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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:During exercise, skeletal muscle is exposed to a low oxygen condition, hypoxia. Under hyp-

oxia, the transcription factor hypoxia-inducible factor-1α (HIF-1α) is stabilized and induces

expressions of its target genes regulating glycolytic metabolism. Here, using a skeletal mus-

cle-specific gene ablation mouse model, we show that Brg1/Brm-associated factor 155

(Baf155), a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is

essential for HIF-1α signaling in skeletal muscle. Muscle-specific ablation of Baf155

increases oxidative metabolism by reducing HIF-1α function, which accompanies the

decreased lactate production during exercise. Furthermore, the augmented oxidation leads

to high intramuscular adenosine triphosphate (ATP) level and results in the enhancement of

endurance exercise capacity. Mechanistically, our chromatin immunoprecipitation (ChIP)

analysis reveals that Baf155 modulates DNA-binding activity of HIF-1α to the promoters of

its target genes. In addition, for this regulatory function, Baf155 requires a phospho-signal

transducer and activator of transcription 3 (pSTAT3), which forms a coactivator complex

with HIF-1α, to activate HIF-1α signaling. Our findings reveal the crucial role of Baf155 in

energy metabolism of skeletal muscle and the interaction between Baf155 and hypoxia

signaling.

Introduction

Skeletal muscle is a high-energy–demanding organ and uses adenosine triphosphate (ATP) for

contraction [1]. Due to the increase of metabolic rate by over 100-fold during exercise com-

pared to the resting state [2], ATP needs to be supplied sufficiently to continue the exercise.

Glucose metabolism is one of the ATP-generating pathways in skeletal muscle and consists of

glycolysis and oxidation. Oxidation generates ATP slower but more efficiently than glycolysis
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[3,4] and supplies a major part of ATP for muscle contraction during prolonged endurance

exercise [5,6]. In addition, the increased oxidation results in the enhancement of endurance

exercise capacity [7]. These results imply that the balance between glycolysis and oxidation is

crucial for exercise capacity. Accordingly, research on biological pathways regulating glucose

metabolism in the skeletal muscle is essential for understanding the physiological mechanisms

that contribute to the exercise function of skeletal muscles.

The heterodimeric transcription factor hypoxia-inducible factor (HIF), which is composed

of an alpha subunit (HIF-1α, HIF-2α, or HIF-3α) and a beta subunit (HIF-1β, known as

ARNT), is primarily activated under hypoxia [8]. Among the 3 alpha subunits, HIF-1α is

known to be involved in regulating anaerobic glucose metabolism [9] and control glycolysis,

which contributes to exercise capacity of the skeletal muscle [10–13]. Furthermore, muscle-

specific loss of HIF-1α results in increased oxidation due to the reduced expressions of HIF-1α
target genes and enhances endurance exercise capacity [7]. These results show the crucial role

of HIF-1α signaling in energy metabolism and exercise capacity of skeletal muscle. However,

notwithstanding the physiological importance of HIF-1α signaling in skeletal muscle, the

molecular mechanisms regulating the activation of this signaling are not fully understood.

Switch/sucrose non-fermentable (SWI/SNF) complex is an ATP-dependent chromatin

remodeler regulating the DNA binding of transcriptional complexes [14]. Mammalian SWI/

SNF complex consists of catalytic ATPase subunit (Brahma; Brm or Brahma-related gene 1;

Brg1) and other 9–12 subunits known as Brg1/Brm-associated factors (Bafs). ATPase subunits

contribute to the function of SWI/SNF complex through their catalytic activity, and other Bafs

have been considered structural proteins, only acting to stabilize the complex. However, recent

studies revealed that some Bafs also serve key roles in transcriptional regulations by interacting

with other transcription factors [15–17]. These fundamental roles of Bafs are also observed in

the skeletal muscle [18,19]. Hence, research on the distinctive functions of each Baf subunit is

important to understand the functional mechanisms of SWI/SNF complex. Baf155, one of the

Baf subunits, is classified as a core subunit due to its general existence in all mammalian SWI/

SNF complexes [20,21]. Although Baf155 is known as the structural protein protecting degra-

dations of other subunits [22,23], the unique role of Baf155 in contributing to transcriptional

regulations have not yet been studied.

In this study, we investigated the potential role of Baf155 in the skeletal muscle. Genetic

ablation of Baf155 did not affect the formation and growth of the skeletal muscle. However,

mice with Baf155 ablated skeletal muscle showed enhanced endurance exercise capacity. In

addition, we revealed that this mouse model also showed increased oxidative metabolism and

intramuscular ATP level. These results indicate that Baf155 is dispensable for the development

and maturation but essential for the energy metabolism of skeletal muscle. Our chromatin

immunoprecipitation (ChIP) analysis showed that Baf155 is involved in energy metabolism

via HIF-1α signaling by mediating the DNA binding of HIF-1α. In addition, we also revealed

that this regulatory function requires the DNA binding of pSTAT3, which is indispensable for

HIF-1α signaling because it forms a transcriptional complex with HIF-1α. In summary, we

identified the crucial role of Baf155 in skeletal muscle and revealed the functional mechanism

of Baf155 in the energy metabolism of skeletal muscle.

Results

Baf155 ablation does not affect the stability of other components of the

SWI/SNF complex in the skeletal muscle

To investigate the function of Baf155 in the skeletal muscle, we specifically ablated Baf155 by

crossing Baf155floxed/floxed mice with MCK-Cre (MCK: muscle creatine kinase) transgenic mice
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[24,25] (MCK-Cre; Baf155f/f, hereafter Baf155ΔMF). We confirmed the reduced levels of

mRNA and protein in hind limb skeletal muscles using reverse transcription-quantitative PCR

(RT-qPCR) and western blot, respectively (Fig 1A–1C). Since Baf155 stabilizes other subunits

of the SWI/SNF complex [22,23], we investigated the protein levels of major components of

this complex in Baf155ΔMF skeletal muscle. Contrary to previous reports, despite the reduction

of Baf155, other subunits in Baf155ΔMF skeletal muscle remained comparable to the wild-type

control (Baf155f/f, hereafter Baf155WT) (Fig 1D–1F). In addition, other components of the

SWI/SNF complex were also comparable between Baf155WT and Baf155 ΔMF mice (Fig 1G–

1H). These results showed that Baf155 ablation did not affect the stability of other subunits in

the skeletal muscle and implied that the SWI/SNF complex containing Baf155 was not formed

in Baf155ΔMF skeletal muscle.

Baf155 is dispensable for the development and maturation of skeletal

muscle

Since our result suggests the absence of SWI/SNF complex containing Baf155 in Baf155ΔMF

skeletal muscles, we first analyzed their gross morphologies to investigate whether the absence

of this complex affects the development and maturation of skeletal muscles. We compared

total body weight and the size and weight of skeletal muscles between Baf155WT and

Baf155ΔMF mice but could not observe any differences (S1A–S1C Fig). We also performed a

dual-energy X-ray absorptiometry (DEXA) scan to precisely analyze the percentage of body

composition (lean, fat, and body fluid), but there was no difference between Baf155WT and

Baf155ΔMF mice (S1D Fig). In addition, to analyze the histological characteristics, we per-

formed hematoxylin and eosin (HE) and immunohistochemistry (IHC) analyses. From these

experiments, we observed that the location of myonuclei and the number and size of myofibers

were comparable between Baf155WT and Baf155ΔMF mice (S1E–S1H Fig). Considering that

myofibers drive the transition of proliferating MuSCs to the quiescent state during postnatal

maturation [26], we also quantified the number of MuSCs and observed similar numbers in

both Baf155WT and Baf155ΔMF mice (S1E and S1H Fig). Based on these results, we concluded

that Baf155 is dispensable for the development and maturation of the skeletal muscle.

Baf155 ablation in skeletal muscle enhances endurance exercise capacity

Next, we assessed exercise capacity, the physiological function of skeletal muscle. Considering

that genetic changes result in the alteration of muscle function [27], Baf155 ablation could

affect exercise capacity. To verify this possibility, we estimated 2 categories of exercise capacity,

strength and endurance (Fig 2A). In a four-limb grip strength test, which measures muscle

strength, Baf155ΔMF mice showed comparable grip strength compared to Baf155WT mice (Fig

2B). This result indicated that Baf155 ablation did not affect the strength generation of skeletal

muscle. However, interestingly, Baf155ΔMF mice showed enhanced exercise capacity in an

inverted-grid hanging test, which measures endurance capacity [28,29]. Baf155ΔMF mice

endured hanging for a longer time than Baf155WT mice (Fig 2C). In addition, to consider the

effect of body weight, we calculated the hanging impulse (min*g; time multiplied by body

weight) and observed a significant increment in Baf155ΔMF mice (Fig 2D). These results indi-

cated that Baf155ΔMF mice had an enhancement in the endurance exercise capacity compared

to Baf155WT mice. To confirm the enhanced endurance capacity, we also performed a tread-

mill running test. As expected, Baf155ΔMF mice showed significant increases in total running

time and running distance to exhaustion compared to Baf155WT mice, by more than 20 min

and 25%, respectively (Fig 2E and 2F). Together, our exercise tests revealed that the ablation of
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Fig 1. Baf155 ablation does not affect the stability of components of SWI/SNF complex in the skeletal muscle. (A) RT-qPCR

analysis of the expression of Baf155 in hind limb skeletal muscles (TA, EDL, GA, SOL, Q) of Baf155WT and Baf155ΔMF mice (n = 3

mice per genotype). (B, C) Representative immunoblotting analysis of Baf155 (B) and the densitometric quantification of relative

Baf155 protein level in the Q muscle of Baf155ΔMF mice compared to Baf155WT mice (n = 3 mice per genotype) (C). (D, E)

Representative immunoblotting analysis of Brg1, Snf5, and Baf170 (D) and the densitometric quantification of relative level of each

indicated protein in Q muscle of Baf155ΔMF mice compared to Baf155WT mice (n = 3 mice per genotype) (E). (F) RT-qPCR analysis

of the expressions of Brg1, Snf5, and Baf170 in Q muscle of Baf155WT and Baf155ΔMF mice (n = 3 mice per genotype). (G, H)

Representative immunoblotting analysis of Arid1a, Brm, Baf60a, Baf60b, and Baf60c (G) and the densitometric quantification of

relative protein level of each indicated protein in Q muscle of Baf155ΔMF mice compared to Baf155WT mice (n = 3 mice per

genotype) (H). Each lane in immunoblotting analysis (B, D, and G) indicates each mouse (biological replicate), and each dot in the

graphs (A, C, E, F, and H) represents each mouse (biological replicate). Data are presented as mean ± SEM of biological replicates.

