indicating that subphenotype assignment also has strong prognostic
relevance in children with ARF but not PARDS.

Recent investigations in adults with ARF without ARDS also
support the existence of two subphenotypes with characteristics
similar to those seen in patients with ARDS, again distinguishable by
inflammatory biomarkers and by clinical outcomes (5, 8). Thus,
these two subphenotypes share overlap across the adult and
pediatric ARF spectra, offering a rationale for innovative trial
enrollment strategies across ages.

Our findings emphasize the challenge of syndromic definitions
such as PARDS in specific, and ARF in general, which struggle to
identify and characterize complex pathophysiologic processes that
culminate from multiple inciting diagnoses. Our data suggest that the
complex inflammatory pathways and inflammatory-related
subphenotypes associated with PARDS (3, 9) are also involved in
children with ARF, and recent data suggest that they may also be
observed in other critically ill children (10).

In conclusion, these data suggest that parsimonious model
subphenotype assignment can enable robust prognostic enrichment
compared with prior risk stratification schema. Earlier identification
of high-risk subphenotypes, particularly in pediatric patients, could
result in earlier escalation of care in patients at greater risk for
complex course.

After validation, these data may impact future clinical trial
design, including the expansion of subphenotype identification to the
broader pediatric ARF cohort. M
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To the Editor:

Pulmonary arterial (PA) pressures and right ventricular (RV)
afterload increase in response to hypoxia (1). Limited data are
available that describe RV adaptations to acute hypoxia and the
associated increases in afterload, occurring in response to clinical
scenarios such as infections, pulmonary embolism, and hypoxia
associated with high-altitude exposure (2).

RV pressure-volume analysis by means of conductance
catheterization is a gold-standard method of characterizing RV
function using metrics of contractility, lusitropy, energetics, and
ventricular-arterial coupling (3). The primary objective of this
single-center prospective study (ClinicalTrials.gov ID NCT
05272514) was to characterize RV performance in response to
acute progressive hypoxia.

The results of this study have been previously reported in an
unpublished abstract (4).

Healthy adults free of cardiovascular, hematologic, and
pulmonary disease underwent hemodynamic assessment. Individuals
residing at =2,500 m (8,000 ft) for three or more consecutive nights
within 30 days of testing were excluded (2). Written informed
consent was obtained. The study was approved by the institutional
review board of the University of Colorado Anschutz Medical

Campus and overseen by an independent data safety and monitoring
board. Participants underwent baseline evaluation with Swan-Ganz
catheterization. Thereafter, they were randomized 1:1 to undergo
hypoxic testing with Swan-Ganz catheterization versus a conductance
catheter inserted into the right ventricle. Oxygen saturation (Sag,)
and blood pressure were monitored with a radial arterial catheter.
Oxygen uptake was continuously recorded (Vyntus, Vyaire Medical)
for calculation of direct Fick cardiac output (5, 6). For participants
randomized to testing with a conductance catheter, the Swan-Ganz
catheter was replaced by a 7F high-fidelity conductance catheter

(CD Leycom). Insertion and calibration were performed according
to previous protocols (5, 6). Single-beat estimation was used to
determine end-systolic elastance, effective arterial elastance, and
ventricular-arterial coupling (5, 6). Participants were exposed

to staged reductions in Fig, at 0.21, 0.17, 0.15, and 0.12 every

8-10 minutes by means of an open circuit with Douglas bag
reservoirs. Hemodynamic parameters were recorded in the final
minute of each stage of hypoxia. Data are reported as mean * SD

or median (and interquartile range) unless otherwise specified.

