Skip to main content
. Author manuscript; available in PMC: 2023 Aug 2.
Published in final edited form as: ACS Nano. 2023 May 1;17(10):8935–8965. doi: 10.1021/acsnano.3c02303

Table 2.

NO Nanomedicines for Tumor Therapya

Nanomedicine NO donor Release condition Working mechanism of NO Refs
RBS-T-UCNPs Roussin’s black salt (RBS) 808 nm laser irradiation Sensitizing chemotherapy by reducing tumorigenic ability: inhibiting cancer stem-like cells and mammosphere formation ability, reducing CD44+ / CD24 subsets. 184
α-CD-Ce6-NO NPs α-CD-NO GSH Sensitizing PDT: depleting intracellular GSH, relieving hypoxia at tumor sites, and ONOO generation to enhance ROS reactivity. 69
RBS-UCNPs RBS 808 nm laser irradiation Sensitizing chemotherapy: High NO concentration kills cancer cells; low NO concentration reduces P-gp level to overcome MDR. 30
NanoNO DNIC [Fe(μ-SEt)2(NO)4] Physiological condition Sensitizing chemotherapy: gradient NO generation efficiently reprograms tumor vasculature and microenvironments to improve chemotherapy 42
NMOF−SNO R-SNO 808 nm laser irradiation Sensitizing PTT: NO releasing to enhance PTT efficiency 185
DN@MSN R-SNO Natural release Sensitizing chemotherapy: NO activating MMP-1 and MMP-2, promoting DOX delivery to more deep tumour tissues 47
Peptide-HMSN-LA L-Arg ROS NO direct oxides proteins 81
photoNORM/UCNP Metal-NO 794 nm laser irradiation Low dose reduces HIF-1a, and high doses are cytotoxic 186
PTNGs R-SNO 808 nm laser irradiation (Photothermal) Sensitizing chemotherapy: NO reverses MDR by inhibiting Pgp expression 187
GCZ@M nitrosoglutathione (GSNO) Ultrasound irradiation Sensitizing SDT: ONOO generation, relieving tumour hypoxia 188
IDDHN 2-(Nitrooxy)acetic 808 nm laser irradiation (Photothermal) Sensitizing chemotherapy: NO improves the EPR effect 189
L-Arg-HMON-GOx L-Arg H2O2 Starving-like/NO for synergistic cancer therapy 190
BNN-Bi2S3 Bis-N-nitroso compounds 808 nm laser irradiation NO impairs the autophagic self-repairing ability of tumor cells in situ 76
PFTDPP-SNAP NPs R-SNO 808 nm laser irradiation (Photothermal) Sensitizing PTT: NO generation enhances PTT efficiency 191
Lip-SNAP S-nitroso-N-acetylpenicillamine GSH NO induces stromal depletion for improved nanoparticle penetration 192
S–NO NPs Aryl N-nitrosamine 808 nm laser irradiation (Photothermal) NO release activates photothermal agent for synergistic tumor treatment 193
QM-NPQ@PDHN NPQ Glutathione S-transferases π Specific, high-efficacy, and low-toxic patocellular carcinoma therapy 194
AL-SISIN-1 SISIN-1 Physiological conditions Inhibiting tumour metastasis by inducing cytotoxicity preferentially on tumour cells in lymph nodes 195
iCPDN R-SNO GSH Sensitizing chemoimmunotherapy: Reversing DOX resistance and enhancing antitumor immune responses by reprogramming the tumor microenvironments. 196
WB@hydrogel BNN6 1064 nm laser irradiation (photothermal) Anti-angiogenesis and tumor microenvironment reprogramming: activating wild type p53 expression, alternating pro-angiogenic TME to anti-angiogenic TME. 80
pPTX/pCD-pSNO R-SNO Redox conditions Sensitizing chemoimmunotherapy: Enhancing dendritic cell activation, T cell expansion, cytotoxicity, and immunogenic cell death, 197
TPE-RSNO micelles R-SNO H2O2 Reducing P-gp expression, reversing MDR, RNS 198
FZ-SS-FZ@FA NPs phenylsulfonylfuroxan GSH Upregulating p53 and cleaved caspase-3 proteins 199
Ce6/PDE5-i@FHMON-O2 _ DE5-inhibited PDE5 pathway to upregulate eNOS RNS helps ROS to evade the hypoxia-induced resistance to ROS-based antitumor 200
