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Author summary
Influenza A viruses (IAVs) exact a large public health burden across the world. Currently, our understanding of their infection dynamics is incomplete, which 
hinders the development of effective vaccines and treatment strategies. Previously, it has been shown that a large fraction of IAV particles, called semi-infectious 
particles (SIPs), do not cause productive infection on their own; however, cellular coinfection of these particles can lead to productive infection. The extent to 
which SIPs and, more broadly, coinfection contribute to overall influenza infection dynamics is not clear. To address this question, we propose a simple 
mathematical model explicitly keeping track of SIPs and coinfection and implicitly considering the spatial structure of infection. We show that coinfection can be 
frequent over the course of infection and that SIPs play an important role in driving infection dynamics. Our results have implications for developing effective 
therapeutics.
*Corresponding author: E-mail: rke@lanl.gov

Abstract 

Influenza is an ribonucleic acid virus with a genome that comprises eight segments. Experiments show that the vast majority of virions 
fail to express one or more gene segments and thus cannot cause a productive infection on their own. These particles, called semi-
infectious particles (SIPs), can induce virion production through complementation when multiple SIPs are present in an infected cell. 
Previous within-host influenza models did not explicitly consider SIPs and largely ignore the potential effects of coinfection during 
virus infection. Here, we constructed and analyzed two distinct models explicitly keeping track of SIPs and coinfection: one without 
spatial structure and the other implicitly considering spatial structure. While the model without spatial structure fails to reproduce key 
aspects of within-host influenza virus dynamics, we found that the model implicitly considering the spatial structure of the infection 
process makes predictions that are consistent with biological observations, highlighting the crucial role that spatial structure plays 
during an influenza infection. This model predicts two phases of viral growth prior to the viral peak: a first phase driven by fully 
infectious particles at the initiation of infection followed by a second phase largely driven by coinfections of fully infectious particles 
and SIPs. Fitting this model to two sets of data, we show that SIPs can contribute substantially to viral load during infection. Overall, the 
model provides a new interpretation of the in vivo exponential viral growth observed in experiments and a mechanistic explanation for 
why the production of large numbers of SIPs does not strongly impede viral growth. Being simple and predictive, our model framework 
serves as a useful tool to understand coinfection dynamics in spatially structured acute viral infections.
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Introduction
Influenza A viruses (IAVs) cause hundreds of thousands of hos-
pitalizations and tens of thousands of deaths and cost tens of 
billions of dollars each year in the USA alone (Molinari et al. 2007). 
In addition, pandemic strains periodically emerge from the reas-
sortment of human, swine, and/or bird strains, leading to high 
morbidity and mortality rates (Taubenberger and Morens 2006). 
Extensive efforts have been made to understand the transmis-
sion and evolution of IAVs at the epidemiological level (Nsoesie 

et al. 2014); however, our understanding of the molecular origins 

of the within-host genomic diversity of IAVs and how this diver-

sity affects infection dynamics is incomplete (Brooke 2017). This 

knowledge may be crucial for understanding the within-host IAV 

evolution and the frequency of in vivo reassortment and ultimately 

for the development of effective vaccines and treatment strategies 

(Brooke 2014; 2017).

IAVs are negative-sense ribonucleic acid (RNA) viruses with 

genomes that comprise eight gene segments. Proteins from all 

mailto:rke@lanl.gov
https://creativecommons.org/licenses/by/4.0/


2 Virus Evolution

eight segments are essential for the completion of the viral repli-
cation cycle. The majority of virions (between 70 per cent and 
98 per cent) fail to express a complete set of genome segments and 
thus are non-infectious under traditional limiting dilution assays 
(Brooke et al. 2013). These non-infectious virions are broadly cat-
egorized as ‘semi-infectious particles’ (SIPs), whereas, in contrast, 
virions capable of delivering functional copies of all eight seg-
ments are termed ‘fully infectious particles’ (FIPs). If two SIPs 
infect the same cell, however, they can complement each other to 
express at least one copy of all eight gene segments and thereby 
be capable of producing viral progeny that will go on to infect 
other cells (Hirst and Pons 1973; Brooke 2014a). This phenomenon, 
called ‘multiplicity reactivation’ or ‘complementation’, provides 
SIPs the potential to induce a productive infection within a cell 
in the absence of FIPs. Importantly, the presence of SIPs has been 
shown to enhance IAV reassortment and diversity and thus may 
accelerate the rate of IAV evolution (Fonville et al. 2015). Despite its 
importance, understanding of the extent to which the coinfection 
of SIPs occurs and contributes to overall viral dynamics is lacking.

