb-PLP/NO NPs Diazeniumdiolate Physiological 
conditions

Enhancing tumor penetration and inhibiting 
melanoma.

206 

P@BDOX/β-lapachone-
NO-NPs

R-O-NO2 GSH Overcoming chemo-resistance and enhancing 
the efficacy of HIFU in combination with 
chemotherapy

207 

SPNAPt/NO R-O-NO GSH ONOO− generation down-regulates glutathione 
reductase (GR) and xeroderma pigmentosum 
group A

32 

LPFe3O4 NPs L-Arg iNOS NO enhances immune therapy 208 

BPNs-Arg-GOx@MnO2 L-Arg H2O2 NO activates matrix metalloproteinases to 
degrade the dense extracellular matrix

209 

UC-ZIF/BER R-O-NO NIR irradiation to UV 
by upconversion

NO turns on the ryanodine receptors for 
Ca2+ elevation to achieve Ca2+-initiated cancer 
therapy

210 

Artificial microbots 
(AMBs)

L-Arg iNOS and ROS Regulating vasodilation and invasion to promote 
drug release to solid tumors

211 

HFLA-DOX L-Arg H2O2 Promoting deep drug penetration and reversal of 
MDR in cancer chemotherapy.

212 

L-Arg@Ce6@P NPs L-Arg H2O2 Inhibiting mitochondrial respiration 213 

HA@MOF/D-Arg D-Arg H2O2 Down-regulating HIF-1α to alleviate tumor 
hypoxia for sensitizing radiotherapy

214 

ArgCCN L-Arg H2O2 High concentration NO induces cancer cell 
apoptosis

215 

RBCm/PAAVSNO/
IR1061 + 1-MT NPs

R-S-NO Heat and pH NO normalizes tumor vessels 216 

NO-NCPs DETA NONOates pH and photoacoustic ONOO− generation to damage lysosome, 
mitochondria, and DNA

86 
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Nanomedicine NO donor Release condition Working mechanism of NO Refs

CuS-PEI/NO-TPP Diazeniumdiolate 1064 nm 
laser irradiation 
(photothermal)

Inhibiting heat shock proteins expression 74 

GMOF-LA L-Arg H2O2 NO sensitizes PDT 217 

ZGO-Mn-RBS Roussin’s black salt X-ray excitation depth-independent NO-releasing strategy for 
gas-sensitized therapeutic applications.

218 

Ptx@AlbSNO R-SNO GSH Enhancing immune cell infiltration into tumor 
microenvironments.

219 

BSA-IRLA@RVs-RGD L-Arg ROS Inhibiting cancer-associated platelet activation 
and disrupting tumour vascular barriers

220 

Au@SiO2-
SNO/PEG/TPP

R-SNO 808 nm 
laser irradiation 
(Photothermal)

Activating MMPs to break collagen fibers to 
enhance the cellular internalization

221 

α-CD-DOX-NO-DA NPs R-SNO GSH NO facilitates mitochondrial membrane 
permeabilization and downregulates ATP level 
and inhibits pgp to reverse MDR

222 

Micellar NO@HMs NONOate pH ONOO− generation sensitizes radiotherapy of 
hypoxia tumor

50 

DM1-NO-NPs R-SNO X-ray irradiation ONOO− causes DNA and lipid damage to 
sensitize radiotherapy.

223 

SNO-HSA Dimer R-SNO Physiological 
conditions

NO augments the EPR effect to promote drugs to 
the tumors.

224 

DPP-NF NPs 4-Nitro-3-
Trifluoromethylaniline

660 nm laser 
irradiation.

NO directly damages DNA, and inhibits the 
expression of HIF-α to enhance PDT efficiency

225 

Lyso-Ru-NO@FA@C-
TiO2

R-NO 808 nm light 
irradiation

Lysosome-targeted NO delivery to enhance PDT 226 

PpRE@PEG-PpIX NPs R-Fe(NO)2 637 nm laser 
irradiation

Reversing MDR and overcoming hypoxia to 
enhance PTT.