Statistical analyses were performed using unpaired Student’s t test (n.s., not significant; *P< 0.05, **P< 0.01, ***P< 0.001 versus

Baf155WT control). The data underlying this figure can be found in S1 Data. Arid1a, AT-rich interaction domain 1a; Baf60, Brg1/

Brm-associated factor 60; Baf155, Brg1/Brm-associated factor 155; Baf170, Brg1/Brm-associated factor 170; Brg1, Brahma-related
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Baf155 in skeletal muscle specifically enhanced endurance exercise capacity without affecting

acute generation of strength.

Since MCK-Cre transgenic mice also show Cre activity in cardiac muscle [24,30–32], we

validated the Baf155ΔMF mouse model by investigating the expressions of Baf155 in various

organs. As expected, Baf155 showed a significantly reduced mRNA level in limb muscle and

gene 1; Brm, Brahma; EDL, extensor digitorum longus; GA, gastrocnemius; MF, myofiber; RT-qPCR, reverse transcription

quantitative real-time PCR; SEM, standard error of the mean; Snf5, sucrose non-fermentable 5; SOL, soleus; TA, tibialis anterior;

WT, wild type; Q, Quadriceps.

https://doi.org/10.1371/journal.pbio.3002192.g001

Fig 2. Baf155 ablation in skeletal muscle enhances endurance exercise capacity. (A) Representative images of exercise tests.

The grip strength test measures muscle strength, and the inverted grid hanging and the treadmill running tests measure muscle

endurance. (B) The measurement values of grip strength (N/g) of Baf155WT and Baf155ΔMF mice. The measured value (N) was

normalized to body weight (g) (n = 13 mice per genotype). (C, D) The measurement values of inverted grid hanging test. Total

hanging time (min) (C) and hanging impulse (min*g), which is the value of hanging time normalized to body weight to

consider the effect of body weight (D) (n = 7 mice per genotype). (E, F) The measurement values of treadmill running test.

Total running time (min) (E) and total running distance (m) (F) (n = 16 mice per genotype). Each dot in the graphs (B, C, D, E,

and F) represents each mouse (biological replicate). Data are presented as mean ± SEM of biological replicates. Statistical

analyses were performed using unpaired Student’s t test (n.s., not significant; *P< 0.05 versus Baf155WT control). The data

underlying this figure can be found in S1 Data. Baf155, Brg1/Brm-associated factor 155; m, meter; MF, myofiber; min, minutes;

N, Newton; g, gram.

https://doi.org/10.1371/journal.pbio.3002192.g002
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cardiac muscle. However, its expression was comparable between Baf155WT and Baf155ΔMF

mice in the other tested organs, such as liver, kidney, lung, and thymus (S2A Fig). In line with

mRNA level, Baf155 protein level was also significantly reduced in limb muscle and cardiac

muscle but not in the other organs of Baf155ΔMF mice compared to Baf155WT mice (S2B and

S2C Fig). These results suggested the possible contribution of Baf155 ablation in cardiac mus-

cle to the enhanced exercise capacity of Baf155ΔMF mice. To exclude this possibility, we exam-

ined whether Baf155 ablation in cardiac muscle affects endurance exercise capacity. By

crossing Baf155f/f mice with Myh6-MerCreMer transgenic mice [33] (Myh6-MerCreMer;

Baf155f/f, hereafter Baf155ΔCMF, Myh6: myosin heavy chain 6), we ablated Baf155 in cardiac

muscle and verified the specific ablation in cardiac muscle, not in limb muscle, by RT-qPCR

after tamoxifen treatment (S2D and S2E Fig). In addition, we also confirmed the ablation of

Baf155 in the cardiac muscle of Baf155ΔCMF mice by western blot (S2F and S2G Fig). Despite

the ablation of Baf155 in cardiac muscle, Baf155ΔCMF mice showed a similar weight of cardiac

muscle compared to Baf155WT mice (S2H Fig). In contrast with Baf155ΔMF mice, Baf155ΔCMF

mice did not show the enhancement of endurance exercise in the treadmill running test (S2I

and S2J Fig). These results indicated that not only was Baf155 dispensable for cardiac-muscle

development, but also its ablation in cardiac muscle was irrelevant to the enhanced endurance

exercise capacity of Baf155ΔMF mice.

These intriguing observations prompted us to investigate skeletal muscle-intrinsic alter-

ations in Baf155ΔMF mice. We first analyzed myofiber type composition, which is one of the

factors determining the exercise capacity [19,34,35], by performing the IHC analysis targeting

myosin heavy chains (MyHC; MyHC1/2a and MyHC2b, which are expressed in slow oxida-

tive/fast oxidative and fast glycolytic myofiber, respectively) [36]. We observed the comparable

proportions of each fiber type between Baf155WT and Baf155ΔMF mice (S3A and S3B Fig) and

confirmed these results by RT-qPCR (S3C Fig). Furthermore, since the increased mitochon-

drial oxidation could enhance the endurance exercise capacity without fiber type transition

[37,38], we next examined the oxidation capacity of mitochondria by analyzing nicotinamide

adenine dinucleotide hydrogen (NADH) [39,40]. However, we could not observe a difference

in the number of NADH-positive fibers and the intensity of NADH staining (S3D–S3F Fig).

We further investigated expressions of genes related to the mitochondrial function by RT-

qPCR and observed similar levels in hind limb skeletal muscle from Baf155WT and Baf155ΔMF

mice (S3G and S3H Fig). These results implied that the enhanced exercise capacity of

Baf155ΔMF mice was not due to changes in fiber type composition or mitochondrial function.

JAK/STAT signaling is inhibited due to the reduced DNA binding of

STAT3 in Baf1554MF skeletal muscle

To reveal the precise mechanism enhancing endurance exercise capacity in Baf155ΔMF skeletal

muscle, we performed mRNA-sequencing (RNA-seq) using hind limb skeletal muscles from

unexercised mice and compared the transcriptomes between Baf155WT and Baf155ΔMF mice.

A total of 117 genes, including 77 down-regulated and 40 up-regulated genes (<0.7-fold and

>1.4-fold compared to Baf155WT mice), were differentially expressed in Baf155ΔMF mice

(hereafter, DEGs) (Fig 3A). To identify interactions of DEGs, we performed Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Both analy-

ses presented several biological processes by annotating DEGs and commonly detected inflam-

matory or immune response signaling and JAK-STAT signaling (Fig 3B and 3C and S1 and S2

Tables). We excluded inflammatory or immune response processes from the candidates due to

the lack of relationship between the annotated genes, such as CCL9 and CCL21B, and skeletal

muscle physiology [41,42]. To further analyze the interactions of DEGs, we performed an
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Fig 3. Baf155 ablation affects JAK/STAT signaling in skeletal muscle. (A) Heatmap of the DEGs in Baf155WT and Baf155ΔMF mice

by RNA-seq using RNA from hind limb skeletal muscles (n = 3 mice per genotype). Each lane in the heatmap indicates each mouse

(biological replicate). (B) The results from enrichment GO term analysis of DAVID Resources using the DEGs. JAK/STAT-related

pathways were indicated by bold type. (C) The results from KEGG pathway enrichment analysis using the DEGs. JAK/STAT-related

pathways were indicated by bold type. (D) Pathway enrichment in Baf155ΔMF mice analyzed by IPA using the DEGs. The z-score

predicts the direction of change for the function. The threshold was set to an absolute value of z-score = 2. The orange bars indicate

the predicted inhibition, and the gray bars indicate that no activity prediction can be made by IPA. The ratio represents the number

of molecules in DEGs that are involved in each indicated pathway divided by the total number of molecules that make up that

pathway. (E) Volcano plot of DEGs in Baf155ΔMF hind limb skeletal muscles compared to Baf155WT hind limb skeletal muscles. Gray

vertical lines partition the fold change (the left line for 0.75 fold, the right line for 1.5 fold), and gray horizontal line partition the p-

value (p = 0.01). Each dot in the volcano plot represents 1 gene, and the red dots represent each indicated SOCS gene. (F) RT-qPCR

analysis of SOCS genes in Q muscles of Baf155WT and Baf155ΔMF mice (n = 6 mice per each genotype). Each dot in the graph

represents each mouse (biological replicate). Data are presented as mean ± SEM of biological replicates. Statistical analyses were

performed using unpaired Student’s t test (*P< 0.05, **P< 0.01, ***P< 0.001 versus Baf155WT control). The data underlying this
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ingenuity pathway analysis (IPA). Similar to GO and KEGG pathway analyses, IPA also pre-

sented JAK/STAT3 signaling by annotating target genes and predicted the inhibition of this

signaling in Baf155ΔMF skeletal muscle (Fig 3D and S3 Table). In line with the inhibition of

STAT3 signaling, which is the result of IPA, suppressors of cytokine signaling (SOCS) family

(CISH, SOCS1, SOCS2, SOCS3) genes were down-regulated in Baf155ΔMF skeletal muscle

according to our RNA-seq data (Fig 3E), and we confirmed the reduced expressions of SOCS

genes in Baf155ΔMF skeletal muscle by RT-qPCR (Fig 3F). Together, these results revealed the

inhibition of JAK/STAT3 signaling in Baf155ΔMF skeletal muscle and suggested that the inhibi-

tion of this signaling could be related to the enhancement of endurance exercise capacity.

