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1. Introduction
In organic electrolytes, electrode reactions of many compounds, such as catechols [1] and quinones [2], consist of two 
successive electron transfers connected by the transfer of protons [3–5]. These reactions are examples of the ECE mechanism 
[6–12] and the nine-member square scheme [13–15]. They were observed in electroreduction of p-nitrosophenol [16, 
17], benzenesulfonyl floride [18, 19] and hexacyanochromate(III) [20] and in electrooxidation of tocopherols [21], 
methylcatechol [22, 23] and dopamine [24]. The theory of this mechanism is developed for polarography [8, 25–29], 
cyclic voltammetry [20, 30–33], square wave voltammetry [34–38], rotating disk measurements [39, 40] and the surface 
reactions in protein film voltammetry [41, 42]. The steady state responses on the rotating disk were calculated for totally 
irreversible chemical reactions and in this paper the investigation is extended to kinetically controlled, second order, 
reversible chemical reactions. The role of the electroinactive component of the reaction is analysed.

2. Model
It is assumed that an electrolytic solution contains dissolved reactant of the first electrode reaction and an electroinactive 
substance Y that cannot react with the mentioned reactant. The first electron transfer is fast and reversible electrooxidation. 
Its product cannot participate in the second electron transfer, but it can react with the substance Y to produce a compound 
that is stable at the given potential, but can be electrooxidized at higher potentials. Both chemical reaction and the second 
electrode reaction are reversible and the latter is fast. This mechanism can be represented by the following chemical 
equations:

A ↔ B + e- 	 (1)
B + Y ↔ G 	 (2)
G ↔ H + e- 	 (3)

On the rotating disk electrode, the mass transfer and currents are defined by the following system of differential equations 
and the initial and boundary conditions:

	 (4)

	 (5)
 	

	 (6)
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	 (17)
	 (18)

	 (19)
The meanings of all symbols are reported in Table. Equations (4)–(8) were solved by the finite difference method [43]. 
The current was calculated for the staircase cyclic voltammetry. The dimensionless current is defined by the following 
equations:

	 (20)
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	 (21)
The following parameters were not changed: 

Table. Meanings of symbols.

Symbol Meaning
cZ Concentration of species Z

Bulk concentrations of species A and Y
D Diffusion coefficient
δ Diffusion layer thickness
∆E Potential increment
∆t Time increment
∆x Space increment
E Potential

Standard potentials
F Faraday constant
I1,I2 Currents
ν Kinematic viscosity

Rate constants of chemical reaction
K Equilibrium constant of chemical reaction
ω Rotation rate
R Gas constant
S Electrode surface area 
t Time
T Temperature
τ Step duration
v Flow rate of solution
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3. Results and discussion
On the rotating disk electrode, the cyclic staircase voltammograms of the ECE mechanism with stable intermediates 
depend on the scan rate, the electrode rotation rate and the kinetics of chemical reaction. Some examples are shown in 
Figure 1. They were calculated assuming that the concentration of substance Y can be freely changed and adjusted to the 
concentration of the reactant A. If the rate constants of chemical reaction are very high and equal  and the rotation 
rate is low, the response is characterized by two maxima and two minima at 0.027 V, 0.378 V, 0.281 V, and –0.057 V vs. 

, respectively. Considering that  0.3 V, the two parts of the response are well separated. The last minimum 
at –0.057 V is important because it shows that very fast chemical reaction is transforming the second reactant G into the 
first product B in the reverse branch of voltammograms. This minimum is the evidence that the whole ECE mechanism 
is close to the equilibrium. The absence of this minimum that can be noted in Figure 1B shows that chemical reaction 
is irreversible. It is a consequence of very high equilibrium constant and very low backward rate constant that cannot 
produce the first product B in the reverse branch. The potentials of two maxima and the minimum are: –0.058 V, 0.340 
V, and 0.261 V, respectively. The potential of the first maximum is 85 mV lower than in Figure 1A because the chemical 
reaction is consuming the product of the first electrode reaction and decreasing the formal potential of the first electron 
transfer [33].

At higher rotation rates, the maxima and minima disappear and the response acquires the form of polarogram. The 
dimensionless limiting current of the first wave is equal to unit at 0.15 V vs. . This is the base line for the measurement 
of limiting currents of the second wave. In Figure 1A the half-wave potentials are –0.019 V and 0.321 V in the anodic 
branch and –0.010 V and 0.330 V in the cathodic branch. This is because this response corresponds to the near steady state 
conditions. Under strict steady state both branches are overlapped. If = 103 the first wave appears at –0.082 V because 
of irreversibility of chemical reaction.

Limiting currents of the second wave depend on the normalized forward rate constant of the chemical reaction. This is 
shown in Figure 2. The half-wave potentials of the second wave are changing from 0.298 V vs.  to 0.321 V 
(curve 6) and those of the first wave from –0.004 V (1) to –0.019 V (6). These opposite trends are caused by the increasing 
rate of chemical reaction that creates a combination of EC and CE mechanisms. Furthermore, Figure 1A shows that the 
current at 0.8 V decreases with the increasing rotation rate. This is because the time that the product B spends near the 
electrode surface is longer if the rotation rate is slower. The limiting currents of the second wave depend on the logarithm 
of the product  in a sigmoidal manner, as can be seen in Figure 3. This figure also shows that the limiting currents of 
irreversible chemical reaction are higher than those of reversible one. Obviously, the backward component of the reaction 
diminishes its net gain. The relationship of this type can be represented by the general function [44]:

	 (22)