227 

Ce6-loaded NO-mannan R-O-NO2 GSH NO prompts vessel-relaxing and hypoxia relief 228 

N-GQDs@Ru-NO@Gal R-NO 808 nm light 
irradiation

NO enhances PTT 229 

CPNs R-O-NO2 GSH ONOO− and NO inhibit Pgp expression to 
reverse MDR

33 

L-Arg@PCN@Mem L-Arg ROS NO overcomes hypoxia to sensitize PDT 70 

P(IR/BNN6/AIPH)@Lip-
RGD

BNN6 1064 nm 
laser irradiation 
(Photothermal)

Synergistic NO and alkyl radical action 230 

Fe(II)-BNCP BPDB GSH Synergistic NO and chemodynamic therapy 89 

ADAu@CuS YSNPs L-Arg ROS Inhibiting P-gp expression to reverse MDR 29 

IPO-NO R-SNO 808 nm 
laser irradiation 
(Photothermal)

Low NO concentration increases the EPR effect 
and high concentration directly kills the tumors.

231 

IMesNO/DOX@MCs R-NO HIFU irradiation Accelerating drug accumulation in tumor 232 

PV-TS Sodium nitroprusside 
dihydrate

GSH NO inhibits cellular respiration to relieve tumor 
hypoxia

65 

NO-M@DOX R-O-NO2 GSH NO reverses MDR to enhance chemotherapy 233 

N-GQDs@Ru-Cl@TPP R-NO 808 nm light 
illumination

NO enhances PTT 78 

M@BPAG L-Arg H2O2 Reprogramming the tumour immune 
microenvironment and significant synergistic 
antitumor effect

234 

AI-MPHA NCs L-Arg ROS NO sensitizes PTT 235 
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Nanomedicine NO donor Release condition Working mechanism of NO Refs

PNOC-PDA/DOX R-SNO 808 nm 
laser irradiation 
(photothermal)

NO reverses MDR to sensitize PTT and 
chemotherapy

34 

RBS-T-SCNPs Roussin’s black salt X-ray irradiation ONOO−-generation directly damages DNA and 
downregulates the DNA-repair enzyme

52 

HMs DETA NONOate pH NO inhibits P-gp expression to reverse CPT 
MDR.

31 

PEG-USMSs-SNO R-SNO X-ray irradiation NO sensitizes radiotherapy of hypoxia tumor 55 

P-lapa-Fc L-Arg ROS ONOO− generation enhances tumor therapy 64 

UMNOCC-PEG R-SNO pH RNS generation enhances PDT/CDT 90 

mCuMNO S-nitrosoglu-tathione Cu+ Interrupting the interaction between platelets and 
circulating tumor cells and enhancing CDT

236 

T-NPCA/NO R-SNO GSH ONOO− promotes mitochondrial membrane 
permeabilization

237 

a
RBS-T-UCNPs, Roussin’s black salt-upconversion nanoparticles; α-CD-Ce6-NONPs, α-cyclodextrin-chlorin e6-NO nanoparticles; NMOF-

SNO, nanoscale metal-organic framework-S-Nitrosothiol; DN@MSN, doxorubicin-NO-Mesoporous silica nanoparticles; Peptide-HMSN-LA, 
Peptide-hollow mesoporous silica nanoparticles-L-Arg; photoNORM/UCNP, photochemical precursor of NO-upconversion nanoparticles; 
PTNGs, phototriggered NO nanogenerators; GCZ@M, GSNO/Ce6@ZIF-8@Cytomembrane; IDDHN, intelligent nanoparticle; L-Arg-
HMON-Gox, L-Arg-hollow mesoporous organosilica nanoparticle-glucose oxidase; BNN-Bi2S3, bis-N-nitroso compounds-bismuth sulfide; 

PFTDPP-SNAP NPs, semiconducting polymer-s-nitrosothiol groups nanoparticles; Lip-SNAP, SNAP loaded liposomes; S–NO NPs, N-

nitrosamine nanoparticles; QM-NPQ@PDHN, fluorogen QM-2-O2-(2,4-dinitro-5-{[2-(β-d-galactopyranosyl olean-12-en-28-oate-3-yl)-oxy-2-
oxoethyl] piperazine-1-yl}- phenyl) 1-(methylethanolamino)diazen-1-ium-1,2-dilate-PEGylated disulfide-doped hybrid nanocarriers; AL-
SISIN-1, N-((2-pyridin-2-yldisulfanyl)ethoxyl)carbonyl-3-morpholinosydnonimine; iCPDN, poly(amidoamine)-Doxorubicin-NO; WB@hydrogel, 
WO2.9-N,N′-di-sec-butyl-N,N′-dinitroso-1,4-phenylenediamine@hydrogen; BNN6, N,N′-di-sec-butyl-N,N′-dinitroso-1,4-phenylenediamine; 

pPTX/pCD-pSNO, polymerized paclitaxel-nitric oxide-incorporated polymerized β-cyclodextrin; TPE-RSNO micells, S-nitrosothiol-
functionalized tetraphenylethene; FZ-SS-FZ@FA NPs, phenylsulfonylfuroxan nanoparticles; Ce6/PDE5-i@FHMON-O2, photocleaved O2-

released nanoplatform; NPSD-IR, IR-780-Doxorubicin NO nanoparticles; PIH-NO, perfluorodecalin-IR780-human serum albumin- NO; 