To verify this possibility, we analyzed STAT3 signaling in Baf155ΔMF skeletal muscle during

treadmill running. At a protein level, phospho-STAT3-Tyr705 (hereafter, pSTAT3), which is

the active form of STAT3 and binds to DNA, was increased in Baf155ΔMF skeletal muscle by

1.70, 1.66, and 1.25 folds compared to Baf155WT skeletal muscle after running for 80, 100, and

120 min, respectively (Fig 4A and 4B). However, in contrast to the level of pSTAT3, SOCS

genes were down-regulated in Baf155ΔMF skeletal muscle (Fig 4C). Given that SWI/SNF com-

plex is a chromatin remodeler [14], we assumed that the down-regulation of SOCS genes,

despite the augmented pSTAT3, is due to the disturbance in DNA binding of pSTAT3 by

Baf155 ablation. To verify this assumption, we investigated the bindings of pSTAT3 to its

potential binding sites (STAT3 response elements, SREs) in promoters of SOCS genes [43]

(Fig 4D and 4E) by performing ChIP analysis. As expected, the SRE bindings of pSTAT3 were

diminished in Baf155ΔMF skeletal muscle (Fig 4F and 4G). These results indicated that the

impaired DNA binding of pSTAT3 reduced target gene expressions in Baf155ΔMF skeletal

muscle. Furthermore, considering SOCS genes are negative regulators of STAT3 signaling

[44], our results implied that STAT3 phosphorylation was increased due to the down-regula-

tion of SOCS. Together, our observations revealed that Baf155 is indispensable for the DNA

binding of pSTAT3.

Direct interaction of Baf155 with STAT3 contributes to STAT3 signaling in

skeletal muscle

Since our results showed the requirement of Baf155 for the DNA binding of STAT3, we inves-

tigated the direct interaction between Baf155 and STAT3 by conducting Co-IP experiments.

Since the coiled-coil domain (CCD) is known to mediate protein–protein interactions [45,46],

we generated STAT3 without CCD (STAT3ΔCCD) (Fig 5A) and compared the interactions

between Baf155 and STAT3 or STAT3ΔCCD. STAT3, but not STAT3ΔCCD, was precipitated

along with Baf155 (Fig 5B). From this result, we concluded that Baf155 directly interacts with

STAT3 and that the CCD of STAT3 is necessary for its interaction with Baf155. Next, we gen-

erated Baf155 without SANT, SWIRM, or CCD (Baf155 ΔSANT, Baf155ΔSWIRM, or Baf155ΔCCD,

respectively) to investigate the requirement of each domain for its interaction with STAT3 (Fig

5C). STAT3 was precipitated with Baf155 and Baf155ΔCCD but not with Baf155ΔSANT and

Baf155ΔSWIRM (Fig 5D). This result indicated that the SANT and SWIRM domains of Baf155

contribute to the interaction with STAT3. In addition, Baf155 ΔSANT and Baf155ΔSWIRM attenu-

ated the expression of STAT3 target gene compared to Baf155 (Fig 5E). This result indicated

figure can be found in S1 Data. Baf155, Brg1/Brm-associated factor 155; DEGs, differentially expressed genes; GO, gene ontology;

IPA, ingenuity pathway analysis; JAK, janus kinase; KEGG, Kyoto encyclopedia of genes and genomes; MF, myofiber; Q, quadriceps;

RT-qPCR, reverse transcription quantitative real-time PCR; SEM, standard error of the mean; SOCS, suppressor of cytokine

signaling; STAT, signal transducer and activator of transcription.

https://doi.org/10.1371/journal.pbio.3002192.g003
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Fig 4. JAK/STAT signaling is inhibited due to the reduced DNA binding of STAT3. (A) Representative immunoblotting

analyses of pSTAT3 and STAT3 in Q muscle of Baf155WT and Baf155ΔMF mice at each indicated time of treadmill running. Each

lane in the immunoblotting image indicates each mouse. (B) The densitometric quantification of relative protein level of pSTAT3

in Q muscle of Baf155ΔMF mice compared to Baf155WT mice at the indicated time of treadmill running. The pSTAT3 level, which is

normalized to STAT3, was used for the comparison. Six biological replicates of (A) were performed and quantified (n = 6 mice per

each genotype at each indicated running time). (C) RT-qPCR analysis of SOCS genes in Q muscles of Baf155WT and Baf155ΔMF

mice at 100 min of treadmill running (n = 4–7 mice per each genotype). (D, E) Prediction of STAT3-binding motif in the

promoters of SOCS genes. The binding motif of STAT3 predicted by JASPAR (http://jaspar.genereg.net/) (D) and schematic

representation of STAT3 binding motif positions in the promoter of each indicated gene. The number above symbol indicates the

nucleotide length from TSS of each gene, and the arrow under the box indicates a primer binding site for ChIP-qPCR (E). (F, G)

ChIP-qPCR analysis of STAT3 on the promoter of each indicated gene in Q muscle of Baf155WT and Baf155ΔMF mice at 100 min of

treadmill running (n = 6 mice per genotype for aSTAT3, and n = 3 mice per genotype for aIgG). Each dot in the graphs (B, C, F,

and G) represents each mouse (biological replicate). Data are presented as mean ± SEM of biological replicates. Statistical analyses

were performed using unpaired Student’s t test (n.s., not significant; *P< 0.05; **P< 0.01; ***P< 0.001 versus Baf155WT control).

The data underlying this figure can be found in S1 Data. Baf155, Brg1/Brm-associated factor 155; ChIP-qPCR, chromatin

immunoprecipitation-quantitative real-time PCR; IgG, Immunoglobulin G; JAK, janus kinase; MF, myofiber; Q, quadriceps; RT-

qPCR, reverse transcription quantitative real-time PCR; SEM, standard error of the mean; SOCS, suppressor of cytokine signaling;

STAT3, signal transducer and activator of transcription 3; TSS, transcription start site.

https://doi.org/10.1371/journal.pbio.3002192.g004
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Fig 5. Direct interaction of Baf155 with STAT3 contributes to STAT3 signaling in skeletal muscle. (A) Schematic representation

of domains of each indicated protein. The number under the domain indicates an amino acid number in each indicated protein. (B)

Immunoblotting analysis of Co-IP of Baf155 with STAT3 or STAT3ΔCCD. Vector encoding Baf155-His, STAT3-Flag, or STAT3ΔCCD

was transfected, and each transfection condition was described above the immunoblotting image. A mock vector was used to adjust

the total amount of DNA. (C) Schematic representation of domains of each indicated protein. The number under the domain

indicates an amino acid number in each indicated protein. (D) Immunoblotting analysis of Co-IP of Baf155, Baf155ΔSANT,

Baf155ΔSWIRM, or Baf155ΔCCD with STAT3. Vector encoding Baf155-His, Baf155ΔSANT-His, Baf155ΔSWIRM-His, Baf155ΔCCD-His, or

STAT3-Flag was transfected, and each transfection condition was described above the immunoblotting image. (E) RT-qPCR analysis

of CISH expression in response to IL-6. Vector encoding Baf155, Baf155ΔSANT, Baf155ΔSWIRM, Baf155ΔCCD, or STAT3 was transfected.

Each transfection and IL-6 treatment condition was described under the X-axis of the graph. Four or 6 biological replicates of each

condition were performed, and each dot in the graph represents each biological replicate. Data are presented as mean ± SEM of

biological replicates. Statistical analysis was performed using a one-way ANOVA test followed by Dunnett’s multiple comparison test

(n.s., not significant; *P< 0.05, **P< 0.01, versus Baf155+ STAT3+IL6− condition). The data underlying this figure can be found in S1

Data. Baf155, Brg1/Brm-associated factor 155; CCD, coiled-coil domain; CISH, cytokine-inducible SH2 containing protein; Co-IP,
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that the function of STAT3 requires interaction with Baf155. Together, our observations

revealed that Baf155 contributes to STAT3 signaling by direct interaction with STAT3.

Impaired DNA binding of pSTAT3 affects the function of HIF-1α in

Baf155ΔMF skeletal muscle

Previous studies reported that pSTAT3 is essential for HIF-1α signaling due to mediating

DNA binding of HIF-1α by forming the transcriptionally active complex [47–50]. HIF-1α sig-

naling regulates energy metabolisms closely associated with exercise capacity [10–13]. More-

over, loss of HIF-1α in skeletal muscle enhances endurance exercise capacity by increasing

oxidative metabolism [7]. Since the impairment of pSTAT3 function was observed concomi-

tantly with the enhanced endurance exercise capacity in Baf155ΔMF skeletal muscle, we

hypothesized that the disruption of DNA binding of pSTAT3 enhances the endurance exercise

capacity by reducing HIF-1α signaling. To verify this hypothesis, we first examined whether

the DNA binding of HIF-1α is affected in Baf155ΔMF skeletal muscle. We searched potential

binding sites of HIF-1α, hypoxia response elements (HREs) (Fig 6A), and SREs (Fig 4D),

which are close to the HREs, in promoters of HIF-1α target genes [43] (Fig 6B). Using ChIP

analysis, we investigated the bindings of pSTAT3 and HIF-1α to each binding site. As SREs in

SOCS gene promoters, the bindings of pSTAT3 to SREs in promoters of HIF-1α target genes

were also disturbed in Baf155ΔMF skeletal muscle (Fig 6C–6F). Besides, the binding of HIF-1α
to HREs, adjacent to SREs, was also significantly diminished in Baf155ΔMF skeletal muscle (Fig

6C–6F). These results indicated that Baf155 ablation resulted in the decreased DNA binding of

HIF-1α to HREs in the promoters of target genes due to the impaired DNA binding of

pSTAT3. To verify the association between HIF-1α and STAT3 in the promoters of target

genes, we conducted ChIP-Re-ChIP analysis; STAT3 antibody for ChIP and HIF-1α antibody

for Re-ChIP. The promoter regions of HIF-1α target genes, which were pulled down by the

STAT3 antibody in the first round of ChIP, were pulled down again by the HIF-1α antibody in

the second round of ChIP. However, this was significantly diminished in Baf155ΔMF skeletal

muscle. These results showed that HIF-1α interacts with STAT3 within the promoter regions

of its target genes and indicated that Baf155 is involved in the interaction between STAT3 and

HIF-1α within the promoter regions of HIF-1α target genes (Fig 6G). Furthermore, these

results suggested that the reduced HIF-1α function could be associated with the enhanced

endurance exercise capacity of Baf155ΔMF skeletal muscle.

