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Abstract

A fundamental component of human vision is our ability to parse complex visual scenes 

and judge the relations between their constituent objects. AI benchmarks for visual reasoning 

have driven rapid progress in recent years with state-of-the-art systems now reaching human 

accuracy on some of these benchmarks. Yet, there remains a major gap between humans and 

AI systems in terms of the sample efficiency with which they learn new visual reasoning tasks. 

Humans’ remarkable efficiency at learning has been at least partially attributed to their ability 

to harness compositionality – allowing them to efficiently take advantage of previously gained 

knowledge when learning new tasks. Here, we introduce a novel visual reasoning benchmark, 

Compositional Visual Relations (CVR), to drive progress towards the development of more 

data-efficient learning algorithms. We take inspiration from fluid intelligence and non-verbal 

reasoning tests and describe a novel method for creating compositions of abstract rules and 

generating image datasets corresponding to these rules at scale. Our proposed benchmark includes 

measures of sample efficiency, generalization, compositionality, and transfer across task rules. 

We systematically evaluate modern neural architectures and find that convolutional architectures 

surpass transformer-based architectures across all performance measures in most data regimes. 

However, all computational models are much less data efficient than humans, even after learning 

informative visual representations using self-supervision. Overall, we hope our challenge will spur 

interest in developing neural architectures that can learn to harness compositionality for more 

efficient learning.

1 Introduction

Visual reasoning is a complex ability requiring a high level of abstraction over high 

dimensional sensory input. It highlights human’s capacity to manipulate concepts and 

relations as symbols extracted from visual input. The efficiency with which humans learn 

new visual concepts and relations, as exemplified by fluid intelligence and non-verbal 

reasoning tests, is equally fascinating. In the pursuit of human-level artificial intelligence, a 
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growing body of research is attempting to emulate this skill in machines, and deep neural 

networks are at the forefront of the field.

Deep learning approaches are prime candidates as models of human intelligence due to their 

success at learning from data while relying on simple design principles. However, these 

architectures are imperfect models of human intelligence, as shown by their lack of sample 

efficiency, the inability to generalize to unfamiliar situations [13] and the lack of robustness 

[14]. Their ability to perform well in large-data regimes has skewed research towards scaling 

up datasets and architectures with little consideration for the sample efficiency of these 

systems.

Only a few benchmarks address these aspects of human intelligence. One such benchmark, 

ARC [9] provides diverse visual reasoning problems. However, the extreme scarcity of 

training samples, only 3 samples per task, renders the benchmark difficult for all methods, 

especially neural networks. Other benchmarks have led to the development of new neural 

network-based models that address particular gaps between human and machine intelligence 

[3, 43, 12]. Some focus on evaluating the task’s perceptual requirements [12], which 

include detecting features, recognizing objects, perceptual grouping and spatial reasoning. 

Others evaluate logical reasoning requirements [3, 43], such as symbolic reasoning, making 

analogies and causal reasoning. However, they lack either the variety of abstract relations 

present in the scene or the semantic and structural variety of scenes over which they 

instantiate these abstract relations.(Figure 1)

Creating novel visual reasoning tasks can be challenging. In this benchmark, we standardize 

a process for creating tasks compositionally based on an elementary set of relations and 

abstractions. This process allows us to exploit a wide range of visual relations as well 

as abstract rules, thus, making it possible to evaluate both the perceptual and logical 

requirements of visual reasoning. The compositional nature of the tasks provides an 

opportunity to investigate the learning strategies wielded by existing methods. Among 

these methods, we focus on state-of-the-art abstract visual reasoning models and standard 

vision models. These models have been shown to reach high performance on several visual 

reasoning tasks in previous works [40, 38], but they always require large amounts of data. 

This paper’s subject of interest is quantifying these models’ sample efficiency.

Contributions

Our contributions can be summarized as follows:

• A novel visual reasoning benchmark called Compositional Visual Relations 
(CVR) with 103 unique tasks over distinct scene structures.

• A novel method for generating visual reasoning problems with a 

compositionality prior.

