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Abstract

Background Preterm birth is the leading cause of neonatal mortality and morbidity. Early

diagnosis and interventions are critical to improving the clinical outcomes of extremely

premature infants. Blood protein profiling during the first months of life in preterm infants can

shed light on the role of early extrauterine development and provide an increased under-

standing of maturation after extremely preterm birth and the underlying mechanisms of

prematurity-related disorders.

Methods We have investigated the blood protein profiles during the first months of life in

preterm infants on the role of early extrauterine development. The blood protein levels were

analyzed using next generation blood profiling on 1335 serum samples, collected long-

itudinally at nine time points from birth to full-term from 182 extremely preterm infants.

Results The protein analysis reveals evident predestined serum evolution patterns common

for all included infants. The majority of the variations in blood protein expression are asso-

ciated with the postnatal age of the preterm infants rather than any other factors. There is a

uniform protein pattern on postnatal day 1 and after 30 weeks postmenstrual age (PMA),

independent of gestational age (GA). However, during the first month of life, GA had a

significant impact on protein variability.

Conclusions The unified pattern of protein development for all included infants suggests an

age-dependent stereotypic development of blood proteins after birth. This knowledge should

be considered in neonatal settings and might alter the clinical approach within neonatology,

where PMA is today the most dominant age variable.
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Plain language summary
Being born too early can affect a

baby’s health. We looked at how

babies born extremely preterm,

meaning more than 12 weeks earlier

than a full-term baby, develop. We

looked at the proteins present in their

blood from the day they were born

until their original due date. Our

study of 182 extremely preterm

babies born at different points in the

pregnancy (gestational ages) found

that the proteins present in their

blood changed in a similar way over

time. This means that the age of a

baby after birth, and not how early

they were born, mostly affects the

proteins in their blood. These findings

help us understand how extremely

preterm babies develop after birth,

which could lead to improvements to

their healthcare during the first few

weeks of their life.
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Preterm birth is the leading cause of neonatal morbidity and
mortality and a significant risk factor for long-term neu-
rodevelopmental and respiratory impairment1–3. The

number of births before 28 weeks of gestation, defined as extre-
mely preterm, was estimated to be approximately 600,000 in 2014
worldwide4. Although significant advances in neonatal intensive
care over the last few decades resulted in increased survival
rates4–7, extremely preterm birth is associated with a high rate of
neonatal and childhood diseases8.

The etiology behind preterm morbidities is multifactorial and
poorly understood. Infants born before 28 gestational weeks
spend the third trimester outside the womb in an environment to
which the newborn is not adapted. Investigations into the
developmental trajectories, based on electronic health records
(EHRs)9 and high-throughput molecular profiling10, can aid in
identifying biomarkers for disease and diagnosis, where the
information provided may serve as a basis for personalized
medicine11. Analyzing the evolution of blood protein profiles can
provide valuable insights into the postnatal development of these
immature infants12,13. Knowledge about the postnatal proteome
evolution in relation to postmenstrual age (PMA) and postnatal
age (PNA), respectively, can shed light on the role of early
extrauterine development in health and disease. Thus, there is an
urgent need to understand the patterns and dynamics of blood
protein profiles during the early development of preterm infants.

The proximity extension assay (PEA) technology developed by
Olink, also referred to as “next generation blood profiling”, allows
for the analysis of blood levels of hundreds and even thousands of
proteins simultaneously in a small blood volume without sacrificing
accuracy or sensitivity12,14–16. Immaturity and excessive blood
sampling may increase the risk of anemia in preterm infants, and
treatment with blood transfusions is associated with neonatal
morbidities and impaired neurological development17–19. Thus, the
assay platform is ideal for comprehensive proteome analysis in
minute quantities of blood.

Longitudinal proteomic studies in preterm infants are scarce. A
recent pilot study on 14 infants born at GAs 22 to 27 weeks used
panels that targeted a large number of proteins based on the PEA
principle to investigate the serum protein profiles12. The study
showed dramatic changes in protein profiles unrelated to GA
from day one through the early weeks of life. The extremely
preterm infants had a distinct unified protein profile in serum on
the first day after birth. Lee et al. explored dynamic proteome
changes during the first week of life in 30 healthy term infants,
revealing that these changes followed a robust developmental
trajectory20. Furthermore, Olin et al. presented significant chan-
ges in protein expression by comparing cord blood from preterm
and term infants with peripheral blood at later ages21. In a small
cohort of term infants, age was the most prominent factor
influencing serum protein expression in the first three years of
life22. Nonetheless, the influence of prematurity on proteome
development during the first weeks of life remains unresolved.