Baf155 contributes to the DNA binding of the SWI/SNF complex to the

promoters of STAT3 and HIF-1α target genes

Next, we investigated the binding of Baf155 and Brg1 to the promoter regions of the target

genes of STAT3 and HIF-1α. Since JASPAR provides only the binding sites of transcription

factors, we could not use the database for the analysis of Baf155 and Brg1 binding sites, which

are not transcription factors. Instead, we used ChIP-seq data from other studies for the predic-

tion [51–53]. The predicted binding sites of Baf155 and Brg1 were close to the binding sites of

STAT3 and HIF-1α in each indicated gene (Fig 7A and 7C). To validate the binding of Baf155

and Brg1 to predicted sites, we conducted ChIP-qPCR using primer sets that detect DNA

bindings of STAT3 and HIF-1α (Figs 4E, 6B, 7A and 7C). Baf155 showed bindings to the pre-

dicted sites on the promoter regions of each indicated gene (Fig 7B and 7D). In addition, Brg1

Co-immunoprecipitation; RT-qPCR, reverse transcription quantitative real-time PCR; SEM, standard error of the mean; STAT3,

signal transducer and activator of transcription 3.

https://doi.org/10.1371/journal.pbio.3002192.g005
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Fig 6. Impaired DNA binding of pSTAT3 affects the function of HIF-1α in Baf155ΔMF skeletal muscle. (A, B) Prediction of

STAT3-binding and HIF-1α-binding motifs in the promoters of HIF-1α target genes. The binding motifs of each transcription factor

are predicted by JASPAR (http://jaspar.genereg.net/) (A) and schematic representation of binding-motif positions for each

transcription factor in the promoter of indicated genes. The number above symbol indicates the nucleotide length from TSS of each

gene, and the arrow under the box indicates the primer binding site for ChIP-qPCR (B). (C–F) ChIP-qPCR analyses of STAT3 and

HIF-1α on the promoter of each indicated gene in Q muscle of Baf155WT and Baf155ΔMF mice at 100 min of treadmill running (n = 5

mice per each genotype). (G) ChIP-Re-ChIP qPCR analyses targeting the promoter of each indicated gene. The first round of ChIP

used STAT3 antibody, and the second round of ChIP (Re-ChIP) used HIF1a antibody (n = 3 mice per each genotype). Primer sets,

described in (B), were used for ChIP-Re-ChIP analyses. Each dot in the graphs (C, D, E, F, and G) represents each mouse (biological

replicate). Data are presented as mean ± SEM of biological replicates. Statistical analyses were performed using unpaired Student’s t test

(n.s., not significant; *P< 0.05; **P< 0.01; ***P< 0.001 versus Baf155WT control). The data underlying this figure can be found in S1

Data. Baf155, Brg1/Brm-associated factor 155; ChIP-qPCR, chromatin immunoprecipitation-quantitative real-time PCR; HIF-1α,

hypoxia-inducible factor-1α; MF, myofiber; Q, quadriceps; SEM, standard error of the mean; STAT3, signal transducer and activator of

transcription 3; TSS, transcription start site.

https://doi.org/10.1371/journal.pbio.3002192.g006
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Fig 7. Baf155 contributes to the DNA binding of the SWI/SNF complex to the promoters of STAT3 and HIF-1α target genes.

(A) Schematic representation of binding motif positions for STAT3, Baf155, and Brg1 in the promoter of indicated genes. (B) ChIP-

qPCR analyses of Baf155 and Brg1 on the promoter of each indicated gene in Q muscle of Baf155WT and Baf155ΔMF mice after 100

min of treadmill running (n = 3 mice per each genotype). (C) Schematic representation of binding motif positions for STAT3, HIF-

1α, Baf155, and Brg1 in the promoter of indicated genes. (D) ChIP-qPCR analyses of Baf155 and Brg1 on the promoter of each

indicated gene in Q muscle of Baf155WT and Baf155ΔMF mice after 100 min of treadmill running (n = 3 mice per each genotype). The

number above symbol indicates nucleotide length from the TSS of each gene, and the arrow under the site indicates the primer

binding site for ChIP-qPCR (A and C). Each dot in the graph (B and D) represents each mouse (biological replicate). Data are

presented as mean ± SEM of biological replicates. Statistical analyses were performed using unpaired Student’s t test (*P< 0.05,

**P< 0.01, ***P< 0.001 versus Baf155WT control). The data underlying this figure can be found in S1 Data. Baf155, Brg1/Brm-

associated factor 155; Brg1, Brahma-related gene 1; ChIP-qPCR, chromatin immunoprecipitation-quantitative real-time PCR; HIF-

1α, hypoxia inducible factor-1α; MF, myofiber; Q, quadriceps; SEM, standard error of the mean; STAT3, signal transducer and

activator of transcription 3; TSS, transcription start site.

https://doi.org/10.1371/journal.pbio.3002192.g007
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showed reduced DNA bindings in Baf155 ΔMF skeletal muscle compared to Baf155WT skeletal

muscle (Fig 7B and 7D). These results indicated that Baf155 ablation affects the DNA binding

of the SWI/SNF complex to the target genes. Together, our ChIP-qPCR analysis revealed the

bindings of Baf155 and Brg1 to the promoter regions of the target genes of STAT3 and HIF-

1α. Furthermore, our results showed the contribution of Baf155 to the DNA binding of the

SWI/SNF complex on those sites.

Reduction of HIF-1α signaling enhances the endurance exercise capacity by

increasing oxidation

Based on the reduction in DNA binding of HIF-1α in Baf155ΔMF skeletal muscle, we next

investigated expressions of its target genes. In Baf155WT mice, target genes, which regulate gly-

colysis, were up-regulated after treadmill running (Fig 8A). However, the expressions of these

genes were significantly reduced in Baf155ΔMF mice compared to Baf155WT mice after per-

forming the same intensity of exercise (Fig 8B). This result indicated that HIF-1α signaling

was reduced in Baf155ΔMF skeletal muscle due to the impaired DNA binding of HIF-1α. As

previously described, loss of HIF-1α signaling increases oxidation in skeletal muscle, which

enhances endurance exercise capacity [7]. Lactate, the main product of glycolysis, is released

from skeletal muscle into the bloodstream [54]. Moreover, increased oxidation in skeletal mus-

cle enhances exercise capacity accompanying low blood lactate concentration (bLa) during

exercise [10,54–57]. Considering these reports, we expected low bLa in Baf155 ΔMF mice due

to the increased oxidation and measured bLa at the exhaustion of treadmill running. As

expected, Baf155ΔMF mice showed lower bLa even after running for a longer time and greater

distance than Baf155WT mice (Fig 8C). To furtherly analyze the intramuscular metabolism

during exercise, we conducted a targeted metabolomics analysis at the exhaustion of treadmill

running. Consistent with bLa, the intramuscular lactate level was significantly lower in

Baf155ΔMF skeletal muscle than in Baf155WT skeletal muscle. Contrary to lactate, the metabo-

lites of the aerobic metabolism, such as succinate, fumarate, and malate, were higher in

Baf155ΔMF skeletal muscle than in Baf155WT skeletal muscle. These results showed a relatively

high aerobic metabolism in Baf155ΔMF skeletal muscle than in Baf155WT control. Furthermore,

these results implied that the intramuscular metabolism during exercise depends relatively

more on the aerobic metabolism in Baf155ΔMF mice than in Baf155WT mice (Fig 8D). In line

with increased oxidation, Baf155ΔMF skeletal muscle showed a relatively higher intramuscular

glycogen level compared to Baf155WT skeletal muscle after performing the same exercise inten-

sity (Fig 8E and 8F). These results indicated that the reduced HIF-1α signaling by the impaired

DNA binding of HIF-1α led to higher oxidation in Baf155ΔMF skeletal muscle during exercise.