• A systematic analysis of the sample efficiency of baseline visual reasoning 

architectures.

• An empirical study of models’ capacity at using compositionality to solve 

complex problems.
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Our large-scale experiments capture a multitude of setups, including multi-task and 

individual task training, pre-training with self-supervision on dataset images to contrast 

learning of visual representations vs. abstract visual reasoning rules, training over a range 

of data regimes, and testing transfer learning between dataset tasks. We present an in-depth 

analysis of task difficulty, which provides insights into the strengths and weaknesses of 

current models. Overall, we find that the best baselines trained in the most favorable 

conditions fall short of human sample efficiency for learning those same tasks. While 

models appear to be capable of transferring knowledge across tasks, we show that they 

do not leverage compositionality to efficiently learn task components. We hope to inspire 

research on more efficient visual reasoning models by releasing our dataset. The code for 

generating the full dataset and training models is available here.

2 Compositional Visual Relations Dataset

CVR is a synthetic visual reasoning dataset that builds on prior AI benchmarks [12, 9] and is 

inspired by a cognitive science literature [37] on visual reasoning. In the following, we will 

describe the generation process of the dataset.

Odd-One-Out

The odd one out task has been employed in prior work to test visual reasoning [27]. A 

sample problem consists of 4 images generated such that one of them is an outlier according 

to a rule. The goal of the task is to select the outlier. The learner is expected to test several 

hypotheses in order to detect the outlier. This process requires them to infer the hidden scene 

structure and relationships between the objects.

Scene generation

Each image contains one scene composed of multiple objects as shown in Figure 2. An 

object is defined as a closed contour with a set of object attributes: shape, position, 
size, color, rotation and flip. Other attributes describe the scene or low-level relations 

between objects. Count corresponds to the number of objects, groups of objects or relations. 

Insideness indicates that an object contains another object within its contour. Contact 
indicates that two object contours are touching. These 9 attributes are the basis for the 9 

elementary relations. For example, a “size” relation is a constraint on the sizes of certain 

objects in the scene. Relations are expressed with natural language or logical, relational and 

arithmetic operators over scene attributes. Relations and objects are represented as nodes in 

the scene graph. Relations define groups of objects and can have attributes of their own. 

Thus, it is possible to create abstract relations over these relations’ attributes. A scene can be 

generated from a template that we call a structure. The concepts of structure, scene graph 

and relations are used for formalizing the process behind designing a task. In practice, the 

generation process is a program implemented by the task designer to generate problem 

samples of one task randomly. The Pseudo-code for an example program is detailed in Alg. 

1.
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Rules and problem creation

The generation process described above can be used to instantiate different tasks; binary 

classification, few-shot binary classification, or a raven’s progressive matrix. In this paper, 

we choose to apply this process to create odd-one-out problems. First, the task designer 

selects target relations and incorporates them into a new scene structure. In Figure 2, the 

target relations are size and shape similarity; they are added to a scene with 4 objects. 

Then, a reference rule and an odd rule are chosen such that they combine target relations in 

different ways. The reference and odd rules in the example vary only in the size or shape 

attributes. A valid odd-one-out rule contradicts the reference rule such that any strategy 

used to solve the task must involve exclusively reasoning over the target relations. Given a 

scene structure, a reference and an odd-one-out rule, the generation process has a set of free 

parameters that control the generation process for new samples. The problem’s difficulty 

level can be varied by randomizing or fixing these parameters. In the shape-size task, the 

range of color values and the variation of objects across the 4 images are examples of free 

parameters. More random parameters result in a higher difficulty. We create generalization 

test sets by changing the sets of fixed or random parameters. For more details on the 

generalization test sets we refer the reader to the SI.

Dataset details

CVR incorporates 103 unique reference rules, including 9 rules instantiating the 9 

elementary visual relations and 94 additional rules built on compositions of the relations. 