Previously, mathematical models have been used to describe 
IAV viral load dynamics (Baccam et al. 2006), estimate drug effica-
cies (Beauchemin et al. 2008; Canini et al. 2014), and characterize 
the role of innate and adaptive immunity (Miao et al. 2010; Saenz 
et al. 2010; Pawelek et al. 2012). While some models have included 
‘non-infectious’ virions (Schulze-Horsel et al. 2009; Pinilla et al. 
2012; Paradis et al. 2015), the roles that coinfection and com-
plementation between SIPs play in regulating within-host IAV 
dynamics have not been studied. This knowledge is crucial to a 
quantitative understanding of the extent of coinfection and reas-
sortment during infection (Fonville et al. 2015). To address this gap, 
we constructed two distinct viral dynamic models that keep track 
of the dynamics of SIPs and FIPs during an infection (see Fig. 1 
for a schematic). The two models differ in their assumptions of 
the infection process. In the first model, the infection of target 
cells by a virus is assumed to be homogeneously mixed (Fig. 1B), 
whereas in the second model, we implicitly consider the spatial 
structure of host cells and assume that a virus can only infect 
a fraction of target cells (Fig. 1C). We show that considering the 
impact of spatial structure on the availability of target cells is crit-
ical to reproduce key features of published experimental data. We 
further fit the model with the implicit spatial structure to in vivo
data and evaluate the role of SIPs and coinfection in driving IAV 
dynamics.

Results
The mass-action model
We first constructed a model including SIP and FIP coinfection 
dynamics assuming homogeneous mixing between viral parti-
cles and cells (Fig. 1B), an assumption commonly made in viral 
dynamic models (Baccam et al. 2006; Pawelek et al. 2012; Smith 
and Perelson 2011). We term this model the mass-action (MA) 
model because MA terms are used to model the infection process 
under homogeneous mixing. It considers target cells (T) for infec-
tion, FIPs (VF), SIPs (VS), cells singly infected by an FIP (E1 and I1), or 
an SIP (S) and coinfected by FIPs and/or SIPs (E2 and I2). See Meth-
ods for the ordinary differential equations (ODEs) and detailed 
descriptions of the model. This model is an extension of a viral 
dynamic model that assumes target cell limitation (Baccam et al. 
2006), and it ignores the role of the innate and adaptive immune 
responses to IAV infection. While previous modeling work showed 
that the adaptive immune responses were necessary to explain 
the clearance of the virus following peak viremia (Pawelek et al. 

2012), we here adopt the simpler target cell–limited model struc-
ture because we primarily aim to use our models to understand 
the coinfection dynamics during exponential virus growth that 
occurs prior to peak viremia.

Predictions of the MA model are inconsistent 
with observations of frequent coinfection of IAV
We first used the MA model to gauge the relative contribution of 
singly infected cells, coinfected cells, and multiplicity reactivation 
(due to complementation of SIPs) to viral load dynamics during the 
exponential growth. The MA model predicts that the viral popula-
tion grows in two phases. The first phase lasts for the majority of 
the viral growth period, whereas the second phase lasts only for a 
short period before the viral peak. The two phases are driven by the 
FIPs produced from singly infected and coinfected cells, respec-
tively (Fig. 2A). Extending the model to explicitly keep track of FIPs 
produced through complementation (Fig. S1), we found that com-
plementation does not significantly contribute to the first phase 
of viral growth and coinfection is infrequent until a large frac-
tion of cells become infected during the second phase (Fig. 2B). 
These predictions arise from the homogeneous mixing assump-
tion and are largely insensitive to the specific parameter values 
assumed. This is because during the large proportion of the viral 
growth period, i.e. the first viral growth phase, the number of 
uninfected cells is orders of magnitude higher than infected cells. 
Under the assumption of homogeneous mixing, a virus will most 
likely encounter and infect an uninfected cell (Fig. 1B). The infec-
tion of already infected cells occurs at extremely low frequencies 
until the viral load increases close to the peak where the number 
of already infected cells exceeds the number of uninfected cells. 
This prediction, however, is inconsistent with the experimental 
data suggesting that coinfection is frequent throughout the course 
of infection (Marshall et al. 2013; Brooke 2014; Fukuyama et al. 
2015).

We then asked how the first viral growth phase is affected by 
the fraction of viral progenies that are assumed to be SIPs, under 
the constraint that the total number of viral progenies produced 
from infected cells remains the same. We first derived an analyt-
ical approximation to the rate of exponential growth (denoted by 
𝜆𝑀𝐴) (see S1 Supporting Information): 

𝜆𝑀𝐴 ≈ 1
2

(−𝛿1 − 𝑘 + √(𝛿1 +k)2 + 4𝑘𝛿1 (𝑅0 (1 − 𝑓) − 1)), (1)

where 𝛿1 and 𝑘 are the death rate of cells singly infected by 
FIP (I1) and the rate of transition from eclipse cells to produc-
tively infected cells, respectively, and 𝑅0 = 𝑇(0)𝛽𝑀𝐴𝑝1

𝑐𝛿1
 (see Methods 

for definition of parameters). Note that 𝑅0 here is the average 
number of cells singly infected by an FIP when a cell singly 
infected by an FIP is introduced into the system in the case 
where f = 0, i.e. when all virions produced from infected cells
are FIPs.