Skeletal muscle requires ATP for a contraction, and oxidative metabolisms mainly provide

ATP for skeletal muscle during long-term exercise [58]. Since Baf155ΔMF mice showed higher

oxidation than Baf155WT mice, we expected a difference in intramuscular ATP level during

exercise. To verify our expectation, we first examined the activation of adenosine monophos-

phate-activated protein kinase (AMPK), a hallmark of energy balance, in skeletal muscle [59–

64]. Baf155WT mice showed a significant increment of phospho-AMPK-Thr172 (hereafter,

pAMPK) after running for more than 60 min (Fig 8G and 8H). Since an increase of [AMP or

ADP]: [ATP] ratio determines the phosphorylation of AMPK, our observation indicated that

ATP consumption rate exceeded its synthesis rate in Baf155WT skeletal muscle after running

for more than 60 min following our treadmill running scheme. However, interestingly, the

level of pAMPK was significantly lower in Baf155ΔMF skeletal muscle than in Baf155WT skeletal

muscle after performing the same intensity of exercise (Fig 8I and 8J). This result indicated

that Baf155ΔMF skeletal muscle retained a higher [AMP or ADP]: [ATP] ratio than Baf155WT
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Fig 8. Reduction of HIF-1α signaling enhances the endurance exercise capacity by increasing oxidation. (A) RT-qPCR analysis

of HIF-1α target genes in Q muscle of Baf155WT mice at rest state and after 100 min of treadmill running (n = 4 mice per each

condition). (B) RT-qPCR analysis of HIF-1α target genes in Q muscle of Baf155WT and Baf155ΔMF mice after 100 min of treadmill

running (n = 8–14 mice per each genotype). (C) Blood lactate concentration in Baf155WT and Baf155ΔMF mice at rest state and at

the exhaustion of treadmill running (n = 10 mice per each genotype). Statistical analysis was performed using a two-way ANOVA

test followed by Tukey’s multiple comparison test (n.s., not significant; **P< 0.01, ***P< 0.001). (D) Relative metabolite level in

muscle at the exhaustion of treadmill running. Metabolites were extracted from freshly isolated Q muscles at the exhaustion of

treadmill running. Each metabolite was normalized to the external standard, and normalized level of metabolite was used for the

comparison (n = 11–15 mice per each genotype). (E) PAS staining image of TA muscles from Baf155WT and Baf155ΔMF mice after

120 min of treadmill running. (F) The quantification of relative staining intensity of the whole section. Three biological replicates of

(E) were performed and quantified (n = 3 mice per each genotype). (G, H) Representative immunoblotting analyses of pAMPK and

AMPK in Q muscle of Baf155WT mice after each indicated time of treadmill running. Each lane in the immunoblotting image

indicates each mouse (G). The densitometric quantification of relative protein level of pAMPK in Q muscle of Baf155WT mice after

the indicated time of treadmill running. The pAMPK level, which is normalized to AMPK, was used for the comparison. Five
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skeletal muscle during exercise. Based on this observation, we expected a higher ATP level in

Baf155ΔMF skeletal muscle and compared an intramuscular ATP level during exercise. In line

with the decreased pAMPK level, Baf155ΔMF skeletal muscle contained more ATP than

Baf155WT skeletal muscle after performing the same intensity of exercise (Fig 8K). This result

implied that the enhanced endurance exercise of Baf155ΔMF skeletal muscle is due to the high

intramuscular ATP during exercise. Together, our observations revealed that the high oxida-

tion due to the reduced HIF-1α signaling resulted in the increased intramuscular ATP level,

which enhanced the endurance exercise capacity.

Since Baf155 ablation resulted in metabolic alterations, we examined whether Baf155ΔMF

mice are more prone to develop metabolic defects than Baf155WT mice in response to high-fat

diet feeding. We underwent high-fat feeding in Baf155WT and Baf155ΔMF mice for 8 weeks, a

method previously described that sufficiently induces metabolic changes [65]. Body weight

and weight gain percentage after high-fat feeding were comparable between Baf155WT and

Baf155ΔMF mice (S4A and S4B Fig). In addition, masses of hind limb muscle, fat, and liver

after high-fat feeding were also similar in both mouse models (S4C–S4E Fig). These results

showed similar responses of Baf155WT and Baf155ΔMF mice to the high-fat diet. Furthermore,

we conducted a glucose tolerance test (GTT). Blood glucose levels were similar in both mouse

models under the normal chow condition and after high-fat diet feeding (S4F–S4I Fig). Alto-

gether, these results revealed that Baf155ΔMF mice are not susceptible to metabolic defects in

response to a high-fat diet compared to Baf155WT mice, despite the metabolic alteration in

skeletal muscle during exercise.

Discussion

The results of this study reveal the biological function of Baf155 in the energy metabolism of

skeletal muscle, modulating hypoxia signaling. Albeit showing normal development and matu-

ration of skeletal muscle, Baf155ΔMF mice show a significant improvement in endurance exer-

cise capacity. The ablation of Baf155 impedes glycolysis, resulting in decreased lactate

production and increased intramuscular ATP production during endurance exercise, which

leads to the enhancement of exercise capacity. The metabolic changes are rooted form the

alteration of HIF-1α signaling, where Baf155 mediates this signaling by regulating the DNA

binding of HIF-1α. Moreover, the regulatory function of Baf155 in HIF-1α signaling is associ-

ated with pSTAT3, which forms a coactivator complex with HIF-1α to fully activates HIF-1α
signaling (S5 Fig).

Recent studies have revealed specific functions of Baf subunits by showing the interactions

between Bafs and other transcription factors [66,67]. In skeletal muscle, for example, Baf47

regulates the terminal differentiation of muscle stem cells by interacting with a myogenic

biological replicates of (G) were performed and quantified (n = 5 mice per each condition). Statistical analysis was performed using

one-way ANOVA followed by Tukey’s multiple-comparisons test (**P< 0.01, ***P< 0.001 versus Baf155WT mice at rest state) (H).

(I, J) Representative immunoblotting analyses of pAMPK and AMPK in Q muscle of Baf155WT and Baf155ΔMF mice after each

indicated time of treadmill running. Each lane in the immunoblotting image indicates each mouse (I). The densitometric

quantification of relative protein level of pAMPK in Q muscle of Baf155WT and Baf155ΔMF mice after the indicated time of treadmill

running. The pAMPK level, which is normalized to AMPK, was used for the comparison. Six biological replicates of (I) were

performed and quantified (n = 6 mice per each genotype with indicated running time) (J). (K) Luminometric analysis of

intramuscular ATP level in Q muscle of Baf155WT and Baf155ΔMF mice after each indicated time of treadmill running (n = 7 mice

per each genotype with indicated running time). Each dot in the graphs (A–D, F, H, J, and K) represents each mouse (biological

replicate). Data are presented as mean ± SEM of biological replicates. Statistical analyses were performed using unpaired Student t
test (*P< 0.05, **P< 0.01, ***P< 0.001 versus control) (A, B, D, F, J, and K). The data underlying this figure can be found in S1

Data. AMPK, 50 adenosine monophosphate-activated protein kinase; ATP, adenosine triphosphate; Baf155, Brg1/Brm-associated

factor 155; HIF-1α, hypoxia inducible factor-1α; MF, myofiber; PAS, periodic acid and Schiff; Q, quadriceps; RT-qPCR, reverse

transcription quantitative real-time PCR; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3002192.g008
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factor MyoD [18]. In addition, Baf60c determines myofiber types by interacting with the Six4

transcription factor [19]. Despite the discovery of new functions of other Bafs, Baf155 has been

known as a structural protein stabilizing other subunits [22,23]. In the present study, we iden-

tified the function of Baf155 in skeletal muscle for the first time, to our knowledge. Our results

showed that Baf155 regulates the energy metabolism of skeletal muscle via HIF-1α signaling.

Furthermore, we also showed that Baf155 executes this function by mediating the DNA bind-

ing of HIF-1α through the interaction with pSTAT3. These results identify the new function of

Baf155 in skeletal muscle, reveal the functional interaction between Baf155 and HIF-1α
through pSTAT3, and suggest the possibility of unrevealed functions of Baf155 in other organs.

In addition, considering the results of our ChIP-qPCR and Co-IP experiments, our observa-

tions reveal the contribution of Baf155 to the recruitment of the SWI/SNF complex, the DNA

binding of transcription factors STAT3 and HIF-1a, and the expressions of target genes.

Although the relationship between SWI/SNF complex recruitment, STAT3/HIF-1α DNA

binding and target gene expression can be implied, the precise mechanism and causality

underlying our observations could not be fully revealed in the present study. Further study is

required to clarify the detailed mechanism for the function of Baf155 in skeletal muscle.

Previous studies reported the reduced stability of subunits by Baf155 ablation in in vitro

(kidney-derived COS-1 cell) or in vivo (mouse thymus) experiments [22,68]. Mechanistically,

Baf155 stabilizes other subunits by blocking the binding of E3 ubiquitin ligase, checkpoint

with forkhead and ring finger domain (CHFR) [23]. However, depending on our observations,

Baf155 ablation does not affect the stability of other Baf subunits in skeletal muscle. These

results strongly suggest other biological mechanisms protecting Baf subunits independently of

Baf155. For example, the compensatory role of other Bafs, such as Baf170, which is a paralogue

having similar structure to Baf155 [69–71], or the muscle-specific mechanisms protecting sub-

units from proteasomal degradation could contribute to the maintenance of Baf subunits in

skeletal muscle. Further study is essentially required to understand the stabilization of the

SWI/SNF complex in skeletal muscle.

Skeletal muscle has remarkable plasticity responding to external stimuli [72–74], and differ-

ent gene clusters show distinct patterns of expressions depending on the type of stimulus [75–

77]. Contractile activity, such as exercise, also induces expressional changes in various gene

clusters in skeletal muscle [34,78]. The effect of acute exercise returns to the pre-exercise state

within hours after cessation, but long-term exercise elicits chronic changes accompanying the

enhancement of exercise capacity [79,80]. In previous studies, researchers tried to find crucial

genes related to the enhancement of exercise capacity by analyzing transcriptomes in skeletal

muscle after long-term exercise [81–83]. Although these studies revealed the gene clusters

showing expressional changes, researchers could not directly prove the relation between these

genes and exercise capacity. Thus, further studies about the function of these genes in skeletal

muscle are essential to reveal the molecular mechanism enhancing exercise capacity. Smarcc1,

a homolog of Baf155 in humans, also shows an expressional change in skeletal muscle with

enhanced exercise capacity [84]. Stepto and colleagues compared transcriptomes between

healthy but untrained control subjects and well-trained athletes. They identified approximately

260 differentially expressed genes (DEGs) (161 up-regulated and 102 down-regulated), and

Smarcc1 is one of the major down-regulated genes in the athlete’s skeletal muscle. Stepto and

colleagues suggested that DEGs from their microarray experiments would include crucial

genes contributing to the enhancement of exercise capacity but could not experimentally verify

biological relations between these genes and the enhanced exercise capacity. Here, we show

that a reduction in Baf155 enhances exercise capacity. Considering our results and the report

from Stepto and colleagues, Baf155 could be one of the crucial genes contributing to the

enhancement of exercise capacity in skeletal muscle. Furthermore, we also reveal the
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regulatory mechanism of Baf155 in the HIF-1α signaling activation. Given that the precise

mechanisms enhancing the endurance exercise capacity are still not fully elucidated, our

results improve biological understanding of the enhancement mechanism of exercise capacity

in skeletal muscle and suggest Baf155 as a crucial gene for this process.

