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Summary

The rapidly emerging field of computational pathology has demonstrated promise in developing 

objective prognostic models from histology images. However, most prognostic models are either 

based on histology or genomics alone and do not address how these data sources can be 

integrated to develop joint image-omic prognostic models. Additionally, identifying explainable 

morphological and molecular descriptors from these models that govern such prognosis is of 

interest. We use multimodal deep learning to jointly examine pathology whole slide images and 

molecular profile data from 14 cancer types. Our weakly-supervised, multimodal deep learning 

algorithm is able to fuse these heterogeneous modalities to predict outcomes and discover 

prognostic features that correlate with poor and favorable outcomes. We present all analyses for 

morphological and molecular correlates of patient prognosis across the 14 cancer types at both a 
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disease and patient-level in an interactive open-access database (http://pancancer.mahmoodlab.org) 

to allow for further exploration, biomarker discovery and feature assessment.

eTOC Blurb

Chen et al. present a pan-cancer analysis that uses deep learning to integrate whole slide pathology 

images and molecular features to predict cancer prognosis, with multimodal interpretability used 

to elucidate morphologic and molecular correlates of prognosis.

Graphical Abstract

Introduction

Cancer is defined by hallmark histopathological, genomic, and transcriptomic heterogeneity 

in the tumor and tissue microenvironment that contributes towards variability in treatment 

response rates and patient outcomes (Marusyk et al. 2012). The current clinical paradigm 

for many cancer types involves the manual assessment of histopathologic features such as 

tumor invasion, anaplasia, necrosis, and mitoses, which are then used as grading and staging 

criteria for stratifying patients into distinct risk groups for therapeutic decision-making. 

For instance, in the Tumor, Nodes, and Metastases (TNM) staging system primary tumors 

are categorized into stages based on tumor severity (e.g. - size, growth, atypia), which 

are then used in treatment planning, eligibility for surgical operations, radiation dosage, 

and other treatment decisions (Amin et al.,2017). However, the subjective interpretation of 
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histopathologic features has been demonstrated to suffer from large inter- and intra-observer 

variability and patients in the same grade or stage still have significant variability in 

outcomes. While many histopathologic biomarkers have been established for diagnostic 

tasks, most are based on the morphology and location of tumor cells alone, and lack a 

fine-grained understanding of how the spatial organization of stromal, tumor, and immune 

cells in the broader tumor microenvironment contributes toward patient risk (Marusyk 

et al.,2012;Chang et al.,2013;Heindl et al.,2015;Kather et al.,2018,Tarantino et al.,2021). 

Recent advancements made in deep learning for computational pathology have enabled 

the use of whole slide images (WSIs) for automated cancer diagnosis and quