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Spatial attention‑based residual 
network for human burn 
identification and classification
D. P. Yadav 1, Turki Aljrees 2, Deepak Kumar 3, Ankit Kumar 1*, Kamred Udham Singh 4 & 
Teekam Singh 5

Diagnosing burns in humans has become critical, as early identification can save lives. The manual 
process of burn diagnosis is time-consuming and complex, even for experienced doctors. Machine 
learning (ML) and deep convolutional neural network (CNN) models have emerged as the standard for 
medical image diagnosis. The ML-based approach typically requires handcrafted features for training, 
which may result in suboptimal performance. Conversely, DL-based methods automatically extract 
features, but designing a robust model is challenging. Additionally, shallow DL methods lack long-
range feature dependency, decreasing efficiency in various applications. We implemented several deep 
CNN models, ResNeXt, VGG16, and AlexNet, for human burn diagnosis. The results obtained from 
these models were found to be less reliable since shallow deep CNN models need improved attention 
modules to preserve the feature dependencies. Therefore, in the proposed study, the feature map is 
divided into several categories, and the channel dependencies between any two channel mappings 
within a given class are highlighted. A spatial attention map is built by considering the links between 
features and their locations. Our attention-based model BuRnGANeXt50 kernel and convolutional 
layers are also optimized for human burn diagnosis. The earlier study classified the burn based on 
depth of graft and non-graft. We first classified the burn based on the degree. Subsequently, it is 
classified into graft and non-graft. Furthermore, the proposed model performance is evaluated on 
Burns_BIP_US_database. The sensitivity of the BuRnGANeXt50 is 97.22% and 99.14%, respectively, 
for classifying burns based on degree and depth. This model may be used for quick screening of burn 
patients and can be executed in the cloud or on a local machine. The code of the proposed method can 
be accessed at https://​github.​com/​dhiru​jis02/​Journ​al.​git for the sake of reproducibility.

Burn is a life-threatening condition that needs early treatment. It is classified into various categories based 
on its severity and the affected tissues. The most prevalent method for categorization of burns is the "degree" 
mechanism, which divides burns into three primary categories: first-degree (Superficial dermal), second-degree 
(Deep dermal), and third-degree (Full thickness) burns. Superficial burn only affects the top layer of the skin 
(epidermis). The main symptoms include redness, pain, and minor swelling. Healing usually occurs within a 
few days without scarring1. Deep dermal burn affects the epidermis and part of the dermis (the second layer of 
skin). Symptoms include redness, blistering, severe pain, and swelling. Healing time can vary, and scarring may 
occur depending on the depth and extent of the burn. Full-thickness burn extends through the entire epidermis 
and dermis, reaching into the subcutaneous tissue. Symptoms may include a leathery or charred appearance, 
insensitivity to pain (due to nerve damage), and white or dark brown coloration. Healing is slow and may require 
skin grafting, and scarring is common. For human burn treatment, first aid can’t be administered to a burn victim 
before properly diagnosing the injury2. The deeper the burn, the more severe the injury. A dermatologist assesses 
burn severity before grafting is performed. Grafting involves replacing the damaged skin with healthy tissue from 
an unburned area. After 14–21 days of therapy, a superficial (first-degree) burn will recover. In Table 1, we see 
how a doctor determines the severity of burns based on the color of the affected areas.

The manual burn diagnosis process requires expert involvement, making the process time-consuming and 
expensive. Dermatological experts employ fluorescence fluorometry, fluorescence, and ultrasound imaging to 
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predict burn depth, achieving diagnostic accuracy between 50 and 80%3. Deep-dermal burns affect the second 
skin layer, while full-thickness burns penetrate the third layer and often involve damaged tissues, muscles, and 
scarring, significantly impacting a patient’s life. Effective treatment for burn scars is essential, and doctors utilize 
anti-scarring techniques4. The severity of burns can also have long-term negative consequences for patients5. 
Past studies have employed machine learning methods for burn diagnosis, which typically involve preprocessing 
burnt images to downsize and reduce noise. Handcrafted texture and shape features are manually extracted for 
training and classifying burn types, but this approach requires a small dataset and specialized expertise, leading 
to potential errors that reduce model performance.

In contrast, deep learning models can automatically learn features through their layers, demonstrating prom-
ising capabilities for medical image recognition in recent years6. However, the deep CNN model performance 
depends on the dataset size and model architecture7. Previous research utilizing deep CNN techniques has shown 
improved performance8–13. Yet, some deep learning models with few layers and limited training datasets have led 
to suboptimal performance for burn diagnosis. Models like ResNeXt, AlexNet, and VGG16 were computationally 
expensive and did not achieve remarkable accuracy in burn diagnosis. For burn degree categorization, ResNeXt, 
AlexNet, and VGG16 achieved classification accuracies of 84.31%, 70.57%, and 76.32%, respectively, similar 
to the manual approach. We propose a spatial attention-based model called BuRnGANeXt50 to address these 
challenges. This model utilizes a feature map divided into categories, highlights channel dependencies within 
each class, and builds a spatial attention map to improve classification accuracy. Efficiently capturing informa-
tion regarding the depth of the burn region is crucial for severity assessment and surgical recommendations for 
grafting. The proposed model demonstrates excellent performance in quickly screening different types of burns 
while also being computationally efficient.

