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ABSTRACT 
Background and aims: Identification and photo-documentation of the ileocecal valve (ICV) and appendiceal orifice (AO) confirm completeness 
of colonoscopy examinations. We aimed to develop and test a deep convolutional neural network (DCNN) model that can automatically identify 
ICV and AO, and differentiate these landmarks from normal mucosa and colorectal polyps.
Methods: We prospectively collected annotated full-length colonoscopy videos of 318 patients undergoing outpatient colonoscopies. We 
created three nonoverlapping training, validation, and test data sets with 25,444 unaltered frames extracted from the colonoscopy videos 
showing four landmarks/image classes (AO, ICV, normal mucosa, and polyps). A DCNN classification model was developed, validated, and 
tested in separate data sets of images containing the four different landmarks.
Results: After training and validation, the DCNN model could identify both AO and ICV in 18 out of 21 patients (85.7%). The accuracy of the 
model for differentiating AO from normal mucosa, and ICV from normal mucosa were 86.4% (95% CI 84.1% to 88.5%), and 86.4% (95% CI 
84.1% to 88.6%), respectively. Furthermore, the accuracy of the model for differentiating polyps from normal mucosa was 88.6% (95% CI 
86.6% to 90.3%).
Conclusion: This model offers a novel tool to assist endoscopists with automated identification of AO and ICV during colonoscopy. The model 
can reliably distinguish these anatomical landmarks from normal mucosa and colorectal polyps. It can be implemented into automated colonos-
copy report generation, photo-documentation, and quality auditing solutions to improve colonoscopy reporting quality.
Keywords: Artificial intelligence; Colonoscopy; Colorectal polyp; Deep learning; Endoscopy; Ileocecal valve

INTRODUCTION
Colonoscopy is a key component of effective colorectal cancer 
(CRC) prevention programs (1,2). A high-quality colonoscopy 
is achieved through a complete examination that results in a 
high adenoma detection rate (ADR), which reduces the risk 
of patients developing interval CRC (3–5). As colonoscopy 
is operator dependent, multiple gastroenterology initiatives 
have recommended that endoscopists achieve minimum per-
formance scores. This is represented through a cecal intuba-
tion rate (CIR) of >90% (3). In order to demonstrate cecal 
intubation and completeness of the examination, current 
guidelines request identification and photo-documentation 
of the ileocecal valve (ICV) and appendiceal orifice (AO) 
(3,6). Recent advancements in artificial intelligence (AI) and 

the development of the deep convolutional neural network 
(DCNN) allow for real-time image processing during co-
lonoscopy. This enables automatic detection of anatomical 
structures during live endoscopies. To date, AI has mainly as-
sisted endoscopists in the detection and classification of colo-
rectal polyps (7–9). We hypothesized that an AI-empowered 
solution could help us automatically differentiate anatom-
ical landmarks such as AO and ICV from polyps and normal 
colon mucosa. Such an AI solution could be incorporated 
into colonoscopy report-generating software, help with auto-
mated photo-documentation, or be used for quality auditing. 
Therefore, we conducted a study developing a DCNN-based 
model to differentiate the AO, ICV, and polyps from normal 
colon mucosa, and to confirm automated detection of AO and 
ICV in a test set.
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METHODS
Study Population
We prospectively enrolled 358 consecutive patients aged 45 to 
80 years who attended the Centre Hospitalier de l’Université 
de Montréal (CHUM) for an elective colonoscopy between 
January and October 2021. Exclusion criteria were explained 
in the Supplementary File. Additionally, colonoscopy videos 
in which technical failures led to problems recording the 
colonoscopy procedure were also excluded (n = 17). Thus, 
colonoscopy videos from 318 patients were included in the 
final analyses. All included patients signed informed consents 
for study participation, video recording, and further analyses 
of the videos. The study protocol was approved by the local 
ethics board (IRB #: 20.198) and was registered at https://
clinicaltrials.gov/ (NCT04586556).