Ten participants completed the study (34 = 10 years; three
women; body mass index, 24.3 * 2.7 kg/m?). Baseline hemodynamics
among all participants demonstrated a right atrial pressure of
3 mm Hg (1, 3), a mean PA pressure of 12 mm Hg (9, 15), PA wedge

Table 1. Invasive Hemodynamic Response to Acute Hypoxia Derived from Pulmonary Arterial and Conductance Catheterization
Fip,=0.21 Fip,=0.17 Fio,=0.15 Fip,=0.12 P Value
Swan-Ganz catheter (N=5)
HR, bpm 53 (50, 62) 54 (52, 62) 55 (53, 72) 63 (53, 73) 0.06
RAP, mm Hg 3(1,3) 3(1,3) 3(1,3) 1 (0, 211+ <0.01
PAS, mmHg 18 (14, 20) 17 (15, 22) 20 (16, 22)* 25 (25, 31)*T* <0.01
PAD, mmHg 8 (4, 10) 9 (8, 11) 9 (8, 11) 9 (7, 13) 0.25
mPAP, mm Hg 12 (7, 13) 12 (11, 13) 13 (13, 13) 14 (13, 19)* 0.01
PAWP, mm Hg 6 (6, 6) 6 (6, 7) 5 (4, 10) 6 (3, 10) 0.92
PA Sat, % 71 (69, 72) 64 (64, 67) 64 (58, 64)* 53 (49, 61)*T* <0.01
Arterial Sat, % 96 (94, 97) 93 (89, 96) 86 (83, 90)*T 76 (71, 81)*T* <0.01
SV, ml/beat 125 (101, 151) 107 (80, 184) 114 (97, 174) 147 (124, 166) 0.69
Qc, L/min 7.4 (6.1, 8.7) 6.2 (5.8, 8.8) 8.2 (6.8, 9.2) 9.7 (7.2,11.3) 0.40
PVR, WU 0.9 (0.5, 1.0) 1.0 (0.8, 1.1) 1.1 (0.5, 1.1) 1.0 (1.0, 1.1) 0.10
Conductance catheter (N=5)
RV contractility
dPdtmay, mmHg/s 268 (240, 271) 283 (257, 312) 315 (296, 340) 448 (342, 476)*1* <0.01
ESP, mmHg 17 (17, 18) 9 (18, 21) 23 (19, 23) 7 (23, 28)*T <0.01
PRSW, mmHg 7 (6, 13) 4 (12, 14) 14 (14, 19) 0 (11, 26)* 0.02
RV lusitropy
dPdtmin, mmHg/s —208 (—219, —195) —243 (—260, —225) —275 (—297, —232) —331 (=396, —295)*™*  <0.01
RV energetics
SW, mmHg-ml 1,750 (1,489, 2,697) 2,777 (2,697, 2,900) 3,503 (3,229, 3,536) 3,578 (2,558, 5,440)* 0.03
Ventricular-arterial coupling
Ees, mm Hg/ml 0.21 (0.19, 0.25) 0.19 (0.18, 0.25) 0.23 (0.18, 0.25) 0.24 (0.20, 0.25) 0.54
Ea, mm Hg/ml 0.16 (0.15, 0.17) 0.13 (0.11, 0.15) 0.14 (0.12, 0.15) 0.18 (0.14, 0.18)™* 0.02
Egs/Ea, units 1.51 (1.35, 1.73) 1.50 (1.42, 1.62) 1.43 (1.32, 1.84) 1.35 (1.33, 1.41) 0.47

Definition of abbreviations: Arterial Sat = arterial oxygen saturation; bpm=beats per minute; dPdtox = maximum rate of pressure change;
dPdtq,;, = minimum rate of pressure change; Ex = effective arterial elastance; Egs = end-systolic elastance; Egs/Ea = ventricular-arterial coupling;
ESP =end-systolic pressure; HR = heart rate; mPAP = mean pulmonary arterial pressure; PA Sat = pulmonary arterial oxygen saturation;

PAD = pulmonary arterial diastolic; PAS = pulmonary arterial systolic; PAWP = pulmonary artery wedge pressure; PRSW = preload recruitable
stroke work; PVR = pulmonary vascular resistance; Qc = cardiac output; RAP =right atrial pressure; RV =right ventricular; SV = stroke volume;
SW = stroke work; WU =Wood units.

Data are presented as median (interquartile range).

*P<0.05 for comparison with an Fip, of 0.21.

TP<0.05 for comparison with an F\o of 0.17.