The significant contribution of the manuscript is as follows.

(1)	 The proposed BuRnGANeXt50 is a residual network that takes less computation time than ResNeXt. Since 
ReNext has 23 × 106 and our model has 5 × 106 neurons

(2)	 Two-channel maps are separated into categories, and the channel dependencies between them are high-
lighted. Meanwhile, a spatial attention map is built from the spatial relationships between features

(3)	 The training and validation loss on BIP_US Database is significantly less, which confirms that the proposed 
model is sensitive for burn diagnosis

The rest of the paper is organized as follows:
“Literature review” Section describes a study involving a detailed review of human burns. At the same time, 

“Proposed method” section describes the architecture of the BuRnGANeXt50 model. “Results” section describes 
the experimental procedures for the diagnosis of urn based on degree and depth. Finally, in “Discussion” section, 
the comparative study of different models and BuRnGANXt50 is described in detail.

Literature review
To segment renal tissue and identify immunological (CD3 +) inflammatory cells, Hermsen et al.14 developed 
two CNNs models. Human evaluation of the Banff lesion types was compared with automated measurement of 
glomeruli, interstitial fibrosis, and (total) inflammation, and strong correlations were found. Long-term changes 
in estimated glomerular filtration rate (eGFR) are inversely related to inflammation inside scarred regions, 
according to automated and visual examination of a small cohort14. The machine learning technique used by 
Abubakar et al.15–17 classifies the human burn using the African dataset. Burn healing times may be used to pre-
dict burn depth. Specifically, they used One-versus-One SVM to examine the efficacy of leveraging deep features 
obtained from a pretrained model to address a multiclass problem. Relevant discriminating characteristics of 
the images were obtained using VGG16 and pretrained ResNet50. With VGG16 features (VggFeat16), the pro-
posed method achieved a prediction accuracy of 85.67%, whereas The ResNet50 model achieved a maximum 
classification accuracy of 95.43%15.

Furthermore, Suha et al.18 proposed a Deep Convolutional Neural Network (DCNN)-based model with 
transfer learning and fine-tune for assessing skin burn degree from real-time burn photos of patients. The design 
utilizes several convolutional layers and hyperparameter tuning for feature extraction and image classification 
into three distinct classes. The traditional approach, which used digital image processing and regular machine 
learning classifiers, was also tested and evaluated for this multiclass classification problem18. Abubakar et al.15–17 
observed that 90.45% of the time, it was possible to identify the different types of burns correctly. This study lays 
the groundwork for future investigations, notably in healthcare, to focus on how racial feature representations 
may be integrated with training data to produce effective and widely used diagnostic tools16.

The convolutional neural network-based approach for body part burn image identification Chauhan et al. 
(2020) has introduced a deep CNN model that can be used to develop more effective computer-assisted burn 

Table 1.   The classification of human burn skin according to its color.

Burn Colors Capillary refill Scarring Blisters Healing

Full thickness White/Brown/deep red Absent Yes No Grafting required

Superficial dermal Red/Pale pink Brisk 1–2 s None/Slight color mismatch Small Within 14 days

Deep dermal Blotchy red/white Sluggish > 2 s/absent Yes ± Grafting required
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diagnostic tools by combining non-burn images with the body part-specific burn severity rating model. The burn 
image body part classification (BI-BPC) and Body Part-specific Burn Severity Assessment Model utilized deep 
convolutional neural networks for evaluating the two labelled burn image datasets (BPBSAM). Using BI-BPC 
and ResNet50 for feature extraction in severity evaluation shows maximum efficiency19. Pabitha et al.20 presented 
a hybrid model combining DenseMask RCNNs with transfer learning to classify skin burns accurately. They 
engage in dense pose estimation20 to split the burn zone, classify it into varying degrees, and compute the burned 
depth according to the severity of the lesion.

Khan et al.21 collected burn images from people of diverse ages and ethnicities. It was nearly impossible to 
collect images from healthcare facilities due to ethical concerns. Using image mining and DCNN classifica-
tion, a method is described for segmenting damaged skin and calculating burn depth. A hybrid segmentation 
method eliminates the background of a picture of burned flesh. The burn depths were classified using a DCNN 
with an accuracy of 79.4%21. Wu et al.22 developed a convolution neural network (CNN) method for burn image 
recognition. The experimental results in this work show that the CNN based model can effectively classify and 
detect burn areas22.