In the present study, we use the PEA method to investigate
longitudinal serum protein profiles from birth to term-equivalent
age (postmenstrual week (PMW) 40) and relate the results to
GA, PMA, PNA, sex, and mode of delivery in a large cohort of
extremely preterm infants. Thus, our results fill a critical
knowledge gap on the evolution of the protein profiles in
extremely preterm infants from premature birth to term-
equivalent age. We identified a postnatal time-dependent ste-
reotypic development of blood proteins. A developmental pro-
teomics reference map for extremely preterm infants has been
established to facilitate future pediatric research. It pinpoints a
period where the degree of immaturity seems to significantly
impact the proteome, thus directing a window for potential
diagnostics and therapeutics.

Methods
Patients and nutritional management. The current study is
based on the multicenter, open-label, randomized controlled trial
MegaDonnaMega (Clinical Trial.gov identifier NCT03201588).
Details of the MegaDonnaMega-study are described elsewhere23.
In summary, infants born before 28 weeks of gestation (ultra-
sonography dating) and treated at the neonatal intensive care unit
(NICU) in Gothenburg, Lund, or Stockholm, Sweden, between
December 2016 and December 2019, were randomized to receive
the triglyceride oil supplement Formulaid® (DSM Nutritional
Products Inc) containing arachidonic acid and docosahexaenoic
acid or no extra supplement/standard care. Randomization was
stratified according to the center and three GA groups: less than
25 weeks, 25 to 26 weeks, or 27 weeks. Twins or triplets were
randomized to the same group. The lipid supplement was
administrated enterally with a daily dose starting within 72 h of
age and lasted until term-equivalent age. Mother’s own milk
(when available) or donor milk was the only enteral feed until a
postmenstrual age of 33 weeks. Thereafter, donor milk was
replaced with preterm formula. The enteral feeds were intro-
duced, if possible, from the first day of life. All infants received at
least some parenteral nutrition in the neonatal period. Details of
the nutritional strategy and definitions of perinatal morbidities
have been published previously23,24 Written informed consent
was obtained from the parents or guardians before inclusion.

The Mega Donna Mega study followed the Consolidated
Standards of Reporting Trials (CONSORT) reporting guideline25.
The regional ethical board of Gothenburg approved the Mega
Donna Mega-study, and the Swedish Ethical Review Authority
approved this extended study. The current study cohort included
all infants in Mega Donna Mega with available longitudinal blood
samples up to full-term age23. Standardized weight was calculated
based on growth charts by Fenton and Kim26.

Sample and medical data collection. Blood samples were taken
in coordination with clinical routine samples on postnatal days 3,
7, 14, 28, followed by PMW 30, 32, 36, and term-equivalent age
corresponding to 40 weeks PMA. At each sampling occasion,
0.6 ml blood was collected in a serum-separating tube with clot
activator. Samples were kept refrigerated for a minimum of
30 min and a maximum of 2 h before centrifugation at RT 10 min
1500 × g. The sera were collected into polypropylene tubes and
stored for up to one week at −20 °C before long-term storage at
−80 °C. The handling process can also be described with the
SPREC code SER–SST–B–B–N–A–S. All longitudinal samples
from one individual were allocated on the same plate, but ran-
domized within the plate, to minimize batch-effects when
studying within-individual protein expression patterns. Infants
were randomized between plates based on center. Clinical data
regarding birth, growth, nutrition and perinatal morbidities were
collected prospectively according to the study protocol.