Figure 4 shows that this representation is suitable for the limited range of the argument. The parameters and  
can be determined by the logarithmic analysis: 

	 (23)

	 (24)

Firstly the function  is calculated and then the parameters are measured from the relationship between  and 
. For instance, the limiting currents shown by the curve 2 in Figure 3 when transformed by Eq. (24) gave a set of log values 
that depended linearly on the corresponding log  arguments, with the slope 0.5 and the intercept 5.8 (not shown). The 
curves 1 and 2 in Figure 4 are defined by the following functions:

	 (25)
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This procedure is useful for the transformation of the set of discrete data into a continuous function. By the variation 
of concentrations of A and Y, keeping them equal, one can estimate the parameter  from the gradient 
. If the limiting current of the second wave is one half of the first limiting current and  ω=40π rad /s, then logΨ=0 and 

. The number 44 is an average of  values corresponding to reversible and irreversible 
chemical reactions. However, this estimation is rough and requires that the concentration of Y can be freely changed, 
which does not have to be fulfilled.
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The variation of the bulk concentration of the substance Y influences both waves of the ECE response. The limiting 
current of the first wave is independent of  but the half-wave potential of this wave decreases significantly with the increasing 
of this concentration. Regarding the second wave, its limiting current is influenced mostly, while E1/2,2 is less affected. This 
is shown in Figure 5 for the reversible chemical reaction. The compound Y contributes to the forward rate of chemical 
reaction and its influence depends on the product . The relationship between E1/2,1 and log  is sigmoidal and in 
the vicinity of inflexion points it can be approximated by the straight lines:

	 (27)

	 (28)

If the dimensionless equilibrium constant is 103 this relationship is very similar and the straight lines are:

	 (29)

	 (30)

They apply for  1 s–1 and 100 s–1, respectively. The limiting currents of the second wave are the sigmoidal function 
of log  if  1 s–1, but this relationship is only an upper fraction of the sigmoidal curve if  100 s–1. This is because 
these two arguments add up giving the joint effect. If K  = 103 the second half-wave potential is independent of , but if 
K  = 1 it changes from the values reported in Figure 2 to 0.296 V vs.  , which is the potential that corresponds to the 
irreversible chemical reaction. This change occurs within the interval 1 < < 50.

Figure 2. Dependence of the second wave on the product of 
the forward rate constant of chemical reaction and the bulk 
concentration of the reactant A. K  = 1, ω = 40π rad/s and 

 / s–1 = 0 (1), 1 (2), 10 (3), 100 (4), 1000 (5) and 10000 (6). 
All other data are as in Figure 1.

Figure 1A Figure 1B

Figure 1. Dimensionless cyclic staircase voltammograms of the ECE mechanism on the rotating disk electrode under the transient (full line) 
and near steady-state (broken line) conditions.  

.
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The difference in limiting currents of the second wave between the ECE mechanisms with reversible and irreversible 
chemical reactions can be explained by the inspection of distribution of chemical species in the diffusion layer that is 
shown in Figure 6. One can notice that the dimensionless concentrations of B, Y and G are particularly sensitive to 
the dimensionless equilibrium constant of chemical reaction. If the reaction is reversible the concentration of Y at the 
electrode surface is 0.26 and the maximum concentration of G is 0.05, but under the influence of irreversible reaction these 
concentrations change to 0.17 and 0.1, respectively. Consequently, the gradient of H is steeper if the reaction is irreversible 
and the current is higher.

The models of ECE mechanism in the voltammetry on stationary macroelectrodes give qualitative descriptions 
of the responses because the transient currents consist of the diffusion and kinetic components [25, 33, 34, 38]. 
Under steady-state conditions on microelectrodes [6] and rotating disk electrodes [40] the diffusion component 
can be controlled and the kinetic contribution can be quantified. In this paper, it is shown that the kinetic current 
satisfies a general equation (22) and that the rate constant of chemical reaction can be estimated under certain 
conditions.

Figure 3. Dependence of the limiting current of the second wave 
on the logarithm of the product  . K  = 1 (1) and 103 (2). All 
other data are as in Figure 2.

Figure 4. Dependence of the limiting currents of the second 
wave (the symbols) on the product . K  = 1 (1) and 103 (2). 
The lines 1 and 2 are calculated by Eq. (22) using parameters p = 
0.4 and  = 54.54 (1) and p = 0.5 and = 33.34 (2). 
All other data are as in Figure 2.

Figure 5A Figure 5B
Figure 5. Dependence of the half-wave potential of the first wave (A) and the limiting current of the second wave (B) on the logarithm 
of the ratio between bulk concentrations of the substance Y and the reactant A;  / s–1 = 1 (1) and 100 (2). The straight lines 1 and 2 
are defined by Eqs. (27) and (28), respectively. All other data are as in Figure 2.
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4. Conclusion	
The difference between ECE mechanisms with the reversible and irreversible chemical reactions originates from the 
influence of the backward rate constant on the net gain of the reaction. If the reaction is of the second order, its forward 
rate depends on the component Y and the limiting current of the second wave becomes higher if the concentration of 
Y is increased. The rate constant can be estimated from the relationship between currents and the concentrations of the 
reactant of the first electrode reaction.
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Figure 6A Figure 6B
Figure 6. Distribution of the reactant A (1), the product B (2), the compound Y (3), the second reactant G (4) and the final product H 
(5) in the diffusion layer at 0.8 V vs. ; ω= 40 rad/s,  =1, 103 s–1 and K  = 1 (A) and 103 (B). All other data are as in Figure 1.
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