Recent research by Khan et al.21 discriminated between mild and severe burn symptoms using preprocess-
ing and image-down sampling methods. Otsu’s technique is used to remove the scorched area from the image. 
Their method categorizes burns as first, second, or third-degree. The performance of the model can be better 
using more complex CNN models and bigger data sets21. Recently, Rostami et al.23 developed a deep learning 
model for diagnosing human burns. Their method employs a deep CNN model for feature extraction, whereas 
SVM is employed for classification. The fivefold cross-validation method achieves 87.7% accuracy in multiclass 
classification, whereas the binary class achieves 94.28% accuracy23. Some of the recent method used for burn 
diagnosis using ML and DL has been shown in Table 2.

Proposed method
Accurate diagnosis of human burns requires a sensitive model. ML and DL are commonly employed in medical 
imaging for disease diagnosis. ResNeXt, AlexNet, and VGG16 are state-of-the-art deep-learning models fre-
quently utilized for medical image diagnosis. In this study, we evaluated and compared the performance of these 
models for diagnosing burn images. However, these models showed limited effectiveness in accurate diagnosis 
of burn degree and distinguishing grafts from non-grafts.

ResNeXt, a deep residual model, consists of 50 layers, while AlexNet and VGG16 are sequential models with 
eight and 16 layers, respectively. These layers extract features from the burned images during the model’s train-
ing process. Unfortunately, distinguishing between deep dermal and full-thickness burns can be challenging, as 
they share similar white, dark red, and brown colors. Consequently, highly delicate and stringent methods are 
required for accurate differentiation. AlexNet and VGG16, being sequential models, mainly extract low-level 
features, whereas ResNeXt excels in extracting high-dimensional features. A limitation is that these models can 
only learn positive weight features due to the ReLu activation function. This constraint may hinder their ability to 
precisely identify critical burn characteristics. The DL models, AlexNet, ResNeXt, VGG16, and InceptionV3 are 
widely used for medical image diagnosis, however, these models encounter challenges in accurately categorizing 
burn degrees and differentiating grafts from non-grafts. Finding effective ways to handle these challenges and 
improve feature extraction could lead to more sensitive and reliable burn diagnosis models.

The ResNeXt model33 influenced the BuRnGANeXt50 model. To construct a BuRnGANeXt50 model, the 
original ResNeXt model’s topology is modified. Moreover, the original ResNeXt was created to classify images 
into several categories with high computation costs. In this study, the method performs a multiclass and binary 
class classification task. Multiclass classification is used to assess burn severity based on burn depth. After that, 
based on depth, burns may be broken down into two distinct types: graft and non-graft. Reducing the first layer 
filter size from 7 × 7 to 5 × 5 is the first change to the original ResNext model’s design because a larger filter size 
resulted in lower pixel intensity in the burnt region. This has led to a rise in the frequency of spurious negative 
results for both grafts and non-grafts. Furthermore, the convolution sizes of Conv1, Conv2, Conv3, Conv4, and 
Conv5 are also changed to reduce the computation cost while maintaining cardinality. Furthermore, we applied 
Leaky ReLu instead of the ReLU activation for faster model convergence. Table 2 also shows that conv2, conv3, 

Table 2.   Summary of the recent work using ML and DL.

Authors Method Dataset Size Accuracy

Chang et al.48 ResNet101 4991 images 98.84%

Boissin et al.24 CNNs 1105 images 87.2%

Anisuzzaman et al.25 YOLO V3 1010 images 93.9%

Khani et al.26 SVM 40 images 94.7%

Anisuzzaman et al.27 WIC 1088 images 97.12%

Lee et al.28 BurnNet 586 images 99%

Kumar et al.29 DeepLabV3 + SE 1841 images 96.3%

Santos et al.30 V19V16ResDenIn 8250 images 95.04%

Eldem et al.31 AlexNet 2090 images 95.48%

Ahsan et al.32 VGG16 1459 images 98.48%
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and conv4 are shrinking in size. After implementing all modifications, neurons decreased from 23 × 106 to 5 × 106, 
as shown in Table 3. The detailed architecture of the proposed model is shown in Fig. 1.

This model has several essential building blocks, including convolution, residual, ReLU, activation, softmax, 
and flattened layer. The results of groups’ convolution of neurons inside the same kernel map are summed 
together by pooling layers, which reduce the input dimensionality and enhance the model performance. The 
pooling units in the proposed model constitute a grid, with each pixel representing a single voting location, and 
the value is selected to gain overlap while reducing overfitting. Figure 2 describes the structure of the model’s 
convolution layer. Polling units form a grid, each pixel representing a single voting place being centered z × z . 
In the provided model, we employ the standard CNN with parameters set to S = z , but we add a charge of S < z 
to increase overlap and decrease overfitting34. The proposed architecture was developed to handle the unique 
issues of burn diagnosis, emphasizing decreasing overfitting and enhancing model accuracy.