These compositions span all pairs of elementary rules and include up to 4 relations. While 

some rules are composed of the same elementary relations, they remain unique in their 

scene structure or associations with other relations. 20 are compositions of single elementary 

relations, 65 are compositions of a pair of relations and 9 are compositions of more than 2 

elementary relations. Figure 3 details the number of unique rules for each pair of elementary 

relations. The procedural generation of problem samples helps us create an arbitrary number 

of samples. We create 10,000 training problem samples, 500 validation samples and 1,000 

test samples for each task. We also create a generalization test set of 1000 samples.

We define the compositionality prior as the task’s design constraint which ensures that 

solving the task requires reasoning over its elementary components. In the size-shape 

task, shown in figure 2, the outlier can be differentiated from the other images by 

reasoning purely on size and shape. In the context of CVR, compositional extends beyond 

combinations of object attributes, such as novel color and shape combinations in an object, 

to higher levels of abstractions; groups of objects and scene configurations. For example, the 

position-rotation composition rule in Fig. 4 requires reasoning over the rotation properties of 

two sets of objects in each scene, and the position properties of objects within each set.

CVR constitutes a significant extension to the Synthetic Visual Reasoning Test (SVRT) [12] 

in that it provides a systematic reorganization based on an explicit compositionality prior. 

Among the 23 SVRT tasks, many share relations, such as tasks #1 and #21, which both 

involve shape similarity judgments. Most of these tasks can still be found amongst CVR’s 

rules. At the same time, CVR is more general because it substitutes binary classification 
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tasks with odd-one-out tasks which allows one to explore more general versions of these 

tasks, with a broader set of task parameters. For example, in SVRT’s task #7, images of 

3 groups of 2 same shapes are discriminated from images of 2 groups of 3 same shapes. 

This task is a special case in CVR of a more general shape-count rule with n groups 

of m objects where the values are randomly sampled across problem samples. Unlike 

procedurally generated RPM benchmarks [3, 43], CVR does not rely on a small set of fixed 

templates for the creation of task rules. The shapes are randomly created and positions are 

not fixed on a grid (for most rules), which renders the visual tasks difficult for models that 

rely on rote memorization [20]. Other attributes are sampled uniformly from a continuous 

interval.

3 Experimental setting

Baseline models

In our experiments, we select two vision models commonly used in computer vision. We 

evaluate ResNet [15], a convolutional architecture used as a baseline in several benchmarks 

[3, 43, 38] and also used as a backbone in standard VQA models. We also evaluate ViT, 

a transformer-based architecture [11]. ViT is used for various vision tasks, such as image 

classification, object recognition, captioning and recently in visual reasoning on SVRT [28]. 

To compare the architectures fairly, we choose ResNet-50 and ViT-small, which have an 

equal number of parameters. Additionally, we evaluate two baseline visual reasoning models 

designed for solving RPMs: SCL [40] which boasts state-of-the-art accuracy on RAVEN 

and PGM, and WReN [3] which is based on a relational reasoning model [33]. Finally, we 

present SCL-ResNet-18 which consists of an SCL with ResNet as a visual backbone thus 

combining ResNet’s perception skills with SCL’s reasoning skills.

Joint vs. individual rule learning

Models are either trained in a single task (individual) or multitask (joint) setting. In the 

context of the multi-task training on CVR, one image is considered an odd-one-out with 

respect to a reference rule. However, because of the randomness of scene generation, a 

different image might be considered an odd-one-out with respect to a different, irrelevant 

rule. To illustrate this problem, let’s take the elementary size rule as an example. In this 

rule, each image contains one object. Due to the random sampling of object attributes, it 

is possible for one image to be considered an outlier with respect to the color rule (The 

attributes in the 4 images are i-small/green, ii-large/green, iii-small/green, iv-small/blue). 