Study Procedure
All colonoscopies were performed by five board-certified 
gastroenterologists according to the current standard of care 
using standard high-definition colonoscopes (Olympus 190 
series; Olympus Corp., Center Valley, PA, USA) (3). The co-
lonoscopy videos were recorded using Medicapture USB 300 
devices (high definition, 1080, H.264/MPEG4) and stored on 
a hard drive. The endoscopists were instructed to use narrow-
band imaging for performing optical diagnosis at their discre-
tion. Endoscopists removed detected polyps using standard 
polypectomy techniques, and the specimens were sent to the 
local histopathology laboratory for histology assessment. 
All patients were followed up after 2 weeks to inquire about 
delayed adverse events. No severe adverse events were re-
ported. All videos were deidentified by removing any patient 
identifier information before being permanently stored on a 
local hard drive. A research assistant attended each colon-
oscopy procedure to document all relevant study steps on 
standardized case report forms. The research assistant started 
a stopwatch function upon colonoscope insertion into the 
rectum to enable documentation of the exact withdrawal 
time and moment of landmark detection in order to create 
annotated video files.

Based on the recommendation of the Canadian 
Association of Gastroenterology (10) for standard colon-
oscopy procedures, the following data were collected. (a) 
Patient demographic and clinical characteristics, including 
age, sex, body mass index, family history of CRC, colon-
oscopy indication, and ASA classification. (b) General pro-
cedural data, including date and time of the procedure and 
the endoscopist’s name. (c) Colonoscopy characteristics, in-
cluding bowel preparation quality (poor vs. adequate, defined 
as an overall BBPS score >6, and >2 for each colon segment 
(11)), the exact time of colonoscope insertion in the rectum, 
the exact time of identifying important anatomical landmarks 
(i.e., AO, ICV), cecal intubation (as a surrogate for complete 
colonoscopy, yes/no), the exact time of starting withdrawal 
of the colonoscope, the exact time the colonoscope reached 
and was removed from the rectum, and withdrawal time (de-
fined as the time required to withdraw the colonoscope from 
cecal intubation to removal from the anus). (d) Polyp-related 
characteristics, including the exact time of detection of each 
polyp (if multiple), and anatomical location, size, and mor-
phology (according to the Paris classification (12), polypoid/
nonpolypoid) of each polyp. We dedicated a specific code to 
each endoscope and patient to avoid confusion. Therefore, all 

collected data on the case report forms were anonymized be-
fore being transferred to an electronic database.

Model Training and Validation
We trained a DCNN AI model on 21,503 unaltered frames 
extracted from the recorded colonoscopy videos of 272 
patients, and validated and tested the model on 1924 (25 
patients) and 2017 (21 patients) unaltered frames, respec-
tively. Supplementary Table 1 shows the detailed patient dem-
ographic and procedural characteristics used in each data set. 
All frames were extracted from the white-light colonoscopies, 
and all narrow-band imaging frames were excluded. We 
followed the procedure shown in Figure 1 to extract the re-
quired frames for training and testing the AI model. The model 
was trained to distinguish between four distinct landmarks: 
(a) AO, (b) ICV, (c) polyp, and (d) normal mucosa. For each 
landmark, we extracted an average of 30 frames for each 
time of its appearance. As consecutive frames within a video 
are correlated, we introduced a stride of 4 frames (i.e., the 
amount of movement over the frames of a video) for the AO, 
ICV, and polyp landmarks, and a random stride of between 
4 and 15 frames for the normal mucosa landmark during the 
frame extraction. This was to increase the exposure of the 
model to higher variability among nonconsecutive frames.