PtR/CPG, cis-platinum-L-arginine/ Cytosine-phosphorothioate-guanine; HFC/DTX/aPD1, heparin-folate-cy5.5/l-arginine/ docetaxel/anti-PD-1; 
S1P/JS-K/Lipo, sphingosine-1-phosphate/ O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate/liposome; JS-

K, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate; CMH-OBN, chlorin e6-melanin-hyaluronic acid 

nanoparticles-oxidized bletilla striata polysaccharide microcapsules; Alb-PLP/NO NPs, albumin-coated poly(lactic-co-glycolic acid) (PLGA)-
conjugated linear polyethylenimine diazeniumdiolate (LP/NO) nanoparticles; P@BDOX/β-lapachone-NO-NPs, peptides (pHLIPs)-poly(ethylene 
glycol) and nitrated gluconic acid copolymers @Doxorubicin prodrug/β-lapachone-NO; SPNAPt/NO, supramolecular prodrug nanoassemblies-

platinum(IV) prodrug/NO; LPFe3O4 NPs, L-arginine-poly(acrylic acid)-hollow iron oxide nanoparticles; BPNs-Arg-GOx@MnO2, black 

phosphorus nanosheets-L-Arginine-glucose oxidase @MnO2 nanosheets; UC-ZIF/BER, upconversion nanoparticles-zeolitic nitro-/nitrile-

imidazole framework-82-berbamine; HFLA-DOX, doxorubicin-heparin/folic acid/L-arginine; L-Arg@Ce6@P NPs, L-arginine@ chlorin e6@ 
poly-lactic-co-glycolic acid nanoparticle; HA@MOF/D-Arg, hyaluronic acid@ metal-organic frameworks/D-arginine; ArgCCN, poly-L-arginine 
modified carbon-dots-doped graphitic carbon nitride nanomaterial; RBCm/PAAVSNO/IR1061 + 1-MT NPs, red blood cell membrane/
copolymer (poly(acrylamide-co-acrylonitrile-co-vinylimidazole)-S-nitrosothiols copolymer+1-methyl-tryptophan; NO-NCPs, NO-nanocapsules; 
Ptx@AlbSNO, paclitaxel@ NO donor-modified albumin; BSA-IRLA@RVs-RGD, BSA-L-Arginine-IR783@ red blood cells membrane 
derived vesicle-RGD; NO@HMs, NO-poly(lactic-co-glycolic acid) (PLGA) hollow microsphere; DPP-NF NPs, diketopyrrolopyrrole-4-nitro-3-
trifluoromethylaniline nanoparticles; Lyso-Ru-NO@FA@C-TiO2, Lysosome-Ru-NO@ folic acid@ carbon-doped titanium dioxide nanoparticles; 

N-GQDs@Ru-NO@Gal, N-doped graphene quantum dots@ Ru-NO@ galactose derivative; CPNs, cocktail polyprodrug nanoparticles; L-
Arg@PCN@Mem, L-arginine@ porous coordination network@ cancer cell membrane; P(IR/BNN6/AIPH)@Lip-RGD, IR 1061/BNN6/alkyl 

radical initiator@Liposome-RGD; Fe(II)-BNCP, 1,5-bis[(l-proline-1-yl)diazen-1-ium-1,2-diol-O2-yl]-2,4-dinitrobenzene nanoscale coordination 
polymer; ADAu@CuS YSNPs, l-arginine/Dox-loaded gold@ copper sulfide yolk–shell nanoparticls; IPO-NO, IR780-paclitaxel-NO donor-S-

nitrosated human serum albumin; IMesNO/DOX@MCs, 1,3-bis-(2,4,6-trimethylphenyl)imidazolylidene nitric oxide/ Doxorubicin@ Micelles; 
PV-TS, polymeric nanovesicles- tetraphenylporphyrin- sodium nitroprusside; NO-M@DOX, Nitric Oxide Donor-containing polycarbonate-based 
micelles@ Doxorubicin; N-GQDs@Ru-Cl@TPP, N-doped graphene quantum dots@ ruthenium nitrosyl@ triphenylphosphonium; M@BPAG, 
macrophage membrane@ black phosphorus nanosheets-L-arginine-glucose oxidase; AI-MPHA NCs, indocyanine green/L-arginine-mesoporous 
core–shell structure nano-composites; PNOC-PDA/DOX, poly(L-cysteine)20-poly(ethylene oxide)45-SNO-polydopamine/ Doxorubicin; RBS-T-