Without specifying that the task to solve involves a size relation, the model could incorrectly 

choose the fourth image because it is an outlier with respect to the color rule. Thus, models 

trained on several tasks could easily confound rules. To avoid this problem, models are 

provided with a rule embedding vector. Given the rule token, models can learn several 

strategies and use the correct one for each problem sample. We also compare the multi-task 

and single task settings, as they allow for testing the model’s capacity and efficiency at 

learning several strategies and routines to solve different rules. All hyperparameter choices 

and training details are provided in the SI.
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Self-Supervised pre-training

Unlike humans who spend a lifetime analyzing visual information, randomly initialized 

neural networks have no visual experience. To provide a more fair comparison between 

humans and neural networks, we pre-train baseline models on a subset of the training 

data. Self-Supervised Learning (SSL) has seen a rise in popularity due to its usefulness in 

pre-training models on unlabeled data. By using SSL, we aim to dissociate feature learning 

from abstract visual reasoning in standard vision models. We pre-trained ViT-small and 

ResNet-50 on 1 million images from the dataset following MoCo-v3 [8]. In addition to SSL 

pre-trained models, we also finetune models pre-trained on object recognition and image 

annotation. Since image annotation requires visual reasoning capabilities, these pretrained 

models provide a more fair comparison with humans, who regularly perform the task. We 

select ResNet-50 and ViT-small pre-trained on ImageNet [10]. We also pick CLIP [31] 

visual encoders ResNet-50 and ViT-Base, which are trained jointly with a language model 

on image annotation.

Human Baseline

As found in [12], having 21 participants solve the 9 tasks based on elementary relations 

and 36 randomly sampled complex tasks is sufficient to yield a reliable human baseline. We 

used 20 problem samples for each task which corresponds to the lowest number of samples 

used for training baseline models. Each participant completed 6 different tasks. More details 

about the behavioral experiment are provided in the SI.

4 Results

Sample Efficiency

Baseline models are trained in six data regimes ranging from 20 to 1000 training samples. 

All sample efficiency results are summarized in Table 1. Randomly guessing yields 25% 

accuracy. We observe that most randomly initialized models are slightly above chance 

accuracy after training in low data regimes. They achieve an increase in performance only 

when provided with more than 500 training samples. SCL-ResNet-18 performs the best 

in high data regimes, followed by ResNet-50. SCL and ViT have the lowest performance 

in high data regimes. This result is unsurprising since transformer architectures generally 

learn better in high data regimes (millions of data points). This is consistent with prior 

work [38] which finds that ViTs do not learn several SVRT tasks even when trained on 

100k samples. Although SCL’s performance is near chance, it achieves the best performance 

when it is augmented with a ResNet-18, which is a strong vision backbone. This jump in 

performance is indicative of the two architectures’ complementary roles in visual reasoning. 

Results in Table 1 and Fig. 6 show a clear positive effect of pretraining on all models. 

SSL pre-trained models achieve the highest performance compared to object recognition and 

image annotation pretrained models. We observe that ViT benefits from a larger architecture 

coupled with pre-training on a large image annotation dataset. This highlights transformers’ 

reliance on large model sizes and datasets.

In order to quantify sample efficiency systematically for all models, we compute the 

area under the curve (AUC), which corresponds to the unweighted average performance 
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across data regimes. We also introduce the Sample Efficiency Score (SES) as an empirical 

evaluation metric for our experimental setting. It consists of a weighted average of accuracy 

where the weights are reversely proportional to number of samples SES = ∑n anwn

∑n wn
 where 

wn = 1
1 + log(n)  and n is the number of samples. This score favors models that learn with the 

fewest samples while considering consistency in the overall performance. We observe that 

SCL-ResNet-18 scores the highest in the individual and joint training settings. In the SSL 

finetuning condition, ViT and ResNet-50 have a similar SES when trained on individual 

tasks, but ResNet-50 performs better in the joint training setting. These results hint at the 

efficiency of convolutional architectures in visual reasoning tasks. Collapsing across all data 

regimes and training paradigms, the best performance on CVR is given by ResNet-50, in 

the joint training setting with 10k data points per rule. It achieves 93.7% accuracy. This 

high performance in the 10,000 data regime demonstrates the models’ capacity to learn the 

majority of rules in the dataset and suggests that failure in lower data regimes is explained 

by their sample inefficiency.