This expression suggests that the rate of exponential growth 
𝜆𝐻𝑀 is very sensitive to changes in the fraction of viral progeny 
that are SIPs. When all particles produced are FIPs, 𝑓 = 0 and the 
rate of viral growth 𝜆𝐻𝑀 is at its maximum. When all viruses pro-
duced from infected cells are SIPs, 𝑓 = 1 and 𝜆𝐻𝑀 < 0. The MA 
model, therefore, predicts that viral load would decrease, and an 
infection would not be able to take off. The simulation of the model 
confirms these analytical results (Fig. 2C). However, these model 
predictions are inconsistent with a recent study that showed that 
a mutant influenza virus population that is unable to produce FIPs 
(corresponding to 𝑓 = 1) can grow to high viral loads in guinea pigs 
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Figure 1. The model schematics and assumptions about the infection processes in the two distinct models analyzed in the study. (A) A schematic of 
the within-host influenza model that includes SIPs and FIPs, respectively. FIPs are represented by full circles and SIPs by semicircles. Uninfected target 
cells (T) can be infected by FIPs and SIPs to become cells in an eclipse phase (E1 and S, respectively). When cells in an eclipse phase (E1 or S) are further 
infected by FIPs or SIPs, they become coinfected cells in a different eclipse phase E2. E1 and E2 cells mature into productively infected cells (I1 and I2, 
respectively) to produce FIPs and SIPs. (B) The assumptions present in the MA model. When cells and virions are homogeneously mixed, a virus 
encounters all target cells at an equal probability. As a result, coinfection will be extremely rare when most target cells are uninfected. (C) The 
assumptions present in the TS model. When the infection spreads in a spatially structured manner, a virus can only reach a limited number of 
neighboring cells. As a result, when many viruses are produced within a local area, coinfection can occur frequently.

(Jacobs et al. 2019). Furthermore, among different IAV strains, SIPs 
compose between 70 per cent and 98 per cent of biologically active 
particles in an IAV population (Brooke et al. 2013). While the ratio 
of virions produced that are semi-infectious is not the only differ-
ence between different IAV strains, the high fraction and the large 
variation of SIP production (Brooke et al. 2013, 2014) suggest that 
IAV growth is not enormously sensitive to variations in the frac-
tion of SIP production. These inconsistencies strongly argue that 
the MA model is not a good model to describe coinfection or to 
quantify the extent to which SIPs can contribute to within-host 
viral dynamics.

The target cell saturation model
IAV spreads from the upper respiratory tract to the lower respi-
ratory tract, and thus, spatial structure is an inherent property 
of IAV infection (Gallagher et al. 2018). A key feature of spatial 
spread is that during infection, a virus cannot reach all target 
cells in a host; instead, there are only a small number of neigh-
boring target cells that a virus can access (Fig. 1C). To incorporate 

this feature, we considered an alternative model using Michaelis–
Menten (also known as Holling type II) functions to model the 
availability of susceptible cells (see Methods). We argue that the 
assumption of target cell saturation (TS) is more biologically plau-
sible, especially for influenza infections in tissue. For example, it 
has been shown in the human tracheobronchial epithelium that 
foci of infected cells formed during infection and a virion pro-
duced may be more likely to infect cells that are closer to the cells 
that produced the virion (Matrosovich et al. 2004). Similar results 
have also been observed in the lungs of mice (Heaton et al. 2013; 
Pan et al. 2013; Tran et al. 2013) and ferrets (van den Brand et al.
2012).

The TS model is consistent with observations of 
within-host infection
We analyzed the TS model and found that as in the MA model, 
there exist two phases of exponential growth. However, the dura-
tion of the first phase is parameter dependent. The viral growth 
during the first phase is driven by FIP production from singly 



4 Virus Evolution

Figure 2. The simulation results and predictions of the MA model. (A) The viral load dynamics from a simulation of the MA model. The total viral load 
is shown, alongside partitions of viral load that result from singly and coinfected cells (I1 and I2, respectively). Measured using TCID50, the total viral 
load is the concentration of FIPs that stem from all sources. FIPs from I1 and I2 are the concentrations of fully infectious viruses that stem from singly 
and coinfected virion-producing cells, respectively. See the ‘Parameter values, simulation, and data-fitting procedure’ section in Methods for the 
parameter values used to generate the simulation results. (B) The proportion of infected cells that are coinfected and the proportion of fully infectious 
virions that originate as a consequence of multiplicity reactivation (M.R.). (C) The exponential viral growth rate is strongly dependent on the fraction 
of SIPs produced (f ). The viral growth rate here is normalized relative to the growth rate when no SIPs are produced.

infected cells because the viral load is low, the number of E1 and 
S cells (which are targets for coinfection) are low, and thus coin-
fection is infrequent. When the viral load increases to a level 
(set by the Michaelis–Menten functions in the model) such that 
the number of E1 and S cells is higher, it becomes likely that a 
virus infects an already infected cell and coinfection occurs more 
frequently. The viral load then enters the second phase of expo-
nential growth that is driven by viral production from coinfected 
cells. During this phase, both FIPs and SIPs contribute to viral 
growth. The transition from the first to the second growth phase is 
thus determined by viral load and the Michaelis constant, 𝐾𝑀, in 
the Michaelis–Menten function (Fig. S2). Note that we expect the 
Michaelis constant to be very small because for influenza infec-
tion in tissue, the number of target cells that a virus can reach 
is expected to be small. Consequently, we expect the first growth 
phase to only last for a very short period of time.