As the annotation for timing of landmark detection in 
real-time might not be precise, there was a possibility that 
some of the extracted frames would not contain their cor-
responding landmarks. Furthermore, because of the move-
ment of the colonoscope inside the colon, sometimes the 
landmark of interest might disappear from the field of view 
for a short period of time. Therefore, to ensure that we used 
labeled frames for model training correctly, all the extracted 
frames were reviewed and annotated by a team of three 
clinicians (MT, MT, DvR). Using a quality assessment tool, 
the clinicians examined a total of 86,754 frames (7982 AO, 
8374 ICV, 32,971 polyps, and 37,427 normal mucosa) and 
verified whether or not the frame contained one unique land-
mark. If a frame was too blurry or contained two landmarks, 
or a very small portion of a landmark from which even an 
expert clinician could not locate the object, the frame was 
discarded. After performing the verification process, 25,444 

Figure 1. The area under the curve of the deep convolutional neural 
network model to distinguish appendiceal orifice versus ileocecal valve, 
and versus normal mucosa (blue line; AUC = 94.5 [95% CI 93.8 to 95.3]), 
and the appendiceal orifice versus ileocecal valve versus polyp, and 
versus normal mucosa (black line; AUC = 94.4 [95% CI 93.9 to 94.9]). 
The black dashed line represents the reference line.

http://academic.oup.com/jcag/article-lookup/doi/10.1093/jcag/gwad017#supplementary-data
https://clinicaltrials.gov/
https://clinicaltrials.gov/
http://academic.oup.com/jcag/article-lookup/doi/10.1093/jcag/gwad017#supplementary-data
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frames (2914 AO, 2606 ICV, 14,772 polyps, and 5152 normal 
mucosa) were accepted to be used for model training, valida-
tion, and testing (Table 1). The training, validation, and test 
data sets did not overlap (details provided in Supplementary 
Table 1).

DCNN-Based AI Model
The DCNN model used in the current study is an off-the-
shelf network based on the Inception V3 architecture (13) 
and pretrained on the ImageNet data set (14). We applied a 
transfer learning technique to fine-tune the model parameters 
to the endoscopic images using a cross-entropy loss function 
and back-propagation algorithm (15). The model was trained 
to distinguish between AO, ICV, polyp, and normal mucosa. 
The images associated with different classes were fed to the 
model in equal proportions to keep the balance across the four 
classes during the training phase. For all experiments, we used 
an Adam optimizer with a learning rate of 0.0002. We used a 
learning rate scheduler with patience of 5 and a factor of 0.5 
to decrease the learning rate when the validation accuracy 
stopped improving. Because of the small volume of data avail-
able, different techniques were used to decrease the overfitting 
of the model, such as different data-augmentation techniques, 
which were applied to each frame, thus introducing more var-
iability and richer diversity to the model (16). This included 
90% to 100% horizontal and vertical scaling, 0-to-5-degree 
rotation, –5% to 5% horizontal and vertical translation, 95% 
to 105% colour saturation adjustment, 95% to 105% colour 
brightness adjustment, random horizontal and vertical flip-
ping, –3% to 3% horizontal and vertical shearing, 0% to 1% 
perspective, and 0% to 2% sharpening. We used L2 regulari-
zation with a penalty of 0.001, a drop-out before the Softmax 
layer with a drop rate of 0.8, and an early-stopping technique. 
The model training, validation, and testing were performed 
using an NVIDIA Tesla V100 GPU with 32 GB of memory.

Study Outcomes
The primary outcome was the proportion of patients in whom 
the AI model could identify both ICV and AO, and differen-
tiate them from polyps and normal mucosa, with an accu-
racy of detecting both AO and ICV above a threshold of 40% 
(representing a value in which reliable identification of the 
landmarks can be assumed without increasing false-positive 
alerts). The secondary outcome was the accuracy of the AI 
model in differentiating AO (vs. normal mucosa) compared 
with frames annotated by expert endoscopists, which were 

used as the reference. Other outcomes included: (a) the accu-
racy of the AI model to differentiate ICV (vs. normal mucosa) 
compared with the expert-annotated frames; (b) the accuracy 
of the AI model to differentiate polyp (vs. normal mucosa); 
(c) the accuracy of the AI model to differentiate normal mu-
cosa, defined as the colonoscopy images containing no other 
landmarks (i.e., OA, ICV, polyp, diverticulum); (d) the accu-
racy of the model to differentiate between AO, ICV, polyp, 
and normal mucosa when >1 landmark appeared in an 
image; (e) other diagnostic characteristics of the AI model for 
differentiating each landmark mentioned above, including 
sensitivity, specificity, negative and positive predictive values, 
and the area under the receiver operating characteristic curve 
(AUC); (f) the false-positive detection rate for each landmark.