Finally, we compare model performance to the human baseline. We observe in Table 2 that 

humans far exceed the accuracy of all models with only 20 samples. This result aligns with 

previous work on the SVRT dataset [12] where participants solved similar tasks with less 

than 20 samples. These results highlight the gap between humans and machines in sample 

efficiency and emphasize the need to develop more sample-efficient architectures.

Compositionality

Transferring knowledge and skills across tasks is a crucial feature of intelligent systems. 

With our experimental setup, this can be characterized in several ways. A compositional 

model should reuse acquired skills to learn efficiently. Thus, when it is trained on all 

rules jointly, it should be more sample efficient because the rules in the dataset share 

elementary components. In Table1 and Figure 6, we observe that ResNet-50 achieves 

higher performance on joint training compared to individual rule training, while ViT has 

the opposite effect. The trend is consistent across data regimes and other settings. These 

results highlight convolutional architectures’ learning efficiency compared to transformer 

architectures.

We investigate compositionality further by asking whether learning elementary rules 

provides a good initialization for learning their compositions. For example, a model that 

can judge object positions and sizes should not require many training samples to associate 

sizes with positions. We pick a set of complex rules with at least two different elementary 

relations, train models to reach the maximum accuracy possible on component relations, 

then finetune the models on the compositions. We call this experimental condition the 

curriculum condition since the condition is akin to incrementally teaching routines to a 

model. We compare model performance in the curriculum condition to performance when 

training from scratch. The results highlighted in Figure 5a show positive effects for most 

models but more significantly for convolution-based architectures. These results indicate 

that the baselines use skills acquired during pre-training to learn the composition rules, and 
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that this pretraining helps to varying degrees. We refer the readers to the SI for additional 

analyses and quantitative results.

Finally, we evaluate transfer learning from composition rules to elementary rules. We name 

this condition the reverse curriculum condition. The working hypothesis is that models that 

rely on compositionality will be able to solve elementary relations without finetuning if they 

learn the composition. We compare performance on a composition rule to zero-shot accuracy 

on the respective elementary rules in Figure 5b. We observe that all models perform worse 

on the elementary relations. These results might indicate that although the baselines could 

transfer skills from elementary rules to their compositions, they do not necessarily use 

an efficient strategy that decomposes tasks into their elementary components. Additional 

analyses are presented in the SI.

Task difficulty

We analyze the performance of all models in the standard setting: joint training on all 

rules from random initialization. Figure 7 shows the average performance of each model on 

each elementary rule and composition rule. Since the dataset contains several compositions 

of each pair of elementary rules, the accuracy shown in each square is averaged over 

composition rules that share the same pair of elementary rules. Certain rules are solvable by 

all models, such as the position, size, color, and count elementary rules. Additionally, other 

rules pose a challenge for all models, these rules are compositions of count, flip, rotation or 

shape. Models that rely on a convolutional backbone were able to solve most spatial rules; 

position, size, inside and contact. However, they fail on rules that incorporate shapes and 

their transformations; shape, rotation, flip. Composition rules built with the Count relation 

proved to be a challenge for most models. We believe that models are capable of solving 

several tasks, such as the counting elementary rule, by relying on shortcuts; this could 

be a summation of all pixels in the image, for example. These shortcuts prevent models 

from learning abstract rules and hinder generalization. In line with the previous results, 

SCL-ResNet-18 seems to solve more elementary rules and compositions than the other 3 

models.

5 Related Work

Visual reasoning benchmarks

Visual reasoning has been a subject of AI research for decades, and several benchmarks 

address many relevant tasks. This includes language-guided reasoning benchmarks such 

as CLEVR [18], which has been extended in its visual composition by recent work 

[23], physics-based reasoning and reasoning over time dynamics [42, 2]. Abstract visual 

reasoning benchmarks are more relevant to our work. Raven’s Progressive Matrices (RPMs) 

which were introduced in 1938 [6] are one example used to test human fluid intelligence. 