We derived approximations of the rates of the two exponential 
growth phases as follows (see S1 Supporting Information): 

𝜆1 ≈ 1
2

(−𝛿1 − 𝑘 + √(𝛿1+k)2 + 4𝑘𝛿1 (𝑅0,1 (1 − 𝑓) − 1)), (2)

𝜆2 ≈ 1
2

(−𝛿2 − 𝑘 + √(𝛿2 +k)2 + 4𝑘𝛿2 (𝑅0,2 ( 1 − 𝑓
2

+ 𝑝2
2𝑝1

) − 1)).

(3)
where 𝛿1, 𝛿2, k, and f  are as defined previously in the MA model. 
Here, 𝑝1 and 𝑝2 are the viral production rates from singly and 
coinfected cells, respectively, and 𝑅0,1 = 𝛽𝑇𝑆𝑝1

𝑐𝛿1
 and 𝑅0,2 = 𝛽𝑇𝑆𝑝1

𝑐𝛿2
 (see 

Methods for definition of parameters).

We then tested the extent to which the second growth phase 
𝜆2 depends on the fraction of viral progeny produced that are 
SIPs (f ). Our model predicts that when coinfected cells pro-
duce more virions than singly infected cells as shown by Mar-
tin et al. (2020) (for example, p2/p1 = 3 or 5 in Fig. 3C), the 
growth rate becomes insensitive to changes in the fraction of 
SIP production. This result stands in stark contrast to the find-
ings of the MA model, where the rate of viral growth declines 
rapidly with higher fractions of SIP production. Therefore, only 
the results from our spatial model provide a plausible expla-
nation for how IAV can afford to produce a large fraction
of SIPs.

Overall, the TS model makes predictions that are consistent 
with biological observations, such as frequent coinfections during 
most of the course of infection (Marshall et al. 2013; Brooke 2014; 
Fukuyama et al. 2015) and insensitivity to changes in the frac-
tion of SIPs produced (Brooke et al. 2014; Brooke 2017). We thus 
argue that the TS model is preferred over the MA model and that 
the spatial structure is an important factor in influenza infection 
(Gallagher et al. 2018). 

Quantification of coinfection frequency through 
fitting the TS model to published human and 
animal datasets
We then fitted the TS model to two sets of data to estimate the fre-
quency of coinfection and the contribution of SIPs toward the viral 
load. In one study, six unvaccinated ponies were infected with the 
equine influenza virus (H3N8) (Pawelek et al. 2012). Nasal secre-
tions were collected daily for 10 days postinfection and virus RNA 
levels were quantified (Quinlivan et al. 2007). In another study, 
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Figure 3. The simulation results and predictions of the TS model. (A) The viral load dynamics and drivers of them predicted by the TS model. See the 
‘Parameter values, simulation, and data-fitting procedure’ section in Methods for the parameter values used to generate the simulation results. (B) The 
frequency of infected cells that are coinfected and the frequency of fully infectious virions that are produced due to multiplicity reactivation (M.R.) of 
SIPs. (C) The rate of the second viral growth phase is relatively insensitive to the fraction of SIPs produced (f ), especially when the virus production 
from coinfected cells is much higher than the virus production from singly infected cells (e.g. p2/p1 = 5).

Table 1. The best-fit individual estimates from fitting the TS 
model to two datasets using a nonlinear mixed-effect modeling 
approach. See Methods for further details on the fitting procedure.

ID KM (/ml) 𝛿1 (/day) 𝛿2 (/day)
p1

(TCID50/ml/day)
V(0)
(TCID50/ml)

Pony 1 30.2 1.81 10.11 5.87 6.31 × 10−5

Pony 2 57.5 1.52 10.12 5.36 5.01 × 10−5

Pony 3 46.8 1.78 10.16 5.46 5.37 × 10−5

Pony 4 35.5 1.42 10.10 5.74 5.89 × 10−5

Pony 5 28.2 1.95 10.07 5.93 6.61 × 10−5

Pony 6 44.7 1.97 10.17 5.93 5.37 × 10−5

Pt 1 33.9 1.71 10.11 5.76 6.03 × 10−5

Pt 2 38.0 1.77 10.11 5.63 5.75 × 10−5

Pt 3 32.4 1.58 10.12 5.82 6.31 × 10−5

Pt 4 29.5 1.55 10.10 5.93 6.46 × 10−5

Pt 5 30.9 1.68 10.16 5.87 6.31 × 10−5

Pt 6 28.2 1.56 10.11 6.01 6.61 × 10−5

Pt = participant.

six sero-susceptible human adult participants were experimen-
tally infected with a cloned IAV, followed by daily nasal washes for 
1 week to measure the patients’ viral titers (Murphy et al. 1980; 
Baccam et al. 2006). We took a nonlinear mixed-effect modeling 
approach to fit the TS model to data from all individuals simulta-
neously (Methods). We first tested if a covariant for the different 
datasets is needed (i.e. testing if the population estimates dif-
fer between the two datasets) and found that a model without a 
covariant is the best model to describe the datasets according to 
the corrected Bayesian information criterion (Table S1).