Statistical Analysis
All confidence intervals were computed using Clopper–
Pearson interval method for calculating binomial confidence 
intervals using the extracted confusion matrices from the 
model that categorized the predictions of each landmark in 
each image against the actual annotated images in the test 
data set. The R programming language (R Core Team, 2020) 
was used for statistical computing of all diagnostic perfor-
mance values and confidence intervals.

RESULTS
A total of 2017 frames were used to test the performance of 
the AI model on unseen data (Table 1). Both AO and ICV 
could concomitantly be detected in 18 out of 21 patients 
(85.7%; 95% CI 63.7% to 97.0%) if accuracies were above 
the threshold of 40%. Table 2 shows details of the codetection 
of both AO and ICV by the AI model.

The accuracy of the model for differentiating AO, ICV, and 
polyps from normal mucosa was 86.4% (95% CI 84.1% 
to 88.5%), 86.4% (95% CI 84.1% to 88.6%), and 88.6% 
(95% CI 86.6% to 90.3%), respectively (Table 3). The accu-
racy of the model was 90.8% (95% CI 89.2% to 92.3%) for 
differentiating AO from ICV and normal mucosa, and 93.0% 
(95% CI 91.5% to 94.3%) for differentiating ICV from AO 
and normal mucosa. The per-patient accuracies are presented 
in the Supplementary file.

The false-positive rates of detecting AO, ICV, and polyp 
(vs. normal mucosa) were 11.7%, 14.7%, and 10.9%, respec-
tively. The inference time of the model for each image frame 
was around 100 ms.

Table 1. Number of frames used for artificial intelligence model training, validation, and testing

Number of 
Frames

Total Rejected 
frames

Frames 
not tagged

Accepted 
frames

Number of frames used 
in training data set

Number of frames used 
in validation data set

Number of frames 
used in test data set

Normal 
mucosa

37,427 5172 27,103 5,152 4,103 519 530

Polyp* 32,971 17,353 846 14,772 13,479 651 642

Ileocecal 
valve

8,374 5,619 149 2,606 1,892 322 392

Appendiceal 
orifice

7,982 4,708 360 2,914 2,029 432 453

Total 86,754 32,852 28,458 25,444 21,503 1,924 2,017

*All frames containing polyps were retrieved from white-light colonoscopy videos.

http://academic.oup.com/jcag/article-lookup/doi/10.1093/jcag/gwad017#supplementary-data
http://academic.oup.com/jcag/article-lookup/doi/10.1093/jcag/gwad017#supplementary-data
http://academic.oup.com/jcag/article-lookup/doi/10.1093/jcag/gwad017#supplementary-data
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Table 3 shows detailed results of the AI model performance 
in the test data set. Figure 2 shows the AUC of the AI algo-
rithm for detecting each anatomical landmark in the test set.

DISCUSSION
To the best of our knowledge, this study describes the first AI 
model to use a DCNN to automatically detect AO and ICV, 
and differentiate them from polyps and normal colon mu-
cosa. Results showed that the model was able to differentiate 
these landmarks from polyps and normal mucosa with high 
accuracy. The model automatically detected both AO and 
ICV in 86% of patients in our test set. It also demonstrated a 
high ability (AUCs ≥ 90%) to distinguish AO, ICV, and polyps 
from normal mucosa in the test set. The required images for 
developing this model were prospectively obtained from a 
cohort of consecutive patients undergoing screening, surveil-
lance, or diagnostic colonoscopies by multiple endoscopists, 
thus, enhancing generalizability, and reducing training, selec-
tion, and operator bias.