The inner dot product is an essential part that neurons perform for the foundation of an artificial neural net-
work’s convolutional and fully connected layers. The inner dot product may compute the aggregate transform, 
as illustrated in Eq. (1).

Table 3.   BuRnGANeXt50 model versus original topology.

Stage ResNeXt-50 BuRnGANeXt50

Conv1 7 × 7, 64, number of strides 2 5 × 5, 256, Number of strides 2

Conv2

3 × 3 max pool, stride 2 3 × 3 max pool, stride 2

1 × 1, 128

C = 32 X3

1 × 1, 32

C = 32 X33 × 3, 128 3 × 3, 32

1 × 1, 256 1 × 1, 128

Conv3

1 × 1, 256

C = 32 X4

1 × 1, 64

C = 32 X43 × 3, 256 3 × 3, 64

1 × 1, 512 1 × 1, 256

Conv4

1 × 1, 512

C = 32 X6

1 × 1, 256

C = 32 X63 × 3, 512 3 × 3, 256

1 × 1, 1024 1 × 1, 512

Conv5

1 × 1, 1024

C = 32 X3

1 × 1, 512

C = 32 X33 × 3, 1024 3 × 3, 512

1 × 1, 2048 1 × 1, 1024

#params 23 × 106 5 × 106

Figure 1.   Topology of BuRnGANeXt50 for human burn diagnosis.
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represents the neuron’s k-channel input vector. Filter weight is given by wifor i-the neurons. This model 
replaces the elementary transformations with a more generic function (wiρi) . By expanding along a new dimen-
sion, this generic function reduces depth. This model calculates the aggregated transformations as follows:

The function ϒi(ρ) is arbitrarily defined. ϒi project ρ into low-dimensional embedding and then change it, 
similar to a primary neuron. C represents the number of transforms to be summed in Eq. (2). C is known as 
cardinality35. As the residual function, Eq. (2)‘s aggregated transformation serves36. (Fig. 3):

where x is the model’s predicted result.
Finally, at the top of the model a flattened and a global average pooling is added. The Softmax activation 

classifies burn into binary and multiclass. The softmax optimizer uses the exponent of each output layer to 
convert logits to probabilities37. The vector � is the system input, representing the feature set. Our study uses k 
classification when there are three levels of burn severity (k = 3) and two levels of graft versus non-graft (k = 2). 
For predicting classification results, the bias W0X0 is added to each iteration.

Residual attention module.  The residual attention block, which allows attention to be routed across 
groups of separate feature maps, is shown in Fig. 3. Furthermore, the channel’s extra feature map groups com-
bine the spatial information of all groups via the spatial attention module, boosting CNN’s capacity to represent 
features. It comprises feature map groups, feature transformation channels, spatial attention algorithms, etc. 
Convolution procedures can be performed on feature groups, and cardinality specifies the number of feature 
map groups. A new parameter, "S," indicates the total number of groups in the channel set38 and the number of 
subgroups in each of the N input feature groups. A channel scheduler is a tool that optimizes the processing of 
incoming data through channels. This method transforms feature subsets. G = N * S is the formula for the total 
number of feature groups.

Using Eq. (6), we conduct an essential feature modification on subgroups inside each group after channel 
shuffling.

(1)
K
∑

i=1

wiρi

(2)ℑ(ρ) =

C
∑

i=1

ϒi(ρ)

(3)x = ρ +

C
∑

i=1

ϒi(ρ)

(4)p(ρ = i|�(j)) =
e�

(j)

∑k
i=0 e

�
(j)
k

(5)In which � = W0X0 +W1X1 + . . .+WkXk

(6)g
(

r, i, j
)

=

[

cos rπ
2

− sin rπ
2

sin rπ
2

cos rπ
2

][

i
j

]

Figure 2.   The pooling layers are convolutions in a grouped manner.
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Here 0 ≤ r < 4,
(

i, j
)

 stands for the original matrix’s coordinates. K represents the 3 × 3 convolution of the 
bottleneck block, and Output is written as ys . Then, for each xs input

we have:

g&r here represents the input xs . “ ⊙ ” corresponds to element multiplication in the matrix’s related feature 
transformation. Features of x being transformed are shared across the three 3 × 3 convolution operators K.

Channel and spatial attention modules.  Semantic-specific feature representations can be improved 
by exploiting the interdependencies among channel graphs. We use the feature map’s channels as individual 
detectors. Figure 3A depicts how we send the feature map of the no ∈ 1, 2, ...,N group Gno ∈ RC/N×H×W to the 
channel attention module. As a first step, we use geographic average pooling (GAP) to gather global context 
information linked to channel statistics39. The 1D channel attention maps Cno ∈ RC/N are then inferred using 
the shared fully connected layers.