Using the best-fit parameter values, we show that the model 
recapitulates key features of the viral load dynamics, including the 
exponential viral growth phase during the first 2–4 days of infec-
tion (Fig. 4). In general, we estimated that the Michaelis–Menten 

Table 2. The best-fit population estimates from fitting the TS 
model to two datasets using a nonlinear mixed-effect modeling 
approach. S.E. and R.S.E. stand for standard error and relative 
standard error, respectively.

Population 
estimate S.E. (R.S.E.)

Random 
effect S.E. (R.S.E.)

log10 KM (/ml) 1.54 4.6 (300%) 0.17 1.79 (1040%)
𝛿1 (/day) 1.68 0.14 (8.42%) 0.14 0.38 (267%)
𝛿2 (/day) 10.1 1.36 (13.5%) 0.075 0.15 (206%)
P1 (TCID50/ml/day) 5.74 6.66 (116%) 0.098 0.16 (160%)
log10 Vf (0) (/ml) −4.22 1.22 (28.9%) 0.034 0.055 (160%)

constant 𝐾𝑀 is very small (see Tables 1 and 2), indicating that the 
number of target cells that a virus can reach is very low. Thus, 
the first growth phase lasts for a very short period of time, and 
consequently, coinfection occurs frequently during most of the 
exponential periods for all individuals (Fig. 4). This suggests that 
SIPs alone can contribute substantially to the fully infectious viral 
load during the viral exponential growth.

Furthermore, although we primarily focus on the dynamics 

during the exponential growth period, we note that our model 

describes the biphasic viral decline seen after the peak viral 

load (Fig. 4). In our model, most infected cells are coinfected 

at peak viremia, and thus, the first phase of decline is driven 
by the death of coinfected cells. When the coinfected cells die 
at a faster rate than singly infected cells, over time, the coin-

fected cells are cleared, and singly infected cells become domi-
nant, leading to a second phase of decline. Viral loads are mostly 
produced by singly infected cells during this period, and as a 
result, the predicted coinfection frequency and contribution of 
SIPs toward the viral loads dropped (see the rapid decreases after 
peak viremia in these individuals in Fig. 4). This is consistent with 
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Figure 4. Fitting results and predictions of the TS model to two datasets, i.e. the pony experimental data from Quinlivan et al. (2007) in the upper 
panels and the human challenge data from Murphy et al. (1980) in the lower panels. The best-fit viral loads and predicted frequency of coinfection are 
shown. The data points are shown as squares, and the dotted lines denote the limit of detection of the experiment. The best-fit parameters for each 
individual are presented in Table 1.

the findings of our recent study that explicitly keeping track of 
cell populations that are infected by different numbers of viruses 
(Koelle et al. 2019). We caution that this result only provides 
one possible explanation for the biphasic decline, among sev-
eral other explanations. These other explanations instead invoke 
alternative processes such as the replenishment of susceptible 
cells through the waning of an interferon-induced refractory state 
(Pawelek et al. 2012) or density-dependent killing of infected cells 
(Smith et al. 2018). Further experiments are needed to test these
hypotheses.

Discussion
In this study, we proposed and analyzed mathematical mod-
els explicitly considering coinfection dynamics of SIPs during 
influenza virus infection. By comparing two alternative models 
against the observed data, we demonstrated the importance of 
incorporating the impact of spatial structure on the infection pro-
cess. We showed that fully infectious particles (FIPs) from singly 
infected cells initially drive the spread of IAV after infection for a 
very short period of time, and then, coinfection becomes frequent 
and consequently SIPs can contribute substantially to and reg-
ulate viral load dynamics through complementation. Our model 
provides an explanation as to how IAV can afford to produce such 
a large fraction of SIPs.

Previously, influenza within-host models often use an MA term 
to describe the infection process by making the assumption of 
homogeneous mixing of cells and viruses (Baccam et al. 2006; 
Pawelek et al. 2012) (see Ref. Quirouette et al. (2020) for an 

exception). This approach ignores the spatial structure during 
the infection process. We showed that under this assumption,
a low frequency of coinfection and a negligible contribution of 
SIPs toward total viral load are predicted during a large fraction 
of the exponential viral growth period, inconsistent with experi-
mental observations (Jacobs et al. 2019). However, by considering 
the impact of spatial structure on the availability of target cells, 
the TS model predicts that the exponential viral growth observed 
in experiments can be largely driven by SIPs and coinfected cells. 
Viral growth rate becomes relatively insensitive to changes in the 
fraction of SIP production when virus production increases with 
increases in the multiplicity of infection (MOI). This may explain 
the substantial variation in SIP production between IAV strains 
(Brooke et al. 2013, 2014; Brooke 2017). These results strongly 
argue for the important role that SIPs play during infection and 
the crucial importance of measuring the relationship between 
the viral input (i.e. the MOI) and viral output of an infected 
cell (the consequences of MOI) (Koelle et al. 2019; Martin et al. 
2020) in order to make precise predictions of viral dynamics and 
therapeutic interventions.