The U.S. MultiSociety Task Force on Colorectal Cancer 
suggests that visualization and documentation of the ICV 
and AO with photo-documentation is compulsory and an 
essential part of a high-quality colonoscopy (17). DCNN-
based AI-assisted colonoscopy is a state-of-the-art system 
that already assists endoscopists with polyp detection and 

classification through commercially available solutions (18). 
Adding an AI module confirming completeness of a colonos-
copy procedure seems a logical next step in the evolution of 
AI-assisted colonoscopy practice, as performing a complete 
colonoscopy is a vital prerequisite for a high ADR, and for 
minimizing the risk of interval cancer (3,19,20). Therefore, 
we aimed to create a model that can reliably detect both 
structures (e.g., AO and ICV) and distinguish them from 
normal mucosa and polyps. The combined detection of AO 
and ICV also avoids misreading of a diverticulum as confir-
mation of a complete colonoscopy.

Few studies have developed and tested new AI and nonAI 
approaches for identifying anatomical landmarks. These 
studies have the following major drawbacks: a small sample 
size, use of image-based data, low ADR, lack of testing in 
an independent data set, confusing alarm system, lack of 
DCNN technology, and never exceeding a prototype. One 
initial research used the non-AI K-mean classifier technique 
to automatically classify the 800 manually-annotated images 
derived from five colonoscopies into either appendix image or 
nonappendix image classes (21). Although the model accuracy 
was promising (90%), the exclusion of the images containing 
tangential AO and a relatively high false positive classifica-
tion rate precluded further clinical application of the model. 
Likewise, Wang et al. used two nonAI algorithms to auto-
matically detect AO (22). The initial algorithm distinguished 

Table 2. The proportion of patients in the test data set, in which the deep convolutional neural network model could identify both ileocecal valve and 
appendiceal orifice

Patients Number of frames with AO Accuracy of detecting AO, % Number of frames with ICV Accuracy of detecting ICV, %

1 31 100 24 50

2 17 82.4 13 46.2

3 28 89.3 24 100

4 31 0 29 93.1

5 16 87.5 23 100

6 17 94.1 11 100

7 22 95.5 19 100

8 21 100 23 95.7

9 25 100 25 100

10 7 71.4 10 100

11 24 0 6 100

12 24 95.8 15 100

13 23 100 15 93.3

14 24 79.2 18 100

15 21 95.2 19 100

16 22 100 18 100

17 26 92.3 21 100

18 21 95.2 26 96.2

19 31 100 15 100

20 18 100 24 87.5

21 4 0 14 100

AO, appendiceal orifice; ICV, ileocecal valve; CI, confidence interval.
Both AO and ICV could concomitantly be detected in:
(1) 18 out of 21 patients (85.7%; 95% CI 63.7% to 97.0%) if accuracies were above threshold of 40%.
(2) 17 out of 21 patients (81.0%; 95% CI 58.1% to 94.6%) if accuracies were above threshold of 50%.
(3) 16 out of 21 patients (76.2%; 95% CI 52.8% to 91.8%) if accuracies were above threshold of 60%.
(4) 16 out of 21 patients (76.2%; 95% CI 52.8% to 91.8%) if accuracies were above threshold of 70%.
(5) 14 out of 21 patients (66.7%; 95% CI 43.0% to 85.4%) if accuracies were above threshold of 80%.
(6) 11 out of 21 patients (52.4%; 95% CI 29.8% to 74.3%) if accuracies were above threshold of 90%.
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images containing AO from others by analyzing geometric 
shape, saturation, and intensity changes along the edge’s cross-
section. The second algorithm identified videos containing an 
appendix by analyzing frame intensity histograms to detect a 
near-camera pause during AO inspection. The average sensi-
tivity and specificity of the first algorithm was 96.86% and 
90.47%, respectively. The average accuracy of the second 
algorithm for detecting appendix videos was 91.30%. 
However, this study used only 23 colonoscopy videos and 
was not validated in an independent data set, which limits its 
generalizability. Recent advances in AI and deep learning have 
led to a growing consensus on the possibility of automatic de-
tection of a complete colonoscopy. An AI model using CNN 

algorithm was developed using 3222 images extracted from 
35 colonoscopy videos to detect the AO irrespective of bowel 
preparation (23). The accuracy and AUC of this model was 
94% and 98%, respectively. However, this model has never 
been tested in practice. Another CNN model was trained 
using 6487 colon images prospectively obtained from over 
300 colonoscopy procedures and annotated by two expert 
endoscopists for anatomic landmarks, lesions, and bowel 
preparation adequacy (24). This model intended to automati-
cally calculate CIR and withdrawal time. The model accuracy 
was 88% when trained on all images including unprocessed 
and suboptimal-quality images, but increased to 98% accu-
racy and 99% AUC when trained on a subset of 1000 optimal 