Procedural generation techniques for RPMs [39] enabled the creation of the PGM dataset 

and RAVEN [3, 43]. They also inspired Bongard-Logo [29], a concept learning and 

reasoning benchmark based on Bongard’s 100 visual reasoning problems [4]. Another 

reasoning dataset, SVRT [12], focuses on evaluating similarity-based judgment and spatial 

reasoning. Besides these synthetic datasets, real-world datasets were developed with similar 
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task structures to Bongard-Logo and RPM [35, 17]. In this work, we take inspiration from 

SVRT and develop a more extensive set of rules with careful considerations for the choice of 

rules and using a novel rule generation method. Finally, Abstract Reasoning Corpus [9] is a 

general intelligence test introduced with a new methodology for evaluating intelligence and 

generalization. The numerous problems presented in this benchmark are constructed with 

a variety of human priors. The unique nature of the task, requiring solvers to generate the 

answer, and the limited amount of training data render the benchmark difficult for neural 

network-based methods. We follow a similar approach in our dataset by creating several 

unique problem templates. However, we restrict the number of samples to a reasonable range 

to evaluate the sample efficiency of candidate models.

Compositionality

Compositionality is a highly studied topic in AI research. Although there is agreement 

over the high-level definition of compositionality; the ability to represent new abstractions 

based on their constituents and their contexts, there is little consensus on methods 

for characterizing compositional generalization in neural networks. Several tests for 

compositionality have been proposed in language [26], mathematics [34], logical reasoning 

and navigation [5, 21, 32, 41] and visual reasoning [18, 36, 1]. Recent work [16] attempts 

to identify components of compositionality and proposes a test suit that unifies them. These 

tests evaluate the model’s capacity to manipulate concepts during inference. Systematicity 

tests the novel combination of features, akin to CLEVR’s CoGenT [18] and C-VQA [1] 

where novel combinations of shapes and colors introduced in the test set, and localism 

tests the model’s ability to account for context similarly to samples from Winoground 

[36]. Our work explores compositional generalization from a new perspective; CVR 

evaluates the model’s compositionality while learning novel concepts. A compositional 

model reuses previously learned concepts to accelerate learning and decomposes complex 

tasks into elementary components. These aspects of compositionality are tested under 

settings that employ curricula. Furthermore, we evaluate compositionality over the reasoning 

operations necessary to solve a given problem. Finally, generating a synthetic dataset 

allows for evaluating reasoning at high levels of abstraction; groups of objects and scene 

configurations, as exemplified by tasks in Figure 4.

Neuroscience/Psychology

Several theories attempt to propose an understanding of the mechanisms behind visual 

reasoning. Gestalt psychology provides principles hypothesized to be be used by the visual 

system as an initial set of abstractions. Another theory describes visual reasoning as a 

sequence of elemental operations called visual routines [37] orchestrated by higher-level 

cognitive processes. These elemental operations are hypothesized to form the basis for 

spatial reasoning, same-different judgment, perceptual grouping, contour tracing and many 

other visual skills [7]. Evaluating these skills in standard vision models is a recurring subject 

in machine learning and neuroscience research [19, 24, 30]. To provide a comprehensive 

evaluation of visual reasoning, it is important to include task sets that require various visual 

skills within humans’ capabilities.
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6 Discussion and Future Work

In this work, we have proposed a novel benchmark that focuses on two important aspects 

of human intelligence – compositionality and sample efficiency. Inspired by visual cognition 

theories [37], the proposed challenge addresses the limitations of existing benchmarks in 

the following ways: (1) it extends previous benchmarks by providing a variety of visual 

reasoning tasks that vary in relations and scene structures, (2) all tasks in the benchmark 

were designed with compositionality prior, which allows for an in-depth analysis of each 

model’s strengths and weaknesses, and (3) it provides a quantitative measure of sample 

efficiency.

Using this benchmark, we performed an analysis of the sample efficiency of existing 

machine learning models and their ability to harness compositionality. Our results suggest 

that even the best pre-trained neural architectures require orders of magnitude more training 

samples than humans to reach the same level of accuracy, which is consistent with 

prior work on sample efficiency [22]. Our evaluation further revealed that current neural 

architectures fail to learn several tasks even when provided an abundance of samples and 

extensive prior visual experience. These results highlight the importance of developing more 

data-efficient and vision-oriented neural architectures for achieving human-level artificial 

intelligence. In addition, we evaluated models’ generalization ability across rules – from 

elementary rules to compositions and vice versa. We find that convolutional architectures 

benefit from learning all visual reasoning tasks jointly and transferring skills learned during 

training on elementary rules. However, they also failed to generalize systematically from 

compositions to their individual rules. These results indicate that convolutional architectures 

are capable of transferring skills across tasks but do not learn by decomposing a visual task 

into its elementary components.

While our work addresses important questions on sample efficiency and compositionality, 

we note a few possible limitations of our proposed benchmark. CVR is quite extensive in 

terms of the visual relations it contains, but it can always be further improved in its use 

of elementary visual relations. For example, the shapes could be parametrically generated 

based on specific geometric features. Hopefully, CVR can be expanded in future work 

to test more routines by including additional relations borrowed from other, more narrow 

challenges, including occlusion [19], line tracing [25], and physics-based relations. The rules 

in the current benchmark are limited to 2 or 3 levels of abstraction to evaluate relations 

systematically. Similarly, our evaluation methods for sample efficiency and compositionality 

could be further improved and adapted to different settings. For example, the sample 

efficiency score is an empirical metric used only for evaluating our benchmark. It requires 

training all models on all data regimes for the score to be consistent. Although our work is 

not unique in addressing sample efficiency, its aim is to promote more sample efficient and 

general models. We hope that the release of our benchmark will encourage researchers in the 

field to test their own model’s sample efficiency and compositionality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Visual reasoning benchmarks:
State-of-the-art models achieve super-human accuracy [40, 38] on several visual-reasoning 

benchmarks such as RAVEN [43] PGM [3] and SVRT [12]. However, some benchmarks 

continue to pose a challenge for current models, such as ARC [9]. The fundamental 

difference between these different benchmarks is the number of unique task rules they 

composed out of their priors and the number of samples available for training architectures 

on individual rules. This difference sheds light on two poorly researched aspects of 

human intelligence: learning in low-sample regimes and harnessing compositionality. The 

proposed CVR challenge aims to fill the gap between current benchmarks to encourage 

the development of more sample-efficient and more versatile neural architectures for visual 

reasoning.
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Figure 2: Scene Generation:
A scene in our image dataset is composed of objects. (a) An object is a closed contour 

with several attributes. (b) A relation is a constraint for the generation process over scene 

attributes. (c) The elementary relations control unique scene attributes. They are used for 

building task rules in a compositional manner. Each task uses a Reference rule and an 

Odd-One-Out rule to generate images. (d) Odd-One-Out problems are randomly generated 

using a program. Three images are generated following the Reference rule, and a fourth 

image (highlighted in red) is generated following the Odd-One-Out rule.
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Figure 3: Dataset rules:
Each square represents the number of rules that are a composition of the associated 

elementary relations and the bar plot shows the number of rules that involve each elementary 

relation.
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Figure 4: Examples of task rules that are composed of a pair of relations.
More examples of tasks and algorithms are provided in the SI.
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Figure 5: Compositionality:
We evaluate models’ capacity to reuse knowledge. (a) Models trained with a curriculum are 

compared to models trained from scratch. Models trained with a curriculum are overall 

more sample efficient. (b) Models trained on compositions are evaluated zero-shot on 

the respective elementary rules. Models fail overall to generalize from compositions to 

elementary rules.
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Figure 6: Sample efficiency:
The percentage of tasks for which performance is above 80% plotted against the number of 

training samples per task rule, with random initialization (top) and with SSL pre-training 

(bottom).
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Figure 7: Task analysis:
The performance at 1000 samples is shown for each model. Performance on elementary 

rules is shown on the top row of each matrix. The elementary relations of each composition 

are indicated by the annotations. Performance is averaged over different compositions of the 

same pair. We observe that most models fail on “color” based tasks.
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Algorithm 1:
Problem Generation Program:

Generates problem samples of the shape-size task in Figure 2
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Table 1:
Performance comparison:

For each model, we report the accuracy and number of tasks with accuracy above 80%. SES is the Sample 

Efficiency Score; it favors models with high performance in low data regimes and consistent accuracy across 

regimes. SES and AUC are computed over the 20–1000 data regimes. OOD generalization results are provided 

in the SI.