Serum protein profiling. Serum samples were gently thawed on
ice, centrifuged at 4 °C 20 min 1500 × g, and 25 µl serum was
transferred to 96-well microtiter plates. Plates (17 in total) were
deep-frozen and sent on dry ice to Olink Bioscience (Uppsala,
Sweden) for analysis. Serum proteins were analyzed using a
multiplex proximity extension assay (PEA) technology (Olink
Bioscience) as previously described12,15. Briefly, each kit consists
of a microtiter plate for measuring 92 protein biomarkers in all
88 samples, and each well contained 96 pairs of DNA-labeled
antibody probes. Longitudinal samples from each individual were
allocated to the same plate to reduce batch-effects related to inter-
individual variability. To minimize inter- and intra-run variation,
the data were normalized using both an internal control
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(extension control) and an inter-plate control and then trans-
formed using a pre-determined correction factor. This study uses
six Olink panels including Cardiometabolic, Cardiovascular II,
Cardiovascular III, Development, Inflammation, and Metabolism,
resulting in 552 protein assays and 541 unique proteins. One
microliter infant serum was use for each panel. The pre-processed
data were provided in the arbitrary unit normalized protein
expression (NPX) on a log2 scale, where a high NPX represents
high protein concentration. Limit of detection (LOD) for each
protein was defined as three standard deviations above the
background. Protein panels from samples with more than 10%
below LOD values were removed from the analysis. A preterm
infant serum pool sample and 8 internal control samples were
included on each plate for bridging and quality control. Three
proteins with drastic fluctuations between visits were considered
to have a problematic batch effect and were removed. After
quality control, 538 unique proteins from 1335 samples
were kept.

Clustering analysis. For hierarchical clustering, the NPX values
of each protein were first standardized by scaling with a standard
deviation of 1 and centered at 0. The scaled values from all
1335 samples were used to create the Euclidean distance matrix
for dendrogram generation. Dendrograms showing gene expres-
sion in heatmaps have been clustered using the Ward2 algorithm,
an implementation of “Ward’s” minimum variance method
implemented as “Ward.D2” in R package pheatmap27. UMAP
analysis has been performed on NPX values of samples by using
the R packages umap with default parameters. The diffusion map
analysis was performed using the R package destiny28 and the
principal component analysis was performed using the prcomp
function in the basic R package stats.

Time-series expression analysis. Mixed-effect modeling was
performed using the lme4 package29, and Kenward-Roger
approximation30 was used to calculate P-values with sex, deliv-
ery mode, subject and GA at birth as confounding factors. P-
values were subsequently adjusted for multiple testing based on
false discovery rate and considered significant if less than 0.01. In
total, 451 differentially expressed proteins across nine visits were
identified. The average NPX of each protein per visit was used for
the hierarchical clustering analysis to create the dendrogram
based on Euclidean distance. Ward’s minimum variance method
implemented as “Ward.D2” in the hclust function in the R
package stats, where clusters are chosen at each stage such that
the increase in cluster variance is minimized after merging. As a
result, eight clusters were identified. For regression analysis, the
NPX values from each protein in the particular cluster were
standardized by scaling with a standard deviation of 1 centered at
0. Non-parametric local weighted regression (LOESS) was applied
to generate the regression curve. Gene Ontology term (Biological
Process) and BioPlanet pathway enrichment analyses for proteins
in different time-series clusters were conducted using EnrichR31

based on Fisher exact test.

Prediction of postnatal age (PNA). Generalized linear models
with an elastic-net penalty was performed using glmnet32 package
in R. Specifically, the alpha value was set to 0.5, and 100 lambda
values were tested. The “lambda.min” value, which is a measure
of shrinkage, was determined after conducting a tenfold cross-
validation analysis. Two-thirds (n= 934) of the samples were
used for training the model, and the remaining samples (n= 401)
were used as a validation.