NPSD-IR NTC GSH Sensitizing chemotherapy: inhibiting Pgp expression to overcome MDR 25
PIH-NO R-SNO Ultrosound ONOO generation to enhance SDT, promote the maturation of dendritic cells, and increase immune cells infiltration 201
PtR/CPG L-Arg H2O2 Enhancing anticancer chemoimmunotherapy: NO can trigger immunogenic cell death to produce tumor-associated antigens 202
HFC/DTX/aPD1 L-Arg The environment of cancer cells Promoting anticancer chemoimmunotherapy 203
NO-DOX@PDA-TPGS-Gal N,N′-di-sec-butyl-N,N′-dinitroso-1,4-phenylenediamine (BNN) 808 nm laser irradiation (photothermal) Enhancing chemo−photothermal therapy: inhibiting P-gp -the related efflux of DOX 204
S1P/JS-K/Lipo JS-K Glutathione S-transferases Promoting glioblastoma multiforme cell death 20
CMH-OBN Benzofuroxan GSH ONOO generation enhances PDT/PTT/immunotherapy 205
Alb-PLP/NO NPs Diazeniumdiolate Physiological conditions Enhancing tumor penetration and inhibiting melanoma. 206
P@BDOX/β-lapachone-NO-NPs R-O-NO2 GSH Overcoming chemo-resistance and enhancing the efficacy of HIFU in combination with chemotherapy 207
SPNAPt/NO R-O-NO GSH ONOO generation down-regulates glutathione reductase (GR) and xeroderma pigmentosum group A 32
LPFe3O4 NPs L-Arg iNOS NO enhances immune therapy 208
BPNs-Arg-GOx@MnO2 L-Arg H2O2 NO activates matrix metalloproteinases to degrade the dense extracellular matrix 209
UC-ZIF/BER R-O-NO NIR irradiation to UV by upconversion NO turns on the ryanodine receptors for Ca2+ elevation to achieve Ca2+-initiated cancer therapy 210
Artificial microbots (AMBs) L-Arg iNOS and ROS Regulating vasodilation and invasion to promote drug release to solid tumors 211
HFLA-DOX L-Arg H2O2 Promoting deep drug penetration and reversal of MDR in cancer chemotherapy. 212
L-Arg@Ce6@P NPs L-Arg H2O2 Inhibiting mitochondrial respiration 213
HA@MOF/D-Arg D-Arg H2O2 Down-regulating HIF-1α to alleviate tumor hypoxia for sensitizing radiotherapy 214
ArgCCN L-Arg H2O2 High concentration NO induces cancer cell apoptosis 215
RBCm/PAAVSNO/IR1061 + 1-MT NPs R-S-NO Heat and pH NO normalizes tumor vessels 216
NO-NCPs DETA NONOates pH and photoacoustic ONOO generation to damage lysosome, mitochondria, and DNA 86
CuS-PEI/NO-TPP Diazeniumdiolate 1064 nm laser irradiation (photothermal) Inhibiting heat shock proteins expression 74
GMOF-LA L-Arg H2O2 NO sensitizes PDT 217
ZGO-Mn-RBS Roussin’s black salt X-ray excitation depth-independent NO-releasing strategy for gas-sensitized therapeutic applications. 218
Ptx@AlbSNO R-SNO GSH Enhancing immune cell infiltration into tumor microenvironments. 219
BSA-IRLA@RVs-RGD L-Arg ROS Inhibiting cancer-associated platelet activation and disrupting tumour vascular barriers 220
Au@SiO2-SNO/PEG/TPP R-SNO 808 nm laser irradiation (Photothermal) Activating MMPs to break collagen fibers to enhance the cellular internalization 221
α-CD-DOX-NO-DA NPs R-SNO GSH NO facilitates mitochondrial membrane permeabilization and downregulates ATP level and inhibits pgp to reverse MDR 222
Micellar NO@HMs NONOate pH ONOO generation sensitizes radiotherapy of hypoxia tumor 50
DM1-NO-NPs R-SNO X-ray irradiation ONOO causes DNA and lipid damage to sensitize radiotherapy. 223
SNO-HSA Dimer R-SNO Physiological conditions NO augments the EPR effect to promote drugs to the tumors. 224
DPP-NF NPs 4-Nitro-3-Trifluoromethylaniline 660 nm laser irradiation. NO directly damages DNA, and inhibits the expression of HIF-α to enhance PDT efficiency 225
Lyso-Ru-NO@FA@C-TiO2 R-NO 808 nm light irradiation Lysosome-targeted NO delivery to enhance PDT 226