N train samples 20 50 100 200 500 1000 SES AUC 10000

rand-
init

ind

ResNet-50[15] 28.0 1 31.1 1 32.5 3 34.0 6 38.7 12 44.8 24 33.7 34.9 - -

ViT-small[11] 28.6 1 30.1 4 30.9 4 31.9 4 33.8 4 35.1 7 31.3 31.7 - -

SCL[40] 26.9 0 30.0 1 30.3 2 30.0 2 31.4 2 33.4 5 29.9 30.3 - -

WReN[[3] 30.0 0 32.0 2 32.9 2 34.1 3 36.3 6 39.0 15 33.4 34.1 - -

SCL-ResNet 
18 31.4 1 37.3 9 37.8 9 39.6 15 42.7 21 48.3 26 38.4 39.5 - -

joint

ResNet-50 27.5 0 28.2 0 29.9 2 33.9 6 52.1 29 59.2 34 36.0 38.4 93.7 93

ViT-small 27.3 1 27.8 2 28.0 1 28.1 1 29.9 2 31.4 3 28.4 28.7 58.7 37

SCL 25.8 0 25.8 0 28.3 1 34.1 3 43.2 22 46.2 27 32.2 33.9 56.9 34

WReN 26.8 0 27.6 0 28.5 0 30.1 0 36.4 9 42.3 20 30.9 32.0 64.5 43

SCL-ResNet 
18 26.4 0 28.4 0 31.6 4 40.7 13 51.4 32 64.0 42 37.6 40.4 78.9 73

SSL

ind
ResNet-50 40.5 13 47.3 18 52.9 29 56.8 34 61.9 42 67.7 50 52.4 54.5 - -

ViT-small 46.7 16 51.6 24 54.8 29 57.5 38 62.0 44 65.5 46 54.9 56.4 - -

joint
ResNet-50 44.3 16 50.3 24 55.3 30 59.5 42 68.9 49 79.2 59 57.0 59.6 93.1 97

ViT-small 39.3 15 39.5 13 40.8 14 44.1 16 53.3 30 60.7 41 44.7 46.3 81.6 67

IN joint
ResNet-50 32.0 2 35.1 5 39.0 9 43.8 13 57.7 48 69.5 48 43.4 46.2 - -

ViT-small 27.9 2 28.2 1 28.6 2 30.0 2 35.6 5 47.2 24 31.7 32.9 - -

CLIP joint
ResNet-50 28.7 0 32.0 2 40.8 11 46.9 18 59.7 40 74.4 53 43.7 47.1 - -

ViT-base 31.1 1 37.4 7 43.9 14 56.0 30 68.9 48 78.8 62 48.9 52.7 - -
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Table 2:
Human Baseline:

performance of models on joint training experiments is compared to the human baseline. The analysis is 

restricted to the 45 tasks used for evaluating humans. ResNet 50 approaches human-level performance only 

after SSL pre-training and finetuning on all task rules with 1000 samples per rule. Which is 50 times higher 

than the number of samples needed by humans.

N training samples 20 1000

ResNet-50 28.0 0 57.9 14

ViT-small 29.3 1 32.7 3

SCL 26.4 0 44.9 11

WReN 27.5 0 42.4 10

SCL-ResNet 18 26.8 0 64.1 18

ResNet-50 SSL 45.7 7 78.3 25

ViT-small SSL 38.7 6 60.3 17

Humans 78.7 26 - -
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