Statistical analysis and visualization. In instances when infant
postnatal age 4 weeks (PNW 4) occurred before PMW30, i.e., in
infants born <26 weeks’ GA, the PNW4 sample data was used for
visualization and clustering. In all other analyses, the continuous
chronological age (postnatal age or postmenstrual age) was used.
Data analysis and visualization were performed using the R
project33 with the tidyverse suite of R packages34 and the ggplot2
R package35. Variance analysis of the protein levels was con-
ducted using multiple linear regression model with all protein
significantly associated PNA, GA, sex, and mode of delivery as
variables in the model. The fraction of explained variability was
measured using Eta-squared (η2), representing the proportion of
the total sum of square explained by the factor, and was deter-
mined using analysis of variance (ANOVA) method with the
build-in R function anova(). Differential expression analysis was
conducted using ANOVA. The false discovery rate (FDR) was
calculated using the p.adjust() function in R, which uses the
Benjamini-Hochberg method. Proteins with FDRs less than 0.01
were considered differentially expressed proteins. Radar chart was
generated using a R package fsmb36.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
The study cohort. A total of 182 extremely preterm infants born
before 28 weeks of gestation from the Mega Donna Mega study
were selected based on the availability of longitudinal serum
samples (Fig. 1a)23. Altogether 105 boys and 77 girls were
included. Serum samples were collected repeatedly at nine plan-
ned time points (visits) from birth to term-equivalent age. Forty
(22%) infants had nine complete samples, and 165 (91%) infants
had at least six samples. Among the 182 infants included in the
study, 177 (97.3%) survived to 40 weeks PMA. The enrolled
infants were classified into three groups depending on GA at
birth: group 1, born at less than 25+ 0 (weeks+ days) (N= 61);
group 2, born at 25+ 0 to 26+ 6 (weeks+ days) (N= 81); and
group 3, born at 27+ 0 to 27+ 6 (weeks+ days) of gestation
(N= 40) (Fig. 1b). The birth weights varied from 425 to 1345
grams (Supplementary Fig. 1a). Almost all (98.4%) of the infants
had a birthweight appropriate for gestational age with standard
deviations (SDS) >−2 (Supplementary Fig. 1b)26. Vaginal deliv-
ery was more common among infants born at lower gestational
age (Mann–Whitney U-test, P= 0.017). We observed no sig-
nificant differences in sex distribution or postnatal growth
between GA groups (Fig. 1b and Supplementary Fig. 1b–d). The
clinical characteristics of the three GA groups were summarized
in Supplementary Data 1.

Proteome profiling demonstrated dynamic changes in blood
proteins after birth. We analyzed 538 unique protein targets
measured by six Olink PEA panels, including cardiometabolic,
cardiovascular II and III, development, inflammation, and
metabolism, for all 1335 collected blood serum samples (Sup-
plementary Data 2). Protein levels measured as NPX were
determined for each target and sample. An example of the protein
expression determined by the Olink PEA technique can be seen in
Fig. 2a, where the levels of fibroblast growth factor 21 (FGF-21) is
shown from birth to full-term age (PMW 40). FGF-21 is a protein
involved in metabolism and growth by regulating insulin sensi-
tivity and glucose uptake37. We observed higher levels with
increasing postnatal age of the infant (Fig. 2a), which is consistent
with our previous report that FGF-21 serum levels were elevated
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after birth12. No differences in FGF-21 expression between sexes
could be seen.

To explore variance of protein levels, inter-individual and
intra-individual variations were calculated for each protein across
all 182 infants and nine visits (Fig. 2b and Supplementary Data 3).
Most of the proteins were observed with considerable variability
in both, and FGF-21 was the most variable protein in the analysis.
To get a comprehensive overview of the postnatal changes in the
blood proteins, we analyzed the time-course expression patterns
of the variable blood proteins from birth to 40 weeks PMA. Over
time, differentially expressed proteins (451 out of 538) were
identified using linear mixed-effect modeling with Benjamini-
Hochberg adjusted P-value < 0.01, including 196 up-regulated
proteins and 255 down-regulated proteins across the study visits
(Fig. 2c). The longitudinal changes in protein expressions for each
differentially expressed protein can be seen in the circular
heatmap in Fig. 2d. Unsupervised hierarchical clustering analysis
was further performed on the longitudinal expression profiles of
the proteins based on Pearson correlation. A total of eight
separate clusters, ranging in size from 34 to 84 proteins, were
identified with variable time-course patterns (Figs. 2d, e and

Supplementary Data 4). As seen in Fig. 2e and Supplementary
Fig. 2a, b, five clusters display overall declining protein levels and
three increasing trends. The proteins most strongly changed over
time included leptin (LEP), LDL-receptor, and several placenta
elevated proteins, including Fc fragment of IgG receptor IIa
(FCGR2A) and CGA (Supplementary Fig. 2c). The effect of GA at
birth on the clustering trends was further explored. As seen in
Supplementary Figs. 3a, b, protein levels in the three GA groups
were almost the same at the birth, indicating similar expression
patterns of proteins in different GA groups at birth.