SCNPs, Roussin’s black salt- tocopheryl polyethylene glycol 1000 succinate-scintillating nanoparticles; HMs, hollow microsphere system; PEG-
USMSs-SNO, PEG-upconversion nanotheranostic system- S-nitrosothiol; P-lapa-Fc, poly(ε-caprolactone) (PCL)-b-PArg-ferrocene; UMNOCC-
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PEG, copper peroxide nanodots-chlorin e6-polyethylene glycol-silicon pores; mCuMNO, S-nitrosoglutathione-copper-based metal-organic 
framework; T-NPCA/NO, cinnamaldehyde-NO nanoparticles.
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Table 3.

The Basic Characteristics of ROS, NO, ONOO−

Free radical Half life Migration distance Main activities

Superoxide anion (O2
.−) 10−6 s 30 nm Reacts with Fe-S proteins, dismutases to H2O2

Hydroxyl radical (OH.) 10−9 s 1 nm Extremely reactive with DNA/RNA, lipids, and proteins

Hydrogen peroxide (H2O2) Chemical stable ≥ 1 mm Reacts with proteins, heme proteins, and DNA/RNA

Singlet oxygen (1O2) 10−6 s 30 nm Oxidases lipids, proteins, and G residues on DNA/RNA

Nitric oxide (NO) < 5 s 100 μm Regulates a variety of biological processes, nitrosative proteins

Peroxynitrite (ONOO−) 1.9 s 100 μm Oxidizes and nitrifies DNA/RNA, proteins, and lipids.
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Table 4.

NO Nanomedicines for Anti-Bacterial/Biofilma

Nanomedicine NO donor Release condition Working mechanism of NO Refs

AuNC@NO N-Hydroxy-N-
nitrosamine NO donor

NIR irradiation (heat) NO/PTT synergistically degrades MRSA 
biofilms

238 

PGalNO CouN(NO)-R NIR irradiation High concentration of NO kills bacteria 115 

pH@MSN-CaP-NO diazeniumdiolate pH 5.0 NO promotes cornea wound healing 147 

BP1 Vesicles oNBN, pNBN, BN UV 365 nm irradiation NO promotes cell migration and viability 149 

PU/PPEG-OH-MPS-NO R-SNO Physiological 
conditions.

NO has a broad-spectrum antibacterial 
property

239 

PNOFA R-N-NO Visible light irradiation NO has broad-spectrum antibacterial 
performance with low drug resistance

104 

CoFe2O4@MnFe2O4 nanoparticles R-SNO Magnetothermal Efficiently killing sessile bacteria by 
rapidly releasing nitric oxide (NO) inside 
biofilms

240 

nbi/NO film N-Diazeniumdiolate Cu2+ to accelerate NO 
release

Nitrosative stress partly causes DNA 
deamination; Oxidative stress causes 
membrane destruction through lipid 
peroxidation, tyrosine nitrosation, and 
DNA cleavage

241 

SNP@MOF@Au-Mal Sodium nitroprusside Photothermal High concentration of NO and 
derivatives to combat bacteria

101 

AI-MPDA L-Arg ROS NO enhances PDT and mild PTT for 
biofilm elimination

120 

α-CD-Ce6-NO-DA nanocarriers R-SNO GSH NO greatly improves the PDT efficiency 
by releasing ONOO−

121 

PNO NONOate Physiological 
conditions

NO for synergistic eradication of 
bacterial biofilms

242 

PNBNPs N-Diazeniumdiolate pH High concentration of NO kills bacteria 243 

PDA-NO HNP NONOate Physiological 
conditions

NO has a broad-spectrum antibacterial 
effect

244 

UKON-2jNO R-SNO Sunlight Highly reactive ONOO− enhances 
antibacterial effect

94 

GEN-NO NONOate Physiological 
conditions

Synergistic NO and antibiotic for biofilm 
eradication

245 

ZnTPyP@NO R-NO Sunlight irradiation Highly reactive ONOO− generation 
enhances PDT