Table 3. Summary of the performance of the deep convolutional neural network artificial intelligence algorithm for the test data set

Detected landmarks Total number 
of images

Number 
of TP

Number 
of TN

Number 
of FP

Number 
of FN

sensitivity 
(95% CI)

specificity 
(95% CI)

NPV (95% CI) PPV  
(95% CI)

Accuracy 
(95% CI)

AUC 
(95% CI)

Normal mucosa 
vs. AO

983 381 468 62 72 84.1
(80.4 to 87.4)

88.3
(85.3 to 90.9)

86.7
(83.5 to 89.42)

86.0 (82.4 
to 89.1)

86.4
(84.1 to 
88.5)

90.8 
(88.8 to 
92.8)

Normal mucosa 
vs. ICV

922 345 452 78 47 88.0
(84.4 to 91.1)

85.3
(82.0 to 88.2)

90.58
(87.7 to 93.0)

81.6
(77.5 to 
85.1)

86.4
(84.1 to 
88.6)

94.4 
(93.0 to 
95.8)

Normal mucosa vs. 
polyp

1,172 566 472 58 76 88.2(85.4 to 
90.6)

89.1(86.1 to 
91.6)

86.1 (83.0 to 
88.9)

90.7
(88.2 to 
92.9)

88.6
(86.6 to 
90.3)

94.8 
(93.9 to 
96.0)

Normal mucosa and 
ICV vs. AO*

1,375 372 877 45 81 82.1(78.3 to 
85.5)

95.1
(93.5 to 96.4)

91.5
(89.6 to 93.2)

89.2
(85.8 to 
92.0)

90.8
(89.2 to 
92.3)

93.6
(92.2 to 
95.0)

Normal mucosa and 
AO vs. ICV*

1,375 365 914 69 27 93.1
(90.1 to 95.4)

93.0(91.2 to 
94.5)

97.1
(95.9 to 98.1)

84.1(80.3 to 
87.4)

93.0
(91.5 to 
94.3)

97.6
(96.8 to 
98.3)

Normal mucosa, AO 
and ICV vs. polyp*

2,017 480 1,294 81 162 74.8
(71.2 to 78.1)

94.1
(92.7 to 95.3)

88.9
(87.2 to 90.4)

85.6
(82.4 to 
88.4)

88.0
(86.5 to 
89.3)

93.4
(92.3 to 
94.5)

Normal mucosa, 
polyp and ICV vs. 
AO*

2,017 321 1,509 55 132 70.9
(66.4 to 75.0)

96.5
(95.5 to 97.3)

93.0
(90.5 to 93.23

85.4
(81.4 to 
88.8)

90.7
(89.4 to 
92.0)

95.3
(94.3 to 
96.3)

Normal mucosa, 
polyp and AO vs. 
ICV*

2,017 343 1,502 123 49 87.5
(83.8 to 90.6)

92.4
(91.0 to 93.7)

96.84
95.84 to 97.7)

73.6
(69.4 to 
77.6)

91.5
(90.2 to 
92.7)

97.8
(97.3 to 
98.3)

*The numbers were aggregated at the final step after getting results.
TP/TN, true positives/negatives; FP/TN, false positives/negatives; NPV, negative predictive value; PPV, positive predictive value; AUC, area under receiver 
operating characteristic curve; CI, confidence interval; AO, appendiceal orifice; ICV, ileocecal valve.