Moreover, we showed that HIF-1α signaling is impeded in Baf155 ablated skeletal muscle,

strongly supporting our suggestion that Baf155 is a crucial gene for enhancing exercise capac-

ity. Since HIF-1α regulates expressions of genes related to hypoxic response and is dramati-

cally activated in exercising skeletal muscle [10,11,85], HIF-1α has been considered as

beneficial for the maintenance of exercise capacity. Recent studies, however, revealed HIF-1α
signaling inhibits oxidative metabolism [86–88] and the suppression of this signaling in skele-

tal muscle results in improved exercise capacity [89,90]. Furthermore, the ablation of HIF-1α
in skeletal muscle improves endurance exercise capacity due to the decrement of glycolytic

metabolism [7]. These results indicate that molecular mechanisms inhibiting HIF-1α signaling

in skeletal muscle could improve exercise capacity. In this study, we showed that Baf155 is

involved in HIF-1α signaling, and the ablation of Baf155 impedes this signaling in skeletal

muscle. Depending on these results, we suggest that the down-regulation of Baf155 in skeletal

muscle, leading to an impediment of HIF-1α signaling, is one of the molecular mechanisms

enhancing exercise capacity.

Although showing the reduction of the glycolytic pathway in Baf155ΔMF skeletal muscle, we

could not fully reveal how the reduced glycolysis results in enhanced oxidative metabolism.

According to previous reports, the partial pressure of oxygen (PO2) in skeletal muscle main-

tains above the required PO2 for mitochondrial function even during exercise [91–94]. Con-

sidering these results, pyruvate could be metabolized by the oxidative pathway or glycolytic

pathway in exercising skeletal muscle. However, the increased enzymatic flux of LDHA, the

key enzyme of the glycolytic pathway, during exercise leads pyruvate to the lactate generation

pathway [95]. Altogether, the change of enzymatic flux of LDHA could be a possible mecha-

nism underlying the metabolic alteration in Baf155 ΔMF skeletal muscle, but we could not ver-

ify this possibility. Further investigation of the enzymatic flux might reveal the precise

mechanism for the altered metabolism in Baf155ΔMF skeletal muscle.

Statisticians raise concerns about the interpretation of the p-value and suggest additional

statistical analyses that could supplement the p-value. They propose that presenting other sta-

tistical analyses in addition to the p-value would strengthen the statistical significance of the

evidence [96–100]. The calculation of false positive risk (FPR) is one of the suggested statistical

analyses and quantifies the probability of the experimental results [100]. Considering this, we

calculated the FPRs of the data with a one-star p-value (0.01<p<0.05) (S6 Table). Our data

showed FPRs under 20%, and this numerical value is less than the rejection threshold, which

means the statistically suggestive depending on the FPR [100,101]. However, the standard for

the threshold to decide the statistical efficiency of data is still controversial. In line with this,

statisticians propose the requirement of considering the statistical threshold depending on

research fields and suggest methods to calculate the statistical basis for thresholds [102–105].

We believe that biologists also have to discuss the standard of a threshold of p-value, FPR, or

other statistical analyses to achieve statistical improvement in biology, and this will strengthen

the statistical significance of biological discoveries.

In summary, our study identifies Baf155 as a regulator of energy metabolism in the skeletal

muscle and shows that Baf155 regulates HIF-1α signaling by mediating its DNA binding. In

line with this fundamental role, the ablation of Baf155 impedes the HIF-1α signaling, results in

the altered energy metabolism in skeletal muscle, and consequently enhances the endurance

exercise capacity. These results reveal the relationship between Baf155 and exercise physiology
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while suggesting that modulation of Baf155 function could be a strategic target for the

enhancement of energy metabolism and exercise capacity in skeletal muscle.

Materials and methods

Ethics statement

All animal experiments followed the Laboratory Animal Act and the Animal Protection Act of

South Korea. The animal experiments were approved by and under the post-approval moni-

toring of the Institutional Animal Care and Use Committee (IACUC) of the Seoul National

University (SNU-191231-2).

Animals

All male mice (C57BL/6J background) were housed in a specific pathogen-free animal facility,

maintained on a 12 h light-dark cycle, and fed with normal chow unless otherwise indicated.

Mice carrying floxed Baf155 were provided by Dr. Seong RH (Department of Biological Sci-

ences, Seoul National Univ., Seoul, Korea). MCK-Cre transgenic mice and Myh6-MerCreMer

transgenic mice were purchased from The Jackson Laboratory. Mouse studies were performed

according to the guidelines of the ethical committees at Seoul National University. All exercise

function tests were performed at a fixed time of the day (3 PM) and in the same place. In addi-

tion, GTT and blood lactate measurement tests were also performed in the aforementioned

restricted spatiotemporal exercise condition to exclude the effects of environmental changes or

circadian rhythms. For the ablation of Baf155 in cardiac muscle, tamoxifen (20 mg/mL in corn

oil) (Sigma-Aldrich, St. Louis, Missouri, United States of America) was administered orally to

Baf155f/f or Myh6-MerCreMer; Baf155f/f for 5 consecutive days (160 mg/kg body weight).

Four limb grip strength test

Grip strength was evaluated using a grip strength test meter (grip strength test BIO-GS3, Bio-

seb). Mice were allowed to grasp an attached grid with 4 limbs and were horizontally pulled by

the tip of tail. The test was performed for at least 5 times with 10 min of resting between each

measurement. The average of the top 3 grip strength (N, Newton) was normalized to body

weight (g) (N/g). All experiments were performed in a blind fashion.

Inverted grid hanging test

Mice were placed on the center of a grid (20 × 20 cm, consisting of 1.2 cm squares of 0.1 cm

diameter wire) mounted 30 cm above a padded surface. A weight about 10% body weight of

each mouse was suspended from a tail by a clip to avoid the hanging with tails. The grid was

inverted and latency to fall from the grid was recorded. Mice performed hanging test for at

least 4 trials with 30 min of resting between each trial. The average of latency to fall (min) was

normalized to body weight (min*g). All experiments were performed in a blind fashion.

Treadmill running test

Mice were acclimated to the treadmill (DJ2-242 Dual Treadmill, Daejong Instrument, Tread-

mill for 8 mice LT320, Maze engineers) before running tests. The acclimation scheme was the

10-min running at a speed of 10 m/min for 3 consecutive days. After the training period, on

the fourth day, Baf155WT and Baf155ΔMF mice were allowed to run until exhaustion for endur-

ance function tests. Running speed was set to 10 m/min for 30 min and increased by 2 m/min

every 20 min with no inclination. Exhaustion was determined by the inability of the mice to

run on the treadmill more than 10 s despite stimulation. All experiments were performed in a
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blind fashion. For analysis of RNA, protein, or ATP, Baf155WT and Baf155ΔMF mice performed

the same intensity of running with pre-described running protocol and stopped at the

appointed time. Mice were euthanized right after running, and freshly isolated skeletal muscles

were processed with respective methods for each analysis.

Reverse transcription quantitative PCR (RT-qPCR)

Total RNA was extracted from freshly isolated hind limb muscles from Baf155WT and Baf155
ΔMF mice using TRIzol reagent (Invitrogen) and 2 μg of total RNA was reverse transcribed

using RT system (ImProm-II reverse transcription system, Promega). A 1/30 dilution of com-

plementary DNA was used to assess gene expression by SYBR Green technology (TB Green

Premix Ex Taq-Tli RNaseH Plus, Takara). Relative expression levels of genes were calculated

by 2−ΔΔC
T (CT; threshold cycle), ΔΔCT means the difference of CT between target genes and β-

actin (reference gene). CT was analyzed by Rotor-Gene Q software (QIAGEN). Primer

sequences are appended in S4 Table.

mRNA sequencing (RNA-seq) and bioinformatics analyses

Total RNA was extracted from freshly isolated hind limb muscles from unexercised Baf155WT

and Baf155ΔMF mice, respectively, using TRIzol reagent (Invitrogen). To avoid biased analysis

induced by specificity of particular skeletal muscles, we used whole hind limb muscles (TA,

EDL, GA, SOL, and Q) for RNA extraction. The RNA-seq library was generated by TruSeq

Stranded Total RNA LT sample Prep Kit (Illumina) and sequenced with the HiSeq 2500 Illu-

mina genome sequencer. DEG list from RNA-seq was used for further bioinformatic analyses.

GO and KEGG pathway analyses database (https://david.ncifcrf.gov/) was used for identifying

enriched GO terms in Baf155ΔMF skeletal muscle. Bioinformatic evaluation of DEGs in

Baf155ΔMF skeletal muscle was performed by IPA (http://www.qiagenbioinformatics.com,

QIAGEN). The raw RNA-seq dataset is deposited on the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi) with the accession number of GSE 163373.

Western blot analysis

The following primary antibodies were used in this study: mouse anti-pAMPKα (Thr172)

(#2535), AMPKα (#2532), STAT3 (#9132), and Gapdh (#2118) from Cell Signaling; Baf60b

(sc-101162), Baf170 (sc-17838) from Santa-Cruz; rabbit anti-β-actin (A2066) from Sigma-

Aldrich, Baf60a (#35070), Baf60c (#62265), pSTAT3 (Tyr705) (#9145) from Cell Signaling;

Arid1a (ab182560), Baf155 (ab172638), Brm (ab240648), Brg1 (ab110641) from Abcam. The

following secondary antibodies appropriating for each primary antibody were used: HRP-con-

jugated anti-Mouse IgG (w4021) and HRP-conjugated anti-rabbit IgG (w4011) from Promega.