PpRE@PEG-PpIX NPs R-Fe(NO)2 637 nm laser irradiation Reversing MDR and overcoming hypoxia to enhance PTT. 227
Ce6-loaded NO-mannan R-O-NO2 GSH NO prompts vessel-relaxing and hypoxia relief 228
N-GQDs@Ru-NO@Gal R-NO 808 nm light irradiation NO enhances PTT 229
CPNs R-O-NO2 GSH ONOO and NO inhibit Pgp expression to reverse MDR 33
L-Arg@PCN@Mem L-Arg ROS NO overcomes hypoxia to sensitize PDT 70
P(IR/BNN6/AIPH)@Lip-RGD BNN6 1064 nm laser irradiation (Photothermal) Synergistic NO and alkyl radical action 230
Fe(II)-BNCP BPDB GSH Synergistic NO and chemodynamic therapy 89
ADAu@CuS YSNPs L-Arg ROS Inhibiting P-gp expression to reverse MDR 29
IPO-NO R-SNO 808 nm laser irradiation (Photothermal) Low NO concentration increases the EPR effect and high concentration directly kills the tumors. 231
IMesNO/DOX@MCs R-NO HIFU irradiation Accelerating drug accumulation in tumor 232
PV-TS Sodium nitroprusside dihydrate GSH NO inhibits cellular respiration to relieve tumor hypoxia 65
NO-M@DOX R-O-NO2 GSH NO reverses MDR to enhance chemotherapy 233
N-GQDs@Ru-Cl@TPP R-NO 808 nm light illumination NO enhances PTT 78
M@BPAG L-Arg H2O2 Reprogramming the tumour immune microenvironment and significant synergistic antitumor effect 234
AI-MPHA NCs L-Arg ROS NO sensitizes PTT 235
PNOC-PDA/DOX R-SNO 808 nm laser irradiation (photothermal) NO reverses MDR to sensitize PTT and chemotherapy 34
RBS-T-SCNPs Roussin’s black salt X-ray irradiation ONOO-generation directly damages DNA and downregulates the DNA-repair enzyme 52
HMs DETA NONOate pH NO inhibits P-gp expression to reverse CPT MDR. 31
PEG-USMSs-SNO R-SNO X-ray irradiation NO sensitizes radiotherapy of hypoxia tumor 55
P-lapa-Fc L-Arg ROS ONOO generation enhances tumor therapy 64
UMNOCC-PEG R-SNO pH RNS generation enhances PDT/CDT 90
mCuMNO S-nitrosoglu-tathione Cu+ Interrupting the interaction between platelets and circulating tumor cells and enhancing CDT 236
T-NPCA/NO R-SNO GSH ONOO promotes mitochondrial membrane permeabilization 237
a

RBS-T-UCNPs, Roussin’s black salt-upconversion nanoparticles; α-CD-Ce6-NONPs, α-cyclodextrin-chlorin e6-NO nanoparticles; NMOF-SNO, nanoscale metal-organic framework-S-Nitrosothiol; DN@MSN, doxorubicin-NO-Mesoporous silica nanoparticles; Peptide-HMSN-LA, Peptide-hollow mesoporous silica nanoparticles-L-Arg; photoNORM/UCNP, photochemical precursor of NO-upconversion nanoparticles; PTNGs, phototriggered NO nanogenerators; GCZ@M, GSNO/Ce6@ZIF-8@Cytomembrane; IDDHN, intelligent nanoparticle; L-Arg-HMON-Gox, L-Arg-hollow mesoporous organosilica nanoparticle-glucose oxidase; BNN-Bi2S3, bis-N-nitroso compounds-bismuth sulfide; PFTDPP-SNAP NPs, semiconducting polymer-s-nitrosothiol groups nanoparticles; Lip-SNAP, SNAP loaded liposomes; S–NO NPs, N-nitrosamine nanoparticles; QM-NPQ@PDHN, fluorogen QM-2-O2-(2,4-dinitro-5-{[2-(β-d-galactopyranosyl olean-12-en-28-oate-3-yl)-oxy-2-oxoethyl] piperazine-1-yl}- phenyl) 1-(methylethanolamino)diazen-1-ium-1,2-dilate-PEGylated disulfide-doped hybrid nanocarriers; AL-SISIN-1, N-((2-pyridin-2-yldisulfanyl)ethoxyl)carbonyl-3-morpholinosydnonimine; iCPDN, poly(amidoamine)-Doxorubicin-NO; WB@hydrogel, WO2.9-N,N′-di-sec-butyl-N,N′-dinitroso-1,4-phenylenediamine@hydrogen; BNN6, N,N′-di-sec-butyl-N,N′-dinitroso-1,4-phenylenediamine; pPTX/pCD-pSNO, polymerized paclitaxel-nitric oxide-incorporated polymerized β-cyclodextrin; TPE-RSNO micells, S-nitrosothiol-functionalized tetraphenylethene; FZ-SS-FZ@FA NPs, phenylsulfonylfuroxan nanoparticles; Ce6/PDE5-i@FHMON-O2, photocleaved O2-released nanoplatform; NPSD-IR, IR-780-Doxorubicin NO nanoparticles; PIH-NO, perfluorodecalin-IR780-human