Functional analysis of the protein clusters. The functions of the
proteins in each of the eight identified clusters were explored.
Tissue specificity of the proteins in the clusters was analyzed
based on the Human Protein Atlas (HPA) classification38,39. This
classification, elsewhere described, considers the level of gene
expression in each tissue to determine the degree of specificity. Of
the 451 proteins in the eight clusters, 101 proteins (22%), were
annotated as tissue-enriched proteins according to the HPA
classification (Fig. 3a and Supplementary Data 5). The analysis
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showed that most of the liver, lymphoid tissue, and salivary gland
enriched proteins were increased after birth, indicating the
development of hepatic functions and immune and metabolic
shifts during the neonatal period. Two examples include car-
boxylesterase 1 (CES1), a primary liver enzyme that functions in
liver drug clearance40, and Fc fragment of IgE receptor II
(FCER2), which has essential roles in B-cell growth and

differentiation, as well as the regulation of IgE production
(Fig. 3b)41. Many proteins that decreased after preterm birth were
associated with the placenta, pancreas, and bone marrow, con-
sistent with our previous findings (Fig. 3a)12. For example, Car-
boxypeptidase A1 (CPA1), a pancreas-enriched protein, is
produced in the pancreas and preferentially cleaves C-terminal
branched-chain and aromatic amino acids from dietary protein42.
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have been applied to the P-values using the Benjamini and Hochberg method. d Heatmap presenting the dynamic protein expression levels calculated as Z-
scores of 451 differentially expressed proteins from birth to full-term, clustered based on the correlation between their expression profiles. e Eight clusters
represent different trends in protein variation across the nine visits. The colored bold line represents the regression line based on all proteins and the total
number of proteins in each cluster is also indicated in the plot.
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Fig. 3 Tissue and immune cell specificity in relation to the protein clusters. a Sankey diagram showing the numbers of proteins classified as tissue
enriched in a specific tissue (n= 109) for each cluster. b Four examples of longitudinal expression patterns of tissue-enriched proteins for all 182 preterm
infants with each individual connected with a line. The y-axis represents the NPX. The x-axis represents the blood sampling time points. The colors are
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Hepatocyte growth factor (HGF) is an acidic protein with a
strong mitogenic effect on hepatocytes. Still, it is also enriched in
the placenta with strong expression in the villous syncytium,
extravillous trophoblast, and amnionic epithelium (Fig. 3b)43,44.

To explore the postnatal development of the immune system in
preterm infants, we investigated the immune cell specificity of the
proteins with longitudinal dynamic changes. The cellular
specificity is determined based on the gene expression levels in
the 18 different immune cell types from the HPA (Fig. 3c, d)39.
Here, 43 (9.5%) proteins were annotated as immune cell type
enriched according to the HPA classification, which were at least
four-fold higher expressed in one cell type than all other cell types
(Supplementary Data 6). A large fraction of the proteins in
clusters 6, 7, and 8 with increasing levels after birth are enriched
in plasmacytoid dendritic cells. In contrast, most proteins with
decreasing trends (clusters 1, 2, and 5) are enriched in basophils
or neutrophils. The proteins in cluster 3 with an increasing trend
followed by decreased protein levels have a mixed immune cell
origin, including proteins enriched in T-cells, eosinophils,
neutrophils, and basophils. This suggests that the expression
activity of the dendritic cells increases after birth in these preterm
infants, while the expression of proteins from basophils and
neutrophils decreases.

In addition, functional enrichment analyses were performed to
explore the modulated pathways for each identified cluster
(Supplementary Fig. 4 and Supplementary Data 7a, b). As
expected, multiple immune-related pathways were activated after
preterm birth, including the T cell activation, inflammatory
response pathway, interleukin-17 signaling pathway, and hema-
topoiesis pathway. Interestingly, the receptor for the advanced
glycation end products (RAGE) pathway, which plays a vital role
in leukocyte recruitment and have relatively high blood levels in
extremely premature infants45, was deactivated during postnatal
development.

Variance analysis of blood protein profiling after birth. To
assess how clinical aspects affect the blood protein expression
levels, we established a linear regression model for each protein
target and included four factors: PNA (days), GA at birth (days),
sex, and mode of delivery (see Fig. 4a, b and Supplementary
Data 8). The model revealed that the protein expression varia-
tions were primarily associated with PNA. This indicates that
regarding protein variation, postnatal time is dominant compared
to gestational age at birth. Nonetheless, GA at birth is the second
most explanatory factor. Sex and delivery mode impacted a few
specific proteins (Supplementary Figs. 5 and 6); however, overall
substantially less influential compared to postnatal age. The
contribution of the predictor variables was summarized in Sup-
plementary Data 8. The effects of the maternal comorbidity
(preeclampsia), the fatty acid supplementation and the percentage
of mother’s breast milk on protein expressions were also observed
but less prominent when compared to those of PNA and GA
(Supplementary Fig. 7). Moreover, to further expand the eva-
luation of impact of PNA on blood proteome expression, we
investigate the potential of blood proteome as a predictor for
PNA. We employed generalized linear models with an elastic-net
penalty and identified a ‘blood proteomic clock’ comprising 151
proteins (Supplementary Data 9). The predictive PNA had a high
level of consistency with chronological age, as demonstrated by a
Pearson correlation coefficient of 0.98, and 95% of all samples
were within ±1.96 SD range (13 days) according to a Bland-
Altman plot (Fig. 4c and Supplementary Fig. 8). This suggests
that the blood proteins are reliable measurements for estimating
PNA of preterm infants. Interestingly, it was observed that among
the infant samples that were of lower predicted PNA than actual