Figure 2. Illustration of data preparation, frame-by-frame landmark tagging, and quality assessment workflow for building disjoint databases for training 
and validation of a deep convolutional neural network classification model, and final prediction of landmarks in unseen test data.
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images. The model’s effectiveness in real-time colonoscopy 
has remained untested. Furthermore, a study developed both 
image-based and video-based CNN models to calculate with-
drawal time from the timepoint of detecting the ICV. The 
highest accuracy of 99.6% was achieved with an image-
based data set, but only 70% accuracy was obtained with 
a video-based data set (25). Another recent study trained an 
AI algorithm using colonoscopy images (not obtained from 
a prospective patient cohort) to detect the AO, resulting in a 
95% AUC in the test data set (26).

Our DCNN model could be integrated into colonoscopy 
reporting software. We imagine future applications that could 
automatically document landmark identification timepoints 
and generate automated reports postcolonoscopy, including 
all relevant procedural steps (identification time of ICV, AO, 
polyps), along with photo-documentation and withdrawal 
time calculations. Other potential applications include 
auditing tools. Previous attempts to develop and link auditing 
tools to real-time endoscopy practice have been challenging, 
mainly due to the significant administrative and budgetary 
burden placed on hospitals and the lack of structured endo-
scopic educational systems. To our knowledge, no auditing 
system has been designed and tested to provide simultaneous 
and automatic feedback on procedure quality and polyp clas-
sification as well as generate electronic reports. Our proposed 
model can be integrated into endoscopy practice as a didactic 
or practice audit system, used by experts and trainees, for 
providing a unified screening, intervention, and educational 
modality. Moreover, this system offers the potential to be 
coupled with the computer-assisted modules to obviate the 
bias raised by self-reporting and self-evaluation of practice 
quality.

The strengths of this study include the use of a large 
number of colonoscopy videos prospectively collected by 
multiple endoscopists, resulting in a mixture of colonoscopy 
findings (i.e., normal mucosa and polyps) and a high number 
of extracted frames. This model worked with unprocessed 
frames, and used the polyp images regardless of the polyp 
anatomical location and histology. Two experts reviewed all 
colonoscopy images, and a third expert endoscopist made 
the final annotation in cases of disagreement to ensure a high 
inter-rater agreement. The DCNN AI model is robust as it 
was trained end-to-end, resulting in performing classifica-
tion tasks within the same learning model. Additionally, ad-
vanced equipment (i.e., high-definition endoscopes) were used 
for performing and recording all colonoscopies, following 
recommendations to use high-definition colonoscopes for 
screening and surveillance colonoscopy to effectively improve 
detection, resulting in high-quality videos and images.

However, the study does present some limitations. We in-
cluded only colonoscopies of patients with adequate bowel 
preparation. As a result, it is necessary to further examine 
the generalizability of this model in real-time clinical applica-
tion, ideally through a multicenter clinical trial using a higher 
number of colonoscopies. Furthermore, our model does not 
aim to distinguish anatomical landmarks from other lesions 
such as diverticula. Moreover, the total processing time was 100 
ms, which is longer than the 33 ms of recommended inference 
time per frame for real-time system implication. Nonetheless, 
the strategies followed in this research for AI model training 
did not include advanced machine learning optimization and 
pruning techniques to decrease inference time. Further research 

should incorporate appropriate techniques to enhance model’s 
inference time and detection accuracy. Additionally, it is 
recommended to validate the model on a video-based data set 
to evaluate its performance in operational context.

To conclude, we developed a DCNN model that can reli-
ably identify both AO and ICV in a test set of images from co-
lonoscopy procedures. Furthermore, the DCNN model could 
distinguish AO and ICV from normal mucosa and colorectal 
polyps with high accuracy. We believe that this study is the 
first crucial step in creating a better automated colonoscopy 
reporting and auditing system that can deliver a colonoscopy 
report immediately after a procedure, including automated 
photo-documentation of anatomical landmarks and polyps.

SUPPLEMENTARY DATA
Supplementary data are available at Journal of the Canadian 
Association of Gastroenterology online.
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