All primary antibodies were diluted 1:1,000 with TBS containing 0.1% Tween-20 and 5% BSA.

Protein lysates were extracted from freshly isolated quadriceps using RIPA buffer mixed with

1× protease inhibitor (Halt protease inhibitor cocktail, Thermo Scientific), phosphatase inhibi-

tor (Phosphatase inhibitor cocktail 3, Sigma-Aldrich), and pepstatin (1 μg/mL). Bradford’s

reagent (Bio-Rad Laboratories) was used for estimating protein concentration. Proteins were

separated by 10% polyacrylamide gels and transferred to PVDF membranes (Millipore). Mem-

branes were blocked with 5% BSA or 5% skim milk for 2 h at room temperature (RT) and

incubated with respective primary antibodies at 4˚C for overnight. After incubation with sec-

ondary antibodies, membranes were developed with SuperSignal West Dura Extended Dura-

tion substrate (Thermo Scientific) and visualized with a Fusion solo chemi-luminescence

imaging system (Vilber Lourmat). Densitometric analysis of immunoblot data was performed

with ImageJ software (NIH).
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Histological analysis

Skeletal muscle samples were immediately embedded in optimal cutting temperature (OCT)

compound (SAKURA) after dissection, frozen with liquid nitrogen, and stored at −80˚C till

analysis. IHC using muscle cryosections were performed by following procedures: For muscle

stem cell staining, 7 μm sections were dried at RT for 10 min, fixed with 4% paraformaldehyde

for 10 min, washed with PBS, and performed antigen retrieval using citrate buffer (0.01 M cit-

rate in distilled water, pH 6.0). The slides were treated with blocking reagent (M.O.M. blocking

reagent, Vector Laboratories) following the recommended protocol and incubated with

respective primary antibodies for overnight at 4˚C. After washing with PBS, the slides were

incubated with the appropriate secondary antibodies at RT for 1 h, counterstained for nuclei

with Hoechst (Invitrogen), and mounted with Vectashield (Vector Laboratories). For myosin

heavy chain (MyHC) staining, unfixed sections were used for staining and followed the proto-

col same with stem cell staining except for antigen retrieval. Stained sections were visualized

with a fluorescent microscope (Axio observer Z1, Zeiss) and analyzing software (Leopard,

ZOOTOS) were used for cross-sectional area (CSA) analysis. For NADH staining, air-dried

cryosection of skeletal muscle was incubated in staining solution (MTT 0.25 mg, 50 mM Tris-

HCl (pH 7.4), 5 mM MgCl2, 25 mM CoCl2 (pH 7.0), 2 mg Co-enzyme NADH) for 90 min at

37˚C. After incubation, section was fixed in 4% PFA for 15 min and washed with DW, fol-

lowed by mount with aqueous mounting medium. For PAS staining, cryosections of skeletal

muscle was fixed using 4% paraformaldehyde for 10 min at RT followed by washing with PBS.

The slides were oxidized in 0.5% periodic acid solution for 5 min, rinsed in distilled water for 3

times, and incubated in Schiff’s reagent for 15 min. After washing with tap water for 5 min, the

slides were dehydrated and mounted using synthetic mounting solution. Stained sections were

visualized with a fluorescent microscope (EVOS FL Auto 2, Thermo Fisher), and staining

intensity was measured with ImageJ software (NIH).

Chromatin immunoprecipitation (ChIP) assay

Chromatin fragmentation was performed by sonication in ChIP lysis buffer (50 mM Tris-HCl

(pH 8.1), 1% SDS, 10 mM EDTA (pH 7.6), and freshly added protease inhibitor cocktail).

Chromatin extracts containing DNA fragments with an average of 250 bp were then diluted 10

times with dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl

(pH 8.1), and freshly added protease inhibitor cocktail) and subjected to immunoprecipita-

tions overnight at 4˚C. Immunocomplexes were captured by incubating 40 μl of protein A/G

sepharose for 2 h at 4˚C. Beads were washed with TSE I buffer (0.1% SDS, 1% Triton X-100, 2

mM EDTA, 20 mM Tris-HCl (pH 8.1), and 150 mM NaCl), TSE II buffer (0.1% SDS, 1% Tri-

ton X-100, 2 mM EDTA, 20 mM Tris-HCl (pH 8.1), and 500 mM NaCl), buffer III (0.25 M

LiCl, 1% NP-40, 1% deoxycholate, 10 mM Tris-HCl (pH 8.1), and 1 mM EDTA), TE buffer

(10 mM Tris-HCl (pH 8.0) and 1 mM EDTA) for 3 times, and eluted in elution buffer (1%

SDS and 0.1 M NaHCO3). Crosslinking was reversed overnight at 65˚C in elution buffer, and

DNA was purified with a QIAquick Gel Extraction Kit (QIAGEN). Precipitated DNA was ana-

lyzed by quantitative RT-PCR. For quantitative real-time PCR analysis, 2 μl from 50 μl DNA

extractions was used. For Re-ChIP assay, second round of ChIP was performed using the elu-

tion of the first round ChIP. The result was calculated relative to the original input using the

same amount of DNA in the qPCRs. Primer sequences are appended in S5 Table.

Co-Immunoprecipitation (Co-IP)

C2C12 cell line was used to Co-IP experiment. Transfection of each indicated gene was per-

formed using jetPRIME transfection reagent (Polyplus) following the protocol provided from
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the manufacturer. Lysis of cell was performed by sonication in Co-IP lysis buffer (Pierce,

Thermo Scientific) mixed with 1× protease inhibitor (Halt protease inhibitor cocktail, Thermo

Scientific). Lysates were subjected to precipitations with Ni-NTA agarose bead (QIAGEN) for

overnight at 4˚C. Beads were washed with Ni-NTA wash buffer (20 mM Tris, 150 mM NaCl,

imidazole 20 mM (pH 8.0)) for 6 times. Elution of precipitated protein was performed by add-

ing 1× Laemmli sample buffer to bead and boiled in 95˚C for 10 min. Eluted sample was used

for following western blot analysis.

Blood lactate level measurement

The concentration of blood lactate was measured before the onset of running and immediately

after exhaustion by treadmill running. Exhaustion was determined by the inability of the mice

to run on the treadmill more than 10 s despite stimulation. The measurement was performed

with lactate meter (Lactate pro 2, LT-1730, ARKRAY) using blood from a tail tip.

Targeted metabolomics analysis

Targeted metabolomics analysis was performed as previously described [106–110]. Briefly,

metabolites were extracted from freshly dissected Q muscle at the exhaustion of the treadmill

running. Dissected Q muscle was frozen in liquid nitrogen and ground into powder. Approxi-

mately 20 mg of muscle powder was mixed with 500 μl of LC-MS grade methanol (Merck) and

10 mM of the external standard. The mixture was sonicated with 3 cycles of 40 s on-state and

30 s off-state (Bioruptor Pico, Diagenode). After adding 500 μl of LC-MS grade chloroform

(Merck) and 200 μl of LC-MS grade water (Merck), the mixture and incubated for 10 min at

4˚C. Following the centrifugation with 13,000 rpm for 10 min at 4˚C, the upper phase was col-

lected in a 5-mL tube, was frozen using liquid nitrogen for 15 min, and was lyophilized for 48

h (Lyophilizer, FD8508, ilShinBioBase). The lyophilized product was dissolved with the solvent

and was subjected to LC-MS/MS.

ATP level measurement

ATP assay kit (ATP bioluminescence assay kit HS II, Roche) was used for ATP analysis, and

all experimental procedures were performed according to given protocol from manufacturer.

Lysates were extracted from 10 mg of freshly isolated quadriceps after 100 min of treadmill

run. Luminescence signal was detected by luminometer (LB 96V microplate luminometer,

Berthold) and normalized to protein concentration of lysates (M/g protein).

Statistical analysis

Data are presented as mean ± SEM, a column showing the mean and an error bar showing the

SEM. Statistical analyses were performed using GraphPad Prism (GraphPadSoftware) and

were indicated in figure legends. p-Values of less 0.05 were considered statistically significant.

Supporting information

S1 Fig. Baf155 is dispensable for the development and maturation of skeletal muscle. (A)

Body weight of age and sex matched Baf155WT and Baf155ΔMF mice (n = 20 mice per each

genotype). (B) Representative appearance of hind limb skeletal muscles (TA, EDL, GA, SOL,

Q) of Baf155WT and Baf155ΔMF mice. Scale bar, 1 cm. (C) Muscle weight normalized to body

weight of hind limb skeletal muscles of Baf155WT and Baf155ΔMF mice (n = 3 mice per each

genotype). (D) Total body DEXA analysis of Baf155WT and Baf155ΔMF mice (n = 15 mice per

each genotype). (E) Representative HE staining of TA muscles of Baf155WT (upper panel) and
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Baf155 ΔMF mice (lower panel). Scale bars, 100 μm for left column and 200 μm for right col-

umn. (F) Representative IHC staining image of Pax7, DAPI, and Laminin in TA muscle of

Baf155WT (upper panel) and Baf155ΔMF mice (lower panel). Scale bars, 100 μm. (G) Quantifi-

cation of the myofiber number of per cross section in TA muscle of Baf155WT and Baf155ΔMF

mice. (H) Frequency of myofibers within each indicated CSA range in TA of Baf155WT and

Baf155ΔMF mice. (I) The number of Pax7+ cell per 100 MFs in TA of Baf155WT and Baf155ΔMF

mice. Three biological replicates of (F) were performed and quantified for (G–I) (n = 3 mice

per each genotype). Each dot in the graphs (A, C, D, G–I) represents each mouse (biological

replicate). Data are presented as mean ± SEM of biological replicates. Statistical analyses were

performed using unpaired Student’s t test (n.s., not significant versus control) (A, C, D, G, and

I). The data underlying this figure can be found in S1 Data. Baf155, Brg1/Brm-associated factor

155; CSA, cross-sectional area; DEXA, dual-energy X-ray absorptiometry; EDL, extensor digi-

torum longus; GA, gastrocnemius; HE, hematoxylin and eosin; IHC, immunohistochemistry;

MF, myofiber; Pax7, paired box 7; Q, quadriceps; SEM, standard error of the mean; SOL,

soleus; TA, tibialis anterior.