PNA, the weight gain tended to be lower than normal (Supple-
mentary Fig. 9).

The proteins with the highest effect within each analyzed factor
have been highlighted in Fig. 4d–g. The influence of PNA was
most prominent in the delta-like non-canonical Notch ligand 1
(DLK-1), with 75.1% of the serum protein level variance
explained by PNA (Fig. 4d). DLK-1, also known as preadipocyte
factor 1 (PREF1), is a marker of preadipocytes and inhibits
adipogenesis46. It has been proposed that its function is to shift
metabolism from lipid storage to peripheral lipid oxidation and
act as a mediator of metabolic adaptation in early life47. DLK-1
levels were constant up to 30 weeks PMA, whereas after they
decreased considerably, as shown in Fig. 4d.

As mentioned above, PNA seems more important than GA at birth
in determining protein variance; however, for some proteins, variance
is more associated with the GA at birth (seen to the right in Fig. 4a).
One example was the tissue factor pathway inhibitor (TFPI), the
primary inhibitor of the extrinsic coagulation pathway48. As illustrated
in Fig. 4e, apparent differences in protein expression for TFP1 were
observed between the three GA groups. The infants born at younger
gestational ages had a persisting higher expression until full-term,
when the expression levels converged. Furthermore, we show that the
glycoprotein hormones alpha chain (CGA) levels decreased rapidly
during the first days after birth and with a more significant decline in
males, resulting in longitudinally lower levels in the male infants
(Fig. 4f). CGA is one of the subunits that form the hormones human
chorionic gonadotropin (hCG), luteinizing hormone (LH), follicle-
stimulating hormone (FSH), and thyroid-stimulating hormone
(TSH)49. Several proteins related to the mode of delivery were
identified (Fig. 4a). The strongest association was seen for surfactant
protein D (PSP-D, also called SP-D). An elevated level of PSP-D was
observed in infants delivered by cesarean section (Fig. 4g).

Distinct and coherent evolution of blood protein profiles over
time. To investigate the global molecular dynamics of preterm
infants, we performed several dimensional reduction analyses,
including Uniform Manifold Approximation and Projection
(UMAP), based on the longitudinal protein expression profiles of
all 182 infants (Fig. 5a and Supplementary Fig. 10a, b). Visua-
lizing all 1335 samples the UMAP results revealed a distinct and
stereotypic evolution of blood protein profiles from birth to term-
equivalent age. The majority of the infants’ proteome followed a
predestined pathway, regardless of sex and mode of delivery
(Supplementary Fig. 11a, b). Correspondingly, the results of
principal component analysis (PCA) (Supplementary Fig. 12a)
and the related diffusion map (Supplementary Fig. 12b) both
demonstrated similar results with the samples following a clear
pattern based on time since birth.

Interestingly, the protein profile trajectory was most coherent
right at birth and at full-term (Fig. 5b). Moreover, the most
pronounced diversity in protein expression was observed at
1-week postnatal age. This suggests that the infants start life with
similar protein profiles, followed by an interval where internal or
external factors might be more influential before most infants
converge their protein expressions again.

To examine the observed protein evolution in relation to
neonatal immaturity, the UMAP result was investigated based on
GA at birth as a proxy for fetal maturation. As seen in Fig. 5c, GA
at delivery seemed to be of minor importance for protein
expression at birth, as no distinction between GA groups can be
seen on the first day of life. However, the degree of immaturity
plays an increasing part in the differentiation, with a peak around
1 to 2 weeks after birth where the samples are clearly separated
depending on GA at birth. Further on, the profiles converge once
again as the infants grow older. From PMA 30 weeks, and
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especially 32 and persistently to 40 weeks PMA, no separation can
be seen between GA groups. In addition, comparing the growth
trajectories of infants in three GA groups, it was observed that
those with smaller GA tended to have a slower rate of growth
(Fig. 5d).