*P < 0.05 for comparison with an F‘oz of 0.15.
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Example tracings: RV Pressure Volume Analysis from Conductance Catheter
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Figure 1. Example hemodynamic tracings demonstrating the response to acute hypoxia. RV =right ventricular.

pressure of 6 mm Hg (6, 6), and direct Fick cardiac output of

8.8 L/min (7.2, 9.2). Sap, at a Fip, of 0.21 was 95% (94, 96) and
decreased to 71% (70, 77) at a Fip, of 0.12. Hemodynamics during
progressive reduction in Fi, are demonstrated in Table 1. Example
hemodynamic tracings are demonstrated in Figure 1. Progressive
hypoxia led to a modest increase in PA pressure from 12 (7, 13) to
14 (13, 19) mm Hg among participants evaluated with a Swan-Ganz
catheter (N=5) and in RV afterload from 0.16 (0.15, 0.17) to 0.18
(0.14, 0.18) mm Hg/ml among those evaluated with a conductance
catheter (N'=5). Cardiac output increased because of modest
increases in heart rate and stroke volume. Acute hypoxia increased
metrics of RV contractility, lusitropy, and myocardial energetics,
and RV ventricular-arterial coupling was preserved.

The primary findings from this study are as follows: I) Mean PA
pressure increased by ~17% in response to an acute reduction in Fip,
from 0.21 to 0.12; 2) despite the associated increase in RV afterload,
there were concomitant increases in RV contractility, lusitropy, and
energetics; consequently, 3) RV ventricular-arterial coupling was
preserved.

Limited studies have characterized RV performance in response
to hypoxia. Operation Everest II demonstrated that RV afterload
increased during a gradual transition from sea level (760 mm Hg)
to a simulated Everest summit (240 mm Hg), and RV function, as
determined by right atrial pressure, was preserved (1). Among healthy
individuals (N = 35), echocardiographic assessment of RV systolic
pressure increased after 150 minutes of exposure to an Fig, of 0.11
(F1o,,0.21 vs. 0.11: 17.4 = 3.3 mm Hg vs. 24.9 = 4.8 mm Hg) with an
associated reduction in tricuspid annular plane systolic excursion (Fig,
0.21vs.0.11: 21 = 1.4mm vs. 17 = 1.5 mm; P < 0.05), suggesting
decreased RV systolic function in response to increased afterload (7).

This study assessed RV performance using complementary gold-
standard methodologies of PA hemodynamics and pressure-volume
analysis. Noninvasive methodologies are inherently limited when

Correspondence

characterizing PA and RV hemodynamics. Isolated metrics from
invasive PA assessments such as right atrial pressure do not
adequately characterize RV contractility, lusitropy, energetics,

or ventricular-arterial coupling. Thus, data provided in this

analysis provide unique insight into RV performance in response to
acute increases in afterload, such as that which occurs during

acute hypoxia.

These findings can be contextualized among pressure-volume
analyses of RV function in other clinical states. For example, metrics
of contractility and myocardial energetics during supine rest at
Fip, 0f 0.15 and 0.12 were similar to values among healthy
individuals performing normoxic submaximal exercise (5).
Contractility, as assessed by maximum rate of pressure change, was
similar, at a Fio, of 0.12, to that observed in an animal model of acute
intermediate-high-risk pulmonary embolism, though in contrast to
the pulmonary embolism model, healthy individuals at a Fi, of 0.12
demonstrated lower afterload and preserved ventricular-arterial
coupling (8). Finally, preload recruitable stroke work increased in
response to progressive hypoxia to levels comparable with those in
patients with PA hypertension associated with systemic sclerosis (9).

Limitations to our study include the small sample size, albeit a
size similar to that in prior invasive studies (1). The majority of the
participants were males, and gender-specific differences in RV
function could not be determined. Second, we evaluated RV
performance in response to acute (<1h) hypoxia among healthy
participants and did not include an analysis of RV changes that
occur during prolonged exposure to hypoxia.

In conclusion, the healthy RV demonstrates significant
contractile reserve such that ventricular-arterial coupling is preserved
during acute hypoxia. Additional studies are necessary to characterize
longitudinal changes in RV function during chronic hypoxia as well
as RV response to hypoxia among individuals with cardiopulmonary
disease (2, 10). ™
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