(TIF)

S2 Fig. Baf155 ablation in cardiac muscle does not affect exercise capacity. (A) RT-qPCR

analysis of Baf155 in each indicated organ from Baf155WT and Baf155ΔMF mice (n = 3 mice per

each genotype). (B) Representative immunoblotting analyses of Baf155 in each indicated

organ from Baf155WT and Baf155ΔMF mice. Each lane in the immunoblotting image indicates

each mouse. (C) The densitometric quantification of relative protein level of Baf155 in each

indicated organ of Baf155ΔMF mice compared to Baf155WT mice (n = 3 mice per each geno-

type). (D) Schematic representation of the experimental strategies of tamoxifen treatment and

treadmill running test. To ablate Baf155 in cardiac muscle, tamoxifen (20 mg/mL in corn oil)

was administered orally to Baf155WT or Baf155ΔCMF mice for 5 consecutive days (160 mg/kg

body weight/day). To measure endurance exercise capacity, mice were subjected to treadmill

running following 3 days of acclimation at the age of 3 months. (E) RT-qPCR analysis of

Baf155 in cardiac and Q muscles from Baf155WT and Baf155ΔCMF mice after tamoxifen treat-

ment (n = 4 mice per each genotype). (F) Representative immunoblotting analyses of Baf155

in each indicated muscle from Baf155WT and Baf155ΔCMF mice. Each lane in the immunoblot-

ting image indicates each mouse. (G) The densitometric quantification of relative protein level

of Baf155 in each indicated muscle of Baf155ΔCMF mice compared to Baf155WT mice (n = 3

mice per each genotype). (H) Weight of cardiac muscle of Baf155WT and Baf155ΔCMF mice

after tamoxifen treatment (n = 6 mice per each genotype). (I, J) The measurement values of

treadmill running test. Total running time (min) (I) and total running distance (m) (J) (n = 7

mice per genotype). Each dot in the graphs (A, C, E, G–J) represents each mouse (biological

replicate). Data are presented as mean ± SEM of biological replicates. Statistical analyses were

performed using unpaired Student’s t test (n.s., not significant; *P< 0.05; **P< 0.01;

***P< 0.001 versus Baf155WT control). The data underlying this figure can be found in S1

Data. Baf155, Brg1/Brm-associated factor 155; CMF, cardiac myofiber; kg, kilogram; MF, myo-

fiber; mg, milligram; mL, milliliter; Q, quadriceps; RT-qPCR, reverse transcription quantita-

tive real-time PCR; SEM, standard error of the mean.

(TIF)

S3 Fig. Fiber type composition or mitochondrial function are comparable between

Baf155WT and Baf155ΔMF mice. (A) Representative IHC staining image of MyHC1,

MyHC2a, and MyHC2b in TA muscle of Baf155WT (upper panel) and Baf155ΔMF mice (lower

panel). Scale bars, 100 μm. (B) Quantification of the number of each indicated fiber type in TA

muscle of Baf155WT and Baf155ΔMF mice. Three or 4 biological replicates of (A) were
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performed and quantified (n = 3–4 mice per each genotype). (C) RT-qPCR analysis of each

indicated fiber type in TA muscle of Baf155WT and Baf155ΔMF mice (n = 3–4 mice per each

genotype). (D) Representative NADH staining image in TA muscle of Baf155WT and

Baf155ΔMF mice. Scale bars, 200 μm. (E) Quantification of the number of NADH positive myo-

fiber (E) and quantification of the NADH staining intensity in TA muscle of Baf155WT and

Baf155ΔMF mice. (F) The quantification of relative staining intensity of whole section. Three

biological replicates of (D) were performed and quantified for (E and F) (n = 3 mice per each

genotype). (G, H) RT-qPCR analysis of nuclear encoded (G) and mitochondrial encoded

genes (H), which are related to mitochondrial function, in TA muscle of Baf155WT and

Baf155ΔMF mice (n = 3 mice per each genotype). Each dot in the graphs (B, C, E–H) represents

each mouse (biological replicate). Data are presented as mean ± SEM of biological replicates.

Statistical analyses were performed using unpaired Student’s t test (n.s., not significant;

***P< 0.001 versus Baf155WT control). The data underlying this figure can be found in S1

Data. Baf155, Brg1/Brm-associated factor 155; IHC, immunohistochemistry; MF, myofiber;

MyHC, myosin heavy chain; NADH, nicotinamide adenine dinucleotide hydrogen; RT-qPCR,

reverse transcription quantitative real-time PCR; SEM, standard error of the mean; TA, tibialis

anterior.

(TIF)

S4 Fig. Baf155ΔMF mice are not susceptible to the metabolic defect in response to high-fat

feeding. (A) Body weight after high-fat feeding and (B) percentage of weight gain compared

to body weight before high-fat feeding. (C–E) The value of mass normalized to body weight;

limb muscle (C), fat (D), and liver (E). (F–I) Glucose tolerance test. Blood glucose level of

Baf155WT and Baf155 ΔMF mice with normal chow (F) and area under curve of blood glucose

level with normal chow (G). Blood glucose level of Baf155WT and Baf155 ΔMF mice after high-

fat feeding (H) and area under curve of blood glucose level after high-fat feeding (I). Each dot

in the graphs (A–E, G, and I) represents each mouse (biological replicate). Data are presented

as mean ± SEM of biological replicates. Statistical analyses were performed using unpaired Stu-

dent’s t test (n.s., not significant). The data underlying this figure can be found in S1 Data.

Baf155, Brg1/Brm-associated factor 155; SEM, standard error of the mean.

(TIF)

S5 Fig. Schematic model of the role of Baf155 in energy metabolism regulation through

HIF-1α signaling in skeletal muscle. Baf155 mediates DNA binding of HIF-1α. This regula-

tory role requires DNA binding of STAT3, which forms a coactivator complex with HIF-1α.

Baf155 ablation attenuates HIF-1α signaling, which leads to the alteration of energy metabo-

lism, in skeletal muscle and enhances endurance exercise capacity. Baf155, Brg1/Brm-associ-

ated factor 155; HIF-1α, hypoxia inducible factor-1α; STAT3, signal transducer and activator

of transcription 3.

(TIF)

S1 Table. Annotated genes in GO term analysis. Genes of DEGs annotated in each indicated

biological process according to GO term analysis. ADAMTS, a disintegrin-like metalloprotei-

nase with thrombospondin motif type1; CCL, chemokine (C-C motif) ligand; CISH, cytokine

inducible SH2 containing protein; DEG, differentially expressed gene; HAS, hyaluronan

synthase; MNDAL, myeloid cell nuclear differentiation antigen like; NOS, nitricoxide

synthase; PF, Platelet factor; SMPD, sphingomyelin phosphodiesterase; SOCS, suppressor of

cytokine signaling.

(TIFF)
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S2 Table. Annotated genes in KEGG pathway analysis. Genes of DEGs annotated in each

indicated biological process according to the KEGG pathway analysis. ADAMTS, a disinte-

grin-like metalloproteinase with thrombospondin motif type1; CCL, chemokine (C-C motif)

ligand; CISH, cytokine inducible SH2 containing protein; DEG, differentially expressed gene;

PF, platelet factor; SMPD, sphingomyelin phosphodiesterase; SOCS, suppressor of cytokine

signaling.

(TIFF)

S3 Table. Annotated genes in IPA. Genes of DEGs annotated in each indicated signaling

pathway according to the IPA. CISH, cytokine inducible SH2 containing protein; DEG, differ-

entially expressed gene; SOCS, suppressor of cytokine signaling.

(TIFF)

S4 Table. RT-qPCR primer sequences. The primer sequences for RT-qPCR targeting each

indicated gene. Baf155, Brg1/Brm-associated factor 155; CISH, cytokine inducible SH2 con-

taining protein; F, forward; Glut, glucose transporter; LDHA, lactate dehydrogenase A;

MyHC, myosin heavy chain; Pgk, phosphoglycerate kinase; R, reverse; RT-qPCR, reverse tran-

scription-quantitative polymerase chain reaction; SOCS, suppressor of cytokine signaling.

(TIFF)

S5 Table. ChIP qPCR primers. The primer sequences for ChIP qPCR targeting each indicated

promoter of gene. CISH, cytokine inducible SH2 containing protein; ChIP-qPCR, chromatin

immunoprecipitation-quantitative polymerase chain reaction; F, forward; Glut, glucose trans-

porter; HIF, hypoxia inducible factor; LDHA, lactate dehydrogenase A; Pgk, phosphoglycerate

kinase; R, reverse; SOCS, suppressor of cytokine signaling.

(TIFF)

S6 Table. False positive risks (FPRs) of data with one-star p-value. The FPRs of the data

with one-star p-value (0.01<p<0.05). Information of data was presented as the number of fig-

ure-panel label and the purpose of the experiment.

(TIF)

S1 Data. Excel spreadsheet containing the underlying numerical data for Figs 1A, 1C, 1E,

1F, 1H, 2B, 2C, 2D, 2E, 2F, 3A, 3B, 3C, 3D, 3F, 4B, 4C, 4F, 4G, 5E, 6C, 6D, 6E, 6F, 6G, 7B,
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S1 Raw Image. Uncropped raw images of western blot data. The red square within each

image indicates the cropped area for the representative image.

(PDF)
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