A recent experimental study showed that an engineered IAV 
that was unable to produce FIPs could cause productive infec-
tion when administered at a high inoculum dose to guinea pigs; 
however, the engineered IAV failed to be transmitted (Jacobs et al. 
2019). The authors further used a cellular automaton model to 
show that infection can spread through the coinfection of SIPs 
when the spread is spatially structured. Consistent with this study, 
our model results suggest that at the time of initial infection, 
when the viral load is very low, the infection is driven by FIPs 
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and SIPs alone are insufficient to establish infection. As viral load 
increases and coinfection becomes frequent, SIPs are able to con-
tribute substantially to viral infection and spread to neighboring 
cells. Overall, these results demonstrate the different roles that 
FIPs and SIPs may play during the initial infection establishment 
and in regulating within-host viral dynamics once the infection is 
established in a host.

Reassortment is common among seasonal IAV strains, poten-
tially contributing to an increased severity of seasonal epidemics 
(Holmes et al. 2005; Westgeest et al. 2014) and to the emergence 
of pandemic IAV strains (Taubenberger and Kash 2010). Recent 
work has highlighted how SIPs can enhance the frequency of IAV 
reassortment, a fundamental process driving IAV evolution and 
adaptation (Fonville et al. 2015). The prediction of our model, that 
coinfection is frequent in vivo and SIPs contribute substantially 
toward the total viral load, thus has important implications in 
understanding viral genetic diversity, reassortment, adaptation, 
and drug resistance development. Our model here can be a use-
ful tool to provide an estimate of the extent of coinfection and 
reassortment in a host. In contrast, ignoring the contribution of 
SIPs to within-host viral dynamics would lead to an imprecise 
estimate of the active viral population size, which would in turn 
lead to an underestimate of the viral diversity in the within-host 
viral population and the probability of drug resistance (as demon-
strated in Perelson, Rong, and Hayden (2012)) and the frequency 
of reassortment.

Despite the ability to reproduce a wealth of dynamics seen in 
experiments, we acknowledge that the TS model has limitations. 
First, our model considers the impact of the spatial spread of 
viral infection on the availability of target cells using a saturation 
function in the infection term in ODEs. A spatially explicit model 
(such as Huang, Dai, and Ke (2019), Quirouette et al. (2020), and 
Michael Lavigne et al. (2021)) may be needed to fully describe the 
spatial spread. However, one of the goals of our study is to com-
pare model outputs with longitudinal viral load datasets; the high 
computational cost of a fully spatial model prevents us from fit-
ting the model to data. We thus chose an implicit spatial model 
for analysis. Second, several recent experimental studies have 
shown the extreme heterogeneity in IAV infection at the single 
cell level (Russell, Trapnell, and Bloom 2018; Steuerman et al. 
2018; Russell et al. 2019; Sun et al. 2020). This heterogeneity may 
play an important role in driving the initial virus stochastic infec-
tion dynamics. Our model here uses a deterministic approach and 
hence cannot be used to understand the stochasticity of infec-
tion arising from heterogeneous viral production. Models (such 
as Huang, Dai, and Ke (2019) and Michael Lavigne et al. (2021)) 
that incorporate both the stochastic nature of viral production and 
spatial spread are warranted. Another limitation is that our model 
assumes that cells that are infected with more than two virions 
are phenotypically identical to those infected with only two viri-
ons. This assumption allows us to model cells with any number 
of coinfecting virions within them while only explicitly modeling 
the coinfected cell populations (E2 and I2). Modeling this system 
without this assumption would require either a larger, more com-
plicated model (Dixit and Perelson 2005) or an alternate model 
formulation (Koelle et al. 2019).

Overall, our work provides a simple and appropriate frame-
work to consider the impact of spatial structure and coinfection 
on viral dynamics. This modeling framework can be easily fit to 
experimental data to estimate parameters. More broadly, it is suit-
able and can be adapted to understand and predict the impacts 
of reassortment, the origins, and consequences of genetic and 
genomic diversity within viral populations (Brooke 2017), the roles 

and consequences of coinfection/superinfection during the pro-
cess of drug resistance, and adaptation for influenza and other 
viruses (Ke et al. 2018). Furthermore, there is a growing interest 
in developing defective interfering particle (DIP)-based therapies 
(Dimmock, Easton, and Goff 2014; Kupke et al. 2019; Vignuzzi and 
Lopez 2019; Chaturvedi et al. 2021). Given the critical dependence 
of DIPs’ survival and persistence on coinfection, this model can 
be adapted to evaluate the efficacy of DIP-based therapies across 
a variety of acute viral infections.