67 

UCNP@PCN@LA-PVDF L-Arg ROS Highly reactive ONOO− generation 
enhances PDT

103 

PEO-b-PCouNO R-N-NO 410 nm light 
irradiation

NO has a broad-spectrum antibacterial 
effect

113 

Fe3O4@PDA@PAMAM@NONOate NONOate 808 nm 
laser irradiation 
(Photothermal)

NO damages DNA and kills bacteria 105 

TG-NO-B R-SNO 808 nm 
laser irradiation 
(Photothermal)

Synergistic NO/PTT to overcome 
MDR Gram-negative bacteria and their 
biofilms

102 

Ti-RP/PCP/RSNO R-SNO 808 nm 
laser irradiation 
(Photothermal)

Upregulating Opn and Ocn genes and 
TNF-α

122 

PdTPTBP/CouN(NO)-NO2 R-N-NO Red light NO eradiates C. acnes pathogens, with 
antibacterial, anti-inflammatory, and anti 
osteoclastogenesis effects.

246 
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Nanomedicine NO donor Release condition Working mechanism of NO Refs

B/MA-GSNO R-SNO Heat Rapid NO releasing for antibacterial 
efficiency

247 

DMAH R-SNO Heat Destroying bacterial nitrogen and 
respiratory metabolisms

248 

a
AuNC@NO, nitric oxide (NO)-releasing gold nanocage; PGalNO; pH@MSN-CaP-NO, Ph@ mesoporous silica nanoparticles-calcium 

phosphate-NO; BP Vesicles, PEO45-b-PoNBNn; PU/PPEG-OH-MPS-NO, ozone-pretreated polyurethane-PPEG-OH-mercapto-silane-RSNO; 

PNOFA, PEO-b-PNNBM-NO-formaldehyde; nbi/NO film, branched polyethyleneimine-alginate-NO film; AI-MPDA,L-arginine-ICG-mesoporous 
polydopamine; PNO, NO-loaded polymer; PNBNPs, surface charge switchable nitric oxide (NO)-releasing nanoparticles; PDA-NO HNP, 
Polydopamine-NO hollow nanoparticle; UKON-2JNO, NO-Mesoporous organosilica; GEN-NO, gentamicin-NONOate; ZnTPyP@NO, zinc meso-
tetra(4-pyridyl)porphyrin@NO; UCNP@PCN@LA-PVDF, upconversion nanoparticle-porphyrinic MOFs@ L-arginine-polyvinylidene fluoride; 
PEO-b-PCouNO, poly(ethylene oxide)-b-polyCouNO; TG-NO-B, S-nitrosothiols-thiolated graphene-4-mercaptophenylboronic acid; Ti-RP/PCP/
RSNO, red phosphorus nanofilm deposited on a titanium implant; B/MA-GSNO, magnetothermal aerogel-S-nitrosoglutathione; DMAH, dual-
mode antibacterial hydrogel.
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Table 5.

NO Nanomedicines for Wound Healinga

Nanomedicine NO donor Release condition Working mechanism of NO Refs

SNP@UCM Sodium nitroprusside NIR irradiation Promoting HIF-1α expression, VEGF secretion, and 
endothelial cell proliferation and migration.

249 

PU/Gelatin/KSNO R-SNO Physiological conditions Promoting cell proliferation and adhesion to 
accelerate wound healing

130 

TP-Por CON BNN6 635 nm irradiation 
(Photothermal)

NO/PTT/PDT synergistically kill Gram-positive/
negative bacteria via ONOO−

250 

pH@MSN-CaP-NO diazeniumdiolate pH 5.0 NO promotes cornea wound healing 147 

BP1 Vesicles oNBN, pNBN, BN UV 365 nm irradiation NO increases cell migration and viability 149 

HA-NO Diazeniumdiolate Physiological conditions NO as an antibacterial agent for promoting wound 
healing

98 

GelMA/HA-DA/GO-
βCD-BNN6

BNN6 808 nm laser irradiation 
(Photothermal)

Promoting new blood vessels and collagen deposition 
to accelerate wound healing

134 

MoS2-BNN6 BNN6 808 nm laser irradiation 
(Photothermal)

NO kills the bacteria by damaging DNA, promotes 
the formation of collagen fibers, and reduces 
inflammation during wound tissue reconstruction

