Skip to main content
. Author manuscript; available in PMC: 2023 Aug 2.
Published in final edited form as: Adv Neural Inf Process Syst. 2022 Dec;35(DB):29776–29788.

Table 1: Performance comparison:

For each model, we report the accuracy and number of tasks with accuracy above 80%. SES is the Sample Efficiency Score; it favors models with high performance in low data regimes and consistent accuracy across regimes. SES and AUC are computed over the 20–1000 data regimes. OOD generalization results are provided in the SI.

N train samples 20 50 100 200 500 1000 SES AUC 10000
rand-init ind ResNet-50[15] 28.0 1 31.1 1 32.5 3 34.0 6 38.7 12 44.8 24 33.7 34.9 - -
ViT-small[11] 28.6 1 30.1 4 30.9 4 31.9 4 33.8 4 35.1 7 31.3 31.7 - -
SCL[40] 26.9 0 30.0 1 30.3 2 30.0 2 31.4 2 33.4 5 29.9 30.3 - -
WReN[[3] 30.0 0 32.0 2 32.9 2 34.1 3 36.3 6 39.0 15 33.4 34.1 - -
SCL-ResNet 18 31.4 1 37.3 9 37.8 9 39.6 15 42.7 21 48.3 26 38.4 39.5 - -

joint ResNet-50 27.5 0 28.2 0 29.9 2 33.9 6 52.1 29 59.2 34 36.0 38.4 93.7 93
ViT-small 27.3 1 27.8 2 28.0 1 28.1 1 29.9 2 31.4 3 28.4 28.7 58.7 37
SCL 25.8 0 25.8 0 28.3 1 34.1 3 43.2 22 46.2 27 32.2 33.9 56.9 34
WReN 26.8 0 27.6 0 28.5 0 30.1 0 36.4 9 42.3 20 30.9 32.0 64.5 43
SCL-ResNet 18 26.4 0 28.4 0 31.6 4 40.7 13 51.4 32 64.0 42 37.6 40.4 78.9 73

SSL ind ResNet-50 40.5 13 47.3 18 52.9 29 56.8 34 61.9 42 67.7 50 52.4 54.5 - -
ViT-small 46.7 16 51.6 24 54.8 29 57.5 38 62.0 44 65.5 46 54.9 56.4 - -

joint ResNet-50 44.3 16 50.3 24 55.3 30 59.5 42 68.9 49 79.2 59 57.0 59.6 93.1 97
ViT-small 39.3 15 39.5 13 40.8 14 44.1 16 53.3 30 60.7 41 44.7 46.3 81.6 67

IN joint ResNet-50 32.0 2 35.1 5 39.0 9 43.8 13 57.7 48 69.5 48 43.4 46.2 - -
ViT-small 27.9 2 28.2 1 28.6 2 30.0 2 35.6 5 47.2 24 31.7 32.9 - -

CLIP joint ResNet-50 28.7 0 32.0 2 40.8 11 46.9 18 59.7 40 74.4 53 43.7 47.1 - -
ViT-base 31.1 1 37.4 7 43.9 14 56.0 30 68.9 48 78.8 62 48.9 52.7 - -