"DsigmoidandDReLU " represents a fully linked layer that uses both "Sigmoid" and "ReLU" as activation func-
tions. At last, Hadamard products are used to infer a group’s attention map and the corresponding input features. 
Then the components from each group are weighted and added together to produce an output feature vector. 
The final channel attention map

Each group’s 1 × 1 convolution kernel weight is multiplied by the 3 × 3 kernel weight from the subgroup’s 
convolutional layer. The global feature dependency is preserved by adding the group’s channel attention weights, 
which all add up to the same value.

A spatial attention module is used to synthesize spatial links and increase the spatial size of associated fea-
tures. The channel attention module is separate from that component. The spatial information of feature maps 
is first aggregated using global average pooling (GAP) and maximum global pooling (GMP)39 to obtain two 

(7)ys =

{

K
(

gr(xs)
)

r, s = 0

K
(

gr(xs)
)

⊙ y0 0 < r = s < 4

(8)Cn = Dsigmoid(DReLU (GAP(Gn)))

(9)C ∈ RC/N×H×WC =

N
∑

n=1

(

Cn ⊙ Gn
)

Figures 3.   Channel and spatial attention modules are depicted in (A) and (B), respectively, in these schematic 
illustrations.
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distinct contextual descriptors. Next, by joining GAP(C) ∈ R1×H×WandGMP(C) ∈ R1×H×W connect to get 
Sc ∈ R2×H×W.

The plus sign “+”denotes a linked feature map. The regular convolutional layer retrieves the spatial dimen-
sional weight information to round things out. Sconv Final spatial attention map S ∈ RC/N×H×W is obtained by 
element-wise multiplying the input feature map C with itself.

"Conv3×3" means regular convolution, while "Sigmoid" denotes the activation function.

Local response normalization.  Leaky ReLU activation-based deep learning models do not rely on input 
normalization for saturation. Neurons in this model are more efficient at learning from negative inputs. Despite 
this, neural activity is calculated αi

u,v At a point (u, v) by using the kernel i , which facilitates generalization. The 
ReLU nonlinearity is then implemented. The ReLU nonlinearity is then implemented. The response normalized 
αi
u,v is determined using the provided Eq. (12).

where N  are the total number of layers and t,α, n,β are constants? This 
∑

 is computed for each of the n 
neighboring40. We trained the network using a 100× 100× 3 picture and the original ResNeXt CNN topology’s 
cardinality hyper-parameter C = 32 . The algorithm of the proposed method is shown below.

Algorithm of the proposed method.

Algorithm1 
Step 1: Resize the image to 100x100x3 pixels 

Step 2: Apply data augmentation to increase dataset size 

 Step 3:  Apply 5-fold cross validation scheme to the dataset  

Step 4:  Input images to the BuRnGANeXt50  

Step 5: Set batch size=32, initial learning rate=1e-3

Step 6: for i=1 to 100, do 

         (a) Training and validation accuracy of the model 

          (b) Find the training and validation loss 

               end     

Step 7: Find the confusion matrices of each fold 

Step 8: Plot training and validation loss curve. 

Ethical approval.  All authors contributed to the conception and design of the study. All authors read and 
approved the final manuscript.

Results
Dataset.  The dataset includes images of human burns having several depths (super-dermal, deep-dermal, 
and full-thickness) and types (graft, non-graft). The University of Seville’s (Spain) Signal Theory and commu-
nications department’s biomedical image processing (BIP) Group at the Virgen del Roco Hospital (Spain) col-
lected images. There are 94 images with varying sizes in the original dataset compiled from41. Four types of data 
augmentation techniques were applied to the burn image: horizontal flip, vertical flip, rotation through 30°, and 
rotation through 30°. Finally, 6000 images retained the augmented dataset. Figure 4a–e show the augmented 
images of the modified dataset.

The proposed method is implemented on Nvidia GeForce GTX TITAN X GPU using Python 3.8 and Tensor 
Flow 2.0. The BuRnGANeXt50 is trained with images of batch size 32 and an initial learning rate of 1e-3 on the 
Windows 10 operating system.

The mathematical technique of model  performance  analysis.  The system’s efficacy is evaluated 
using a confusion matrix and its f1-score, accuracy, precision, recall, sensitivity, and specificity values. They are 
calculated using the true positive (TP), false positive (FP), false negative (FN), and true negative (TN) indicators 
(True Negative).

(10)Sc = GAP(C)+ GMP(C)

(11)S = Conv3×3(SC)⊙ C

(12)biu,v =
αi
u,v

(

t + α
∑min(N ,1,i+n/2)

j−max(0,i,n/2) (α
j
u,v)2

)β
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(13)Acc =
TP + TN

TP + TN + FP + FN

(14)PRE =
TP

TP + FP

(a) Original Image
(b) rotation counter clockwise through 300

degrees

(c) a process in the other anti-clock 

direction through 300 degrees

(d) a rotation hor izontally through 900

(e) rotation vertically through 90 degrees. 