Methods
The MA model
The model is described by the following system of ODEs: 

𝑑𝑇
𝑑𝑡

= −𝛽𝑀𝐴𝑇(𝑉𝐹 + 𝑉𝑆),

𝑑𝑆
𝑑𝑡

= 𝛽𝑀𝐴𝑇𝑉𝑆 − 𝛽𝑀𝐴𝑆(𝑉𝐹 + 𝑉𝑆) − 𝑘𝑆,

𝑑𝐸1
𝑑𝑡

= 𝛽𝑀𝐴𝑇𝑉𝐹 − 𝛽𝑀𝐴𝐸1 (𝑉𝐹 + 𝑉𝑆) − 𝑘𝐸1,

𝑑𝐸2
𝑑𝑡

= 𝛽𝑀𝐴 (𝑆 + 𝐸1)(𝑉𝐹 + 𝑉𝑆) − 𝑘𝐸2, (4)

𝑑𝐼1
𝑑𝑡

= 𝑘𝐸1 − 𝛿1𝐼1,

𝑑𝐼2
𝑑𝑡

= 𝑘𝐸2 − 𝛿2𝐼2,

𝑑𝑉𝐹
𝑑𝑡

= (1 − 𝑓)(𝑝1𝐼1 + 𝑝2𝐼2) − 𝑐𝑉𝐹,

𝑑𝑉𝑆
𝑑𝑡

= 𝑓(𝑝1𝐼1 + 𝑝2𝐼2) − 𝑐𝑉𝑆.

In this model, target cells (T) are infected with FIPs (VF) and 
SIPs (VS) to become, respectively, FIP-infected cells (E1) and SIP-
infected cells (S) at rate 𝛽MA. Note that viral infection events are 
modeled using an MA term in this model, i.e. viruses and cells 
are well mixed. This assumption implies that once a virion is pro-
duced, it has an equal probability to contact every cell in a host. 
Although this assumption is often used in models for simplicity, it 
is clearly biologically unrealistic, especially for influenza infection 
where target cells are distributed spatially from the upper to the 
lower respiratory tract (Gallagher et al. 2018).

FIP-infected cells go through an eclipse phase (E1 cells) dur-
ing which no virions are produced. E1 cells then mature to singly 
infected virion-producing cells, I1, at rate k. It has been shown that 
a cell coinfected with two SIPs will likely induce viral production 
in the cell through complementation, i.e. multiplicity reactivation 
(Brooke 2014). Thus, we assume that if E1 or S cells are coin-
fected by either a fully or semi-infectious virion, they become 
coinfected cells in an eclipse phase, E2, which then mature to 
virion-producing cells, I2, at rate k. For SIP-infected cells (S), there 
exists a period of time (1/k on average) when they can become 
superinfected. After this period, the cells become resistant to 
superinfection, and thus, these cells are removed from our system 
(Dou et al. 2017; Sun and BrooKe et al. 2018). Singly and coinfected 
virion-producing cells (I1 and I2, respectively) die at per capita 
rate 𝛿1 and 𝛿2, respectively. We do not consider superinfection of 
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I1 or I2 cells because it has been shown that only cells in their 
eclipse phase are vulnerable to superinfection (Dou et al. 2017; 
Sun and BrooKe et al. 2018). Virions are produced from singly and 
coinfected virion-producing cells at rates p1 and p2, respectively. 
Of all virions produced, a constant fraction, f, of them are semi-
infectious (Brooke et al. 2013), while the remaining fraction are 
fully infectious. Both FIPs (VF) and SIPs (VS) are cleared at rate c. 
Note that to keep the model simple and because we mostly focus 
on the importance of incorporating cells infected by more than 
one virion, we do not explicitly keep track of cells infected with 
more than two virions. Here, we interpret the cells in the I2 class 
as a population of cells productively infected with two or more 
virions. The parameters associated with I2, such as 𝛿2 and 𝑝2, then 
represent the average of the population.

The TS model
The system of ODEs for the TS model is shown below. 

𝑑𝑇
𝑑𝑡

= −𝛽𝑇 𝑆
𝑇

𝑇 + 𝐾𝑀
(𝑉𝐹 + 𝑉𝑆) ,

𝑑𝑆
𝑑𝑡

= 𝛽𝑇 𝑆
𝑇

𝑇 + 𝐾𝑀
𝑉𝑆 − 𝛽𝑇 𝑆

𝑆
𝔼 + 𝐾𝑀

(𝑉𝐹 + 𝑉𝑆) − 𝑘𝑆,

𝑑𝐸1
𝑑𝑡

= 𝛽𝑇 𝑆
𝑇

𝑇 + 𝐾𝑀
𝑉𝐹 − 𝛽𝑇 𝑆

𝐸1
𝔼 + 𝐾𝑀

(𝑉𝐹 + 𝑉𝑆) − 𝑘𝐸1,

𝑑𝐸2
𝑑𝑡

= 𝛽𝑇 𝑆
𝑆 + 𝐸1
𝔼 + 𝐾𝑀

(𝑉𝐹 + 𝑉𝑆) − 𝑘𝐸2, (5)

𝑑𝐼1
𝑑𝑡

= 𝑘𝐸1 − 𝛿1𝐼1,

𝑑𝐼2
𝑑𝑡

= 𝑘𝐸2 − 𝛿2𝐼2,

𝑑𝑉𝐹
𝑑𝑡

= (1 − 𝑓)(𝑝1𝐼1 + 𝑝2𝐼2) − 𝑐𝑉𝐹,

𝑑𝑉𝑆
𝑑𝑡

= 𝑓(𝑝1𝐼1 + 𝑝2𝐼2) − 𝑐𝑉𝑆.