251 

Ch/PAs-Cu R-SNO Cu2+ NO combats bacteria and accelerates wound healing 131 

PB-NO R-NO 808 nm laser irradiation 
(Photothermal)

Promoting new blood vessels and collagen deposition 
to accelerate wound healing

132 

Arg-ADP L-Arg H2O2 NO/PDT synergistically overcomes bacterial 
infections and promotes wound healing

135 

NO@HKUST1/PCL/Gel NONOate Physiological conditions Promoting endothelial cell growth, significantly 
improving angiogenesis and collagen deposition, and 
reducing inflammatory effects in the wound

138

FBN/PEG NONOate Physiological conditions NO enhances reepithelialisation, collagen deposition, 
and blood vessel formation

252 

AhCeO2 NPs L-Arg H2O2 NO promotes cellular proliferation 253 

MA-HA-(MEDN)-
NONOates

NONOate Physiological conditions Effectively promoting proliferation and migration of 
fibroblasts

254 

CS-PAMAM/NONOate NONOate Physiological conditions NO antibacterial to accelerate wound healing 255 

a
SNP@UCM, SNP@MOF-UCNP@ssPDA-Cy7/IR786s; PU/Gel/KSNO, polyurethane/gelatin/S-nitrosated keratin; TP-Por CON, porphyrin-based 

COF nanosheets; BP Vesicles, PEO45-b-PoNBNn Vesicles; HA-NO, hyaluronic acid-NO; GelMA/HA-DA/GO-βCD-BNN6, methacrylate-

gelatin/hyaluronic acid-dopamine hydrogel/ graphene oxide-β-cyclodextrin-BNN6; Ch/PAs-Cu, chitin sponges-proanthocyanidins-Cu2+; PB-
NO, Prussian blue-NO; Arg-ADP, L-Arginine-rich amphiphilic dendritic peptide; NO@HKUST1/PCL/Gel, NO@ copper-based metal–organic 
framework/hydrophobic polycaprolactone/gelatin; FBN/PEG, Pluronic F127-branched polyethylenimine-1-substituted diazen-1-ium-1,2-diolates/
PEG; AhCeO2 NPS, hollow CeO2-L-arginine nanoparticles; MA-HA-(MEDN)-NONOates, methacrylate-hyaluronic acid-N-diazeniumdiolate; 

CS-PAMAM/NONOate, Polyamidoamine dendrimer-grafted chitosan/NONOate.
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Table 6.

NO Nanomedicines for Eye Disease Therapya

Nanomedicine NO donor Release condition Working mechanism of NO Refs

β-galactosidase-loaded PMA 
capsules

β-gal-NONOate β-galactosidase NO-mediated IOP-lowering therapeutics 143 

HOS-JRLO JS-K/L-Arginine ascorbic acid/iNOS HOS-JRLO generates more NO to induce a larger 
IOP reduction

144 

PEG-PAspTETA-SNO R-SNO GSH Alleviating high intraocular pressure in mice with 
glaucoma

256 

pH@MSN-CaP-NO diazeniumdiolate pH 5.0 NO promotes cornea wound healing 147 

BP1 Vesicles NBN, pNBN, BN UV 365 nm irradiation NO stimulates cornea wound healing 149 

BPEI-NO NPs NONOate Physiological conditions NO improves ocular wound recovery 257 

a
HOS-JRLO, hollow mesoporous organosilica-JS-K-L-Arginine; PEG-PAspTETA-SNO, PEG-poly(2-acetamido-N-triethylenetetramine-3-

nitrosothiol-3-methylbutanamide) aspartamide-S-nitrosothiols; BP Vesicles, PEO45-b-PoNBNn Vesicles; BPEI-NO NPs, silica nanoparticles-

branched polyethylene imine-N-diazeniumdiolates.
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Table 7.

NO for SARS-CoV-2 Infection and COVID-19

NO source Dose Duration Follow-up / d Indications/Results Refs

Inhaled NO gas

20 PPM+2 L/min O2

12–14 h/day

0–6

Improved Covid-19 patient symptoms and full 
recovery 25810 PPM+2 L/min O2 7–9

10 PPM+2 L/min O2 10–12

SNAP
200 μM

In vitro - Inhibited the replication cycle of SARS-CoV-2 162 

400 μM

NONS 2 sprays per nostril (0.45 mL / 
dose) 6 times daily 18 Accelerated virus clearance (153 patients) 165 

SNAP
200 μM

In vitro - Reduced SARS-CoV-2 protease activity 164 

400 μM
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