Figure 4.   (a) original, (b) rotation counterclockwise through 300 degrees, (c) a process in the other anti-clock 
direction through 300 degrees, (d) a rotation horizontally through 90 degrees, and (e) rotation vertically through 
90 degrees.
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where TN = The model labels it as unfavorable since it is a negative number. TP = It is a genuine positive value, 
and the model also classifies it as positive. FP = The model incorrectly interprets a negative value as positive. 
FN = It is a positive number and a negative category of models.

Classification of burn degrees (multiclass).  The extended dataset41 comprises images of superfi-
cial burns, deep burn, and full-thickness burns. To ensure an unbiased model, a fivefold cross-validation is 
employed. In this process, the dataset is divided into 80% for training and 20% for validation, with each fold 
using different partitions. The training is conducted with an initial learning rate of 1e-3, and the input image size 
is downsampled to 100 × 100 pixels. The model undergoes 100 training iterations, utilizing a mini-batch size of 
32. After training on each of the five test data folds, confusion matrices (CM) are generated, as depicted in Fig. 5. 
The obtained confusion matrices are shown in Fig. 5a–e. The results of the provided BuRnGANeXt50 model for 
each fold are shown in Table 4. Average values for the model’s sensitivity, specificity, F1-score, recall, and accu-
racy were 97.25%, 97.22%, 97.2%, 98.65%, and 97.17%. Classification accuracy for burns of varying depths in the 
skin (superficial, deep, and full thickness) is more than 98% using this approach.

The model training and validation loss are displayed in Fig. 6. Figure 6a shows that the model has a training 
accuracy of around 100% and a validation accuracy of over 98%. Figure 6b shows that after 80 iterations, the 
training loss and validation loss have reduced to almost zero.

Burn’s graft and non‑graft diagnosis (binary classification).  For further diagnosis, the degree of 
burn is required. The severity of a burn can be determined by depth42. A doctor uses the grafting procedure to 
replace the burned skin on a patient’s body. Often, grafting is necessary for full-thickness and severe burns43. 
The improved burn dataset consists of graft and non-graft. The grafts represent full-thickness and deep dermal 
burns, whereas non-grafts represent superficial burns. Four thousand images of human burns were utilized for 
the binary classification. Moreover, fivefold cross-validation was performed on the dataset. The data set is split 
into two halves, 80% and 20%, using a fivefold cross-validation. The training set uses 80% of the data for every 
fold, while the validation set uses 20%. The input image is scaled to 100 × 100 × 3 pixels, and the model’s initial 
learning rate is set to 1e-3. After that, a mini-batch size of 32 and 100 iterations was used to train the model. Fig-
ure 7 displays the confusion matrices (CM) acquired after training for each of the 5 test data folds. Figures 7a–e 
are five confusion matrices obtained for graft and non-graft. The performance measures of the BuRnGANeXt50 
model across all folds are shown in Table 4. The model also has a sensitivity of 99.14%, a specificity of 99.84%, 
and an accuracy of 99.48% when classifying data into binary categories.

Classification accuracy of the training and validation as well as loss, are displayed in Fig. 8. After 45 iterations, 
the accuracy during training is close to 100% (Fig. 8a). Similarly, the model’s training and validation losses are 
near 0 and saturated after 45 iterations (Fig. 8b). Table 5 depicts the performance of all 5 folds of the proposed 
BuRnGANeXt50 model.

Discussion
Automated methods for human burn diagnosis, utilizing deep learning, machine learning, and transfer learn-
ing, have been explored in various studies. For instance, Abubakar et al.15–17 employed deep transfer learning 
with ResNet50 and VGG16 to extract visual patterns from a dataset of 2080 RGB images containing healthy skin 
and burns. Their proposed technique achieved a maximum prediction accuracy of 95.43% using ResNet50 and 
85.63% with VggFeat16. Similarly44, utilized ResNet101 for burn skin prediction, achieving a 95.9% accuracy rate.

Another study by Yadav et al.40 focused on diagnosing burns and categorizing them as graft or non-grafts, 
achieving an accuracy of 82%. Abubakar et al.15–17 employed transfer learning to classify skin as burnt or healthy, 
reaching 99.3% accuracy with the Caucasian dataset and 97% with the African dataset.

Machine learning models for evaluating burn severity were presented by Shin et al., achieving a 70.0% accu-
racy rate on an unlabelled dataset of 170 images learned via self-supervised learning techniques. Rahman et al.46 
suggested a vision-based method for identifying burns on the skin, with their SVM model achieving a maximum 
accuracy of 93.33%.