The only differences between this model and the MA model 
are the Michaelis–Menten infection terms. For virus infection of 
uninfected cells (T), we use the term 𝑇

𝑇 +𝐾𝑀
, where KM, the satu-

ration parameter, describes the amount of cells at which half of 
the maximum infectivity is reached. This type of infection term 
has also been used previously in human immunodeficiency virus 
within-host models (De Boer 2007). Here in our model, we assume 
that there are a limited number of target cells that can be infected 
(defined by KM); when the number of susceptible cells is greater 
than KM, the rate of infection of susceptible cells saturates to 
its maximum. For infection of already infected cells, i.e. S, E1, 
and E2, the denominator of the Michaelis–Menten term is set to 
E + KM, where E = S + E1 + E2. This is motivated by the idea 
that already infected cells are close to each other at an infection 
site (especially when the infection process is spatially structured 
(Matrosovich et al. 2004)), so a virion that is produced from pro-
ductively infected cells can reach those eclipse phase cells in the 
neighborhood. Thus, we sum up all the eclipse phase cells that 
can be superinfected.

Note that because of the Michaelis–Menten terms we use, the 
units and interpretation of the parameter 𝛽TS differ from 𝛽MA. 
Here, 𝛽TS is the maximum infectivity rate per virion when target 
cells reach saturation.

Parameter values, simulation, and data-fitting 
procedure
In all simulations and parameter estimations, we set the ini-
tial target cell count to T(0) = 4 × 108 cells, based on Baccam 
et al. (2006), and the maturation time 1/k to 1/8 days (3 hours), 
based on Dou et al. (2017). We further set c = 15/day and 
f = 0.9 (dimensionless) as biologically reasonable parameter val-
ues for the virion clearance rate and the fraction of virions pro-
duced that are semi-infectious (Brooke et al. 2013; Brooke 2014),
respectively.

Parameter values used to generate simulation results shown 
in Figs. 2 and 3 are as follows: 𝛽𝑀𝐴 = 1e-5 ml/ tissue cul-
ture infectious dose (TCID50)/cell/day, 𝛿1 = 2/day, 𝛿2 = 4/day, 
𝑝1 = 1 TCID50/ml/day, and 𝑉𝑓 (0) = 0.01 ml/day (for Fig. 2) 
and 𝛽𝑇 𝑆 = 1,000 ml/TCID50/day, 𝐾𝑀 = 10 ml, 𝛿1 = 2/day, 𝛿2 =
4/day, 𝑝1 = 1 TCID50/ml/day, 𝑉𝑓 (0) = 0.01 ml/day (for Fig. 3). 
Simulation results were generated by integrating of the MA 
model or the TS model using the built-in function, ode45, in
MATLAB.

We took a nonlinear mixed-effect modeling approach to fit the 
TS model to viral load data from all individuals from the two 
datasets (Quinlivan et al. 2007; Pawelek et al. 2012) simultane-
ously. In the fitting, we fixed the values of T(0), k, c, and f  as 
mentioned earlier. It is known that when fitting the viral dynamic 
model to viral load data, the parameters 𝛽𝑇 𝑆 and 𝑝 strongly cor-
related with each other, i.e. it is not possible to precisely estimate 
both parameter values at the same time. Thus, we fixed parameter 
𝛽𝑇 𝑆 to 1,000 ml/TCID50/day (as in Fig. 3). A recent experimen-
tal study found that IAV production increases with increases in 
MOI, i.e. cells infected by multiple viruses produce a higher num-
ber of viral particles than cells infected by a single virus (Martin 
et al. 2020). Here, in our model, the coinfected cells implicitly 
include all cells infected by more than one virus (Dixit and Perel-
son 2005). Thus, we expect that the viral output from coinfected 
cells is much higher than that from singly infected cells, and 
we thus set p2 = 3p1 when fitting our model to the data, roughly 
consistent with the experimental estimates in Martin et al.
(2020).

The saturation parameter, death rates of virion-producing 
cells, virion production rate, and initial FIP concentration, i.e. 
KM, 𝛿1, 𝛿2, p1, and VF(0), were estimated from the data. We note 
that TCID50 viral titers are measurements of fully infectious virus 
only, and thus, we fit 𝑉𝐹 to the data. We calculated the initial 
SIP concentration, VS(0), by assuming that the viral input dose 
maintained the constant proportion of FIPs to SIPs seen in viral 
production, i.e. 𝑉𝑆 (0) = 𝑉𝐹 (0) 𝑓

1−𝑓 . While fitting the model to data, 
we restricted 𝐾𝑀 to be greater than or equal to 1 cell and assumed
that 𝛿1 ≤ 𝛿2.

Estimations were performed using Monolix (Monolix Suite 
2019R2, Antony, France: Lixoft SAS, 2019. lixoft.com/prod-
ucts/monolix/). All individual parameters are positive, and there-
fore, we assume that they follow log-normal distributions. We 
allowed random effects on all the fitted parameters. We tested the 
source of data (i.e. pony or human volunteers) as covariates on the 
fitted parameters and found that there is no statistically signifi-
cant difference between any of the estimated parameters for the 
two datasets (Fig. S1).

Supplementary data
Supplementary data are available at Virus Evolution online.
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Data availability
All data are reported in the paper, and all model results of this 
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