Gestational effects on blood protein profiling. The importance
of GA on protein expression was additionally illustrated in
Fig. 6a, where the numbers of proteins affected by the factors
GA, sex, and delivery mode are presented per sampling time
point. Consistent with Fig. 5c, GA at birth is most influential at
1-week of PNA, with a drastic decline at later postnatal ages.

To further explore how the GA group differs, the differentially
expressed proteins (DEPs) between GA groups on PNA day 7
were analyzed by ANOVA (Supplementary Data 10) and
visualized in a volcano plot (Fig. 6b). In total, 86 DEPs were
identified, with some examples of proteins with decreased or
increased levels in the infants with more advanced GA
(Fig. 6c). The top 30 most significant DEPs were further ana-
lyzed in the radar plots (Fig. 6d and Supplementary Fig. 13).
This analysis revealed the same pattern as seen in Figs. 5b and
6a. The three GA groups have similar protein profiles at birth,
diverge into clearly varying trends at 1-week PNA but converge
at full-term.
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Discussion
We report on a longitudinal study of postnatal blood protein
profile development in extremely preterm infants in which “next
generation blood proteome profiling” has been used. The fact that
only a minimal blood volume is needed, without sacrificing
accuracy or sensitivity, makes the assay platform ideal for analysis

of such individuals. The combination of a large study cohort with
an in-depth multiplex, high-throughput protein analysis platform,
provides high-resolution insight into the complex physiology of
preterm postnatal development. The study demonstrates a
dynamic, stereotypic evolution of serum protein profiles from
birth to full-term age. The pattern is consistent for the entire
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cohort, regardless of GA at birth, clinical differences, sex or
growth. Protein variations were highly associated with postnatal
age rather than any other factor, demonstrating the immense
physiological impact of intrauterine-extrauterine transition. In
addition, we show that the first weeks after birth is a period where
protein expression differs most between individuals and the degree
of immaturity seems to significantly impact the proteome, thus
directing a window for potential diagnostics and therapeutics.

The fact that PNA is a more critical determinant than PMA for
the development of the protein profiles might seem surprising, since
in most neonatal clinical settings, the medical decisions, care and
treatment are based on PMA rather than the PNA. Our findings
thus suggest that it might be relevant to reevaluate this mindset and
to include the aspect of PNA in the assessment of each patient. Our
study suggests that the impact of GA at birth, a proxy used today
for the degree of immaturity, is most prominent around 1 week
after birth, but the effect of GA is heavily reduced after 30 weeks
postmenstrual age. These observations are interesting since the
infants born at lower GAs are more likely to be longer on parenteral
nutrition, have a higher need for ventilator support and oxygen
treatment, receive transfusions, and be subject to severe infections
like sepsis34. One might speculate that the altered protein expres-
sion at 1 week of PNA may play a causal role, where the more
immature infants may struggle to activate specific pathways for
homeostasis, which leads to dysregulation and pathology. The
reverse may also be true; several interventions such as transfusion
with adult blood products, broad-spectrum antibiotics, and par-
enteral nutrition might influence the protein expression.

An analysis of the proteins with significantly higher expression
in the most immature infants show that many of these proteins are
involved in skin development, pulmonary maturation, myelini-
zation, metabolism, and infection/inflammation. In contrast, the
more mature group of infants have higher expression of proteins
involved in osteogenesis, immune system maturation, and
angiogenesis. This suggests that the more immature infants
express proteins associated with reactive processes, such as
inflammation, while the more mature infants express higher levels
of proteins related to the development of the immune system.

A clear pattern of blood protein changes during the weeks after
birth is evident in these preterm infants. Here, we have classified
the most variable proteins into eight clusters, each showing a
particular blood protein level trend during the weeks and months
after birth, with five groups of proteins (clusters) displaying overall
declining protein levels and three increasing trends after birth.
Interestingly, many proteins with increased levels after birth have
their origin in the liver, thus indicating the development of hepatic
functions during the neonatal period. Similarly, the analysis of the
proteins with origin from immune cells suggests that proteins
from the dendritic cells increase after birth, while the expression of
proteins from basophils and neutrophils decrease.