Despite their usefulness, these approaches have drawbacks, such as high computation costs and decreased 
efficiency in predicting grafts and non-grafts. To address these challenges, we proposed BuRnGANeXt50, an 
attention-based residual network that is less expensive and more efficient than ResNeXt. The suggested approach 
optimizes the convolution size and kernel size, and Leaky ReLu activation is employed to accelerate convergence. 
A channel and spatial attention module are also included to improve the local feature co-relationship. The exist-
ing methodologies for diagnosing burns using diverse datasets are summarised in Table 6. In Table 6, we can 

(15)RE =
TP

TP + FN

(16)f 1− score = 2∗
PRE∗RE

PRE + RE

(17)Sen =
TP

TP + FN

(18)Spec =
TN

TP + TN
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notice that the automatically trained classification models outperform compared to manually extracted feature 
classification models.

An accuracy of 80%, 82.23%, and 84% were achieved using machine learning techniques such as SVM and 
kNN on the dataset used in this research16,20,47. For the fair performance comparison, we utilized ResNeXt, 
AlexNet, and VGG16 for the multiclass (superficial vs. deep dermal vs. full thickness) and binary class (graft vs. 
non-graft) classification. In addition, the same training setup and dataset were used to evaluate the model’s per-
formance. In Table 7, we summarize the performance of multiclass classification, and in Table 7, the performance 

Figure 5.   (a) Confusion_Matrix for Fold1, (b), Confusion_Matrix for Fold2, (c), Confusion_Matrix for Fold3, 
(d), Confusion_Matrix for Fold4 (e), and Confusion_Matrix for Fold5.
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of graft and non-graft is discussed. In Table 6, we can see AlexNet achieved the lowest classification accuracy 
of 70.57%, Whereas ResNeXt obtained 84.31% and the proposed BuRnGANeXt50 achieved a classification 
accuracy of 98.14%.

In Table 8, we can see that the precision and F1-score of the AlexNet are 73.14% and 71.62%, respectively. 
Slight improvement was noticed in VGG16. The second highest precision and F1-score achieved by ResNeXt. 
Whereas the proposed model achieved 99. 86% and 99.49% precision and recall values, respectively.

The provided BuRnGANeXt50 model showed the best results for multiclass and binary class classification. 
In addition, the computation time per epoch and trainable parameters are very less, as shown in Table 9. The 
BuRnGANeXt50 model can be used for real-time applications and provide a second healthcare opinion.

We compare the performance of the proposed method and ResNeXt, AlexNet, and VGG16 for multiclass and 
binary class classification shown in Figs. 9 and 10, respectively. In Fig. 9, we can notice that all performance meas-
ure bars of the BuRnGANeXt50 are much higher than the other state-of-the-art methods. Similarly, in Fig. 10, 
we can notice ResNeXt performance measure bars are much better than the AlexNet and VGG16. However, the 
proposed method’s performance measures precision, recall, F1-score, and accuracy is much better than ResNeXt.

Furthermore, we plotted the ROC (Receiver Operating Characteristic) curve of the proposed method’s true 
positive rate and false positive rate for multiclass classification, shown in Fig. 11. We can notice that the ROC 
value of superficial and full thickness burn is 1, whereas the deep dermal burn is 0.99. This confirms the proposed 
BuRnGANeXt50 is highly sensitive for burn diagnosis.

Limitations.  The proposed model algorithm computation cost is still a challenge. In addition, the attention 
module provides only local dependencies of the features. That may reduce the performance in some scenarios.

Conclusion
Burn diagnosis is timely and accurately is necessary to save the patient’s life. The traditional method of burn 
diagnosis is time-consuming, and the accuracy depends on the dermatologist’s expertise. Recent advancement in 
ML and DL in medical imaging has improved the accuracy and reduced the diagnosis time. However, ML-based 
methods require handcrafted features for model training that may reduce efficiency. Conversely, the Shallow DL 

Table 4.   The multiclass classification effectiveness measures of the BuRnGANeXt50 model.

Folds

Performance metrics (%)

Precision Recall F1-score Sensitivity Specificity Accuracy

Fold1 91.00 91.01 91.00 91.00 95.40 94.00

Fold2 95.66 95.66 95.66 95.66 97.83 97.11

Fold3 99.92 99.92 99.92 99.92 99.95 99.94

Fold4 100 100 100 100 100 100

Fold5 99.5 99.5 99.5 99.5 99.75 99.66

Average 97.22 97.22 97.22 97.22 98.61 98.14

Figure 6.   Proposed multiclass classification training and validation accuracy and loss.
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method extracts features automatically but lacks the feature correlation dependency. We conducted experiments 
using AlexNet, VGG16, and ResNext. However, these models’ performance for classifying burns could be more 
optimal, and the computation costs are high due to high trainable parameters. The original ResNext performance 
is better compared to AlexNet and VGG16 due to the capability of capturing high-dimensional features. Many 
trainable parameters and activation functions make the model less reliable for real-time applications.