serum albumin- NO; PtR/CPG, cis-platinum-L-arginine/ Cytosine-phosphorothioate-guanine; HFC/DTX/aPD1, heparin-folate-cy5.5/l-arginine/ docetaxel/anti-PD-1; S1P/JS-K/Lipo, sphingosine-1-phosphate/ O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate/liposome; JS-K, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate; CMH-OBN, chlorin e6-melanin-hyaluronic acid nanoparticles-oxidized bletilla striata polysaccharide microcapsules; Alb-PLP/NO NPs, albumin-coated poly(lactic-co-glycolic acid) (PLGA)-conjugated linear polyethylenimine diazeniumdiolate (LP/NO) nanoparticles; P@BDOX/β-lapachone-NO-NPs, peptides (pHLIPs)-poly(ethylene glycol) and nitrated gluconic acid copolymers @Doxorubicin prodrug/β-lapachone-NO; SPNAPt/NO, supramolecular prodrug nanoassemblies-platinum(IV) prodrug/NO; LPFe3O4 NPs, L-arginine-poly(acrylic acid)-hollow iron oxide nanoparticles; BPNs-Arg-GOx@MnO2, black phosphorus nanosheets-L-Arginine-glucose oxidase @MnO2 nanosheets; UC-ZIF/BER, upconversion nanoparticles-zeolitic nitro-/nitrile-imidazole framework-82-berbamine; HFLA-DOX, doxorubicin-heparin/folic acid/L-arginine; L-Arg@Ce6@P NPs, L-arginine@ chlorin e6@ poly-lactic-co-glycolic acid nanoparticle; HA@MOF/D-Arg, hyaluronic acid@ metal-organic frameworks/D-arginine; ArgCCN, poly-L-arginine modified carbon-dots-doped graphitic carbon nitride nanomaterial; RBCm/PAAVSNO/IR1061 + 1-MT NPs, red blood cell membrane/copolymer (poly(acrylamide-co-acrylonitrile-co-vinylimidazole)-S-nitrosothiols copolymer+1-methyl-tryptophan; NO-NCPs, NO-nanocapsules; Ptx@AlbSNO, paclitaxel@ NO donor-modified albumin; BSA-IRLA@RVs-RGD, BSA-L-Arginine-IR783@ red blood cells membrane derived vesicle-RGD; NO@HMs, NO-poly(lactic-co-glycolic acid) (PLGA) hollow microsphere; DPP-NF NPs, diketopyrrolopyrrole-4-nitro-3-trifluoromethylaniline nanoparticles; Lyso-Ru-NO@FA@C-TiO2, Lysosome-Ru-NO@ folic acid@ carbon-doped titanium dioxide nanoparticles; N-GQDs@Ru-NO@Gal, N-doped graphene quantum dots@ Ru-NO@ galactose derivative; CPNs, cocktail polyprodrug nanoparticles; L-Arg@PCN@Mem, L-arginine@ porous coordination network@ cancer cell membrane; P(IR/BNN6/AIPH)@Lip-RGD, IR 1061/BNN6/alkyl radical initiator@Liposome-RGD; Fe(II)-BNCP, 1,5-bis[(l-proline-1-yl)diazen-1-ium-1,2-diol-O2-yl]-2,4-dinitrobenzene nanoscale coordination polymer; ADAu@CuS YSNPs, l-arginine/Dox-loaded gold@ copper sulfide yolk–shell nanoparticls; IPO-NO, IR780-paclitaxel-NO donor-S-nitrosated human serum albumin; IMesNO/DOX@MCs, 1,3-bis-(2,4,6-trimethylphenyl)imidazolylidene nitric oxide/ Doxorubicin@ Micelles; PV-TS, polymeric nanovesicles- tetraphenylporphyrin- sodium nitroprusside; NO-M@DOX, Nitric Oxide Donor-containing polycarbonate-based micelles@ Doxorubicin; N-GQDs@Ru-Cl@TPP, N-doped graphene quantum dots@ ruthenium nitrosyl@ triphenylphosphonium; M@BPAG, macrophage membrane@ black phosphorus nanosheets-L-arginine-glucose oxidase; AI-MPHA NCs, indocyanine green/L-arginine-mesoporous core–shell structure nano-composites; PNOC-PDA/DOX, poly(L-cysteine)20-poly(ethylene oxide)45-SNO-polydopamine/ Doxorubicin; RBS-T-SCNPs, Roussin’s black salt- tocopheryl polyethylene glycol 1000 succinate-scintillating nanoparticles; HMs, hollow microsphere system; PEG-USMSs-SNO, PEG-upconversion nanotheranostic system- S-nitrosothiol; P-lapa-Fc, poly(ε-caprolactone) (PCL)-b-PArg-ferrocene; UMNOCC-PEG, copper peroxide nanodots-chlorin e6-polyethylene glycol-silicon pores; mCuMNO, S-nitrosoglutathione-copper-based metal-organic framework; T-NPCA/NO, cinnamaldehyde-NO nanoparticles.