Overall, the current study has not found any strong correlation
between protein levels in blood with sex or delivery mode. In most
analyses, the sex had no or negligible effect on protein profiles.
Nonetheless, a handful of proteins were subject to sex-related

differences, exemplified with the lower level of protein CGA in
male infants. Similarly, delivery mode was found to influence a
limited number of proteins, of which the protein PSP-D showed
the highest correlation between blood protein levels and delivery
mode. Thus, cesarean-delivered infants had elevated levels of PSP-
D as compared to vaginally delivered infants, which is interesting
since PSP-D, a lung-specific protein that participates in the innate
immune defense of the lungs, and this protein is considered a
marker of lung injury. In this context, it is noteworthy that several
earlier studies have demonstrated an increased risk for pulmonary
disease after a cesarean section37. The data presented here thus
supports earlier reports of associations between this protein and
severe pediatric acute respiratory distress syndrome (PARDS) and
bronchopulmonary dysplasia (BPD)35,36. Elevated levels of PSP-D
have been described as indicating more severe PARDS, whereas
low levels seem to predict worse pulmonary outcomes in BPD.
Our findings support the suggestion that the administration of
recombinant human PSP-D could be a promising therapy to
prevent lung injury and BPD as suggested earlier36.

This study has limitations. Although we examined the expression
of more than 500 unique proteins, this only represents a fraction of
the complete human blood proteome. Future studies should aim for
more comprehensive protein coverage, which is now feasible even
in minute amounts of blood through emerging platforms such as
Olink Explore and SomeScan. In addition, 96% of the mothers
received at least one dose of antenatal steroids and 79% received
two doses. Magnesium sulfate was not introduced in clinical
practice in Sweden at the time of the study. Hence, unfortunately,
we cannot elucidate the impact of these interventions on the protein
profile. Furthermore, additional information regarding disease
etiology and development may be gained by analyzing the proteome
in relation to maternal health status and complementary infant
biochemical and genetic parameters, e.g., through metabolomics,
transcriptomics, and microbiome analysis. We are now in the
process of collecting such data, which will shed further light on
preterm infants’ adaptation to extrauterine life. Such analyses may
also provide information on physiological processes occurring in
tissues that are not necessarily captured within the serum proteome.
Another limitation of our study is the lack of reference proteome
data from full-term infants for comparison.

In conclusion, we report on a longitudinal study based on
extremely preterm infants showing a consistent and stereotypic
evolution of the blood protein profiles during the weeks and months
after birth, mostly independent of GA, sex and mode of delivery.
This comprehensive analysis of blood proteins contributes to filling
the knowledge gap regarding the expression of proteins in extremely
preterm infants in their transition from immaturity to term-
equivalent age with clinical implications for guiding the diagnostic
platform to improve the treatment regime of these infants.

Data availability
All summary statistics and association data are available in the Supplementary
Data 1–10. Source data for Figs. 1, 2a, and 5 are available in Supplementary Data 11.

Fig. 6 Gestational age (GA) impact on blood protein expressions after preterm birth. a Bar-plot representing the numbers of differentially expressed
proteins related to GA, sex, and delivery mode. b Volcano plot showing the identified differentially expressed proteins (n= 86) across different GA groups
on postnatal day 7. The x-axis represents log2 fold-change (FC) in GA group 3 compared to GA group 1. The y-axis represents −log10 adjusted P-values.
Differentially expressed proteins were defined as proteins with adjusted P-values < 0.01 (three-way balanced ANOVA for GA with sex and delivery mode
as covariates). Multiple test corrections have been applied to the P-values using the Benjamini and Hochberg method. c Four examples of up- and down-
regulated proteins across three GA groups, error bars represent mean ± SD, color-coded by GA groups. GA group 1 (red), born at less than 25+ 0
(weeks+ days) (N= 61); GA group 2 (purple), born at 25+ 0 to 26+ 6 (weeks+ days) (N= 81); and GA group 3 (green), born at 27+ 0 to 27+ 6
(weeks+ days) of gestation (N= 40). d Radar plots showing median levels of top 30 differentially expressed proteins across three GA groups at PND1,
PND7, PND14, and PMW40.
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The proteomic data of the preterm infant cohort is available in the BioStudies database
(http://www.ebi.ac.uk/biostudies) under accession number S-BSST843. Guidance on the
analysis methods can be provided upon request by contacting the corresponding author.
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