In this study, we proposed a modified residual network with less trainable parameters and an attention block 
for burn diagnosis. After extensive experiments, the convolution and filter size are optimized. Further, instead 

Figure 7.   (a) Confusion_Matrix for Fold1, (b) Confusion_Matrix for Fold2, (c) Confusion_Matrix for Fold3, 
(d) Confusion_Matrix for Fold4, and (e) Confusion_Matrix for Fold5.
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Table 5.   performance metrics for binary class classification of the BuRnGANeXt50 model.

Folds Accuracy Recall Precision Sensitivity Specificity F1-score

Fold1 98.00 96.17 100 96.17 100 98.05

Fold2 99.88 99.76 100 99.76 100 99.88

Fold3 99.50 99.76 99.29 99.76 99.21 99.53

Fold4 100 100 100 100 100 100

Fold5 100 100 100 100 100 100

Average 99.48 99.14 99.86 99.14 99.84 99.49

Figure 8.   Computation analysis of training and validation of accuracy (a) and tanning and validation loss (b).

Table 6.   Past work on the diagnosis of human burns using various ML and DL.

Study Model Classification Dataset Size Accuracy (%)

Abubakar et al.15 Pre-trained ResNet50 Binary Class 2080 images 95.43

Pre-trained VGG16 85.63

Smith et al.16 Pre-trained ResNet50 Binary Class 1360 images (Caucasians dataset) 99.3

540 images (African dataset) 97.1

Ugail et al.44 ResNet101 Binary Class 1360 images 95.9

Buhar et al.17 VGG-Face Binary Class 1420 images 95.208

Yadav et al.40 SVM Binary Class 94 segmented images 82.43

Shin et al.45 SSL Multiclass 170 images 70.0

Rahman et al.46 SVM Multiclass 500 images 93.3

Table 7.   Evaluation of the presented model versus the previous model for multiclass classification.

Model Recall (%) F1-score (%) Precision (%) Accuracy (%)

ResNeXt 83.46 82.9 82.34 84.31

AlexNet 67.53 67.89 68.26 70.57

VGG16 73.27 75.02 76.87 76.32

BuRnGANeXt50 97.22 97.23 97.22 98.14
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Table 9.   Comparison of the computation time per epoch.

Model Time per epoch Parameters

AlexNet 124 s 24 × 106

VGG16 185 s 33 × 106

ResNeXt 175 s 23 × 106

BuRnGANeXt50 105 s 5 × 106
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Figure 9.   Bar plot-based comparison for multiclass classification.
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Figure 10.   Bar plot-based comparison for binary classification.

Table 8.   Evaluation of the presented model versus the previous model for binary classification.

Model Recall (%) F1-score (%) Precision (%) Accuracy (%)

ResNeXt 85.15 85.30 85.46 86.35

AlexNet 70.18 71.62 73.14 75.64

VGG16 76.50 78.31 80.20 78.23

BuRnGANeXt50 99.14 99.49 99.86 99.48
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of ReLu activation, Leaky ReLu activation is utilized, which improves the convergence rate. The spatial attention 
module enables the model to focus on significant regions of interest, such as burn edges, blisters, and regions 
with varying degrees of injury. In the meantime, the channel attention module concentrates on crucial charac-
teristics within each network layer, enabling the model to extract the most informative aspects from the input 
data. Combining spatial and channel attention mechanisms enables our model to learn discriminative patterns 
from burn images, resulting in superior diagnostic performance. The model’s performance for classifying burns 
based on degree and depth into three classes and binary class is much better than the state-of-the-art method. The 
precision and accuracy of the BuRnGANeXt50 for multiclass classification are 97.22% and 98.14%, respectively. 
Furthermore, the proposed model classifies the burn into graft and non-graft with a precision and accuracy of 
99.86% and 99.48%, respectively. This confirms the model is highly sensitive for burn diagnosis and can provide 
a second opinion to a doctor. In addition, the model computation time per epoch is much less, making it suit-
able for real-time applications.

The computation time of the proposed is still a challenge that needs further improvement. In addition, the 
model needs to test on other diverse datasets and a real-time dataset for further evaluation. We found some 
images of deep dermal classified to full thickness due to similar texture and color characteristics. Furthermore, 
the results need to be evaluated by the healthcare expert. In future research, we will explore capturing the global 
relation of the features using a vision transformer-based model to improve the long-range dependency of the 
features. In addition, the extracted features can be optimized using nature-inspired algorithms to enhance the 
classification accuracy. Furthermore, a calibration technique can be applied to measure the model’s bias. Fur-
thermore, addressing the challenges associated with model interpretability can be improved using a grad cam.

Data availability
The data supporting this study’s findings are available upon request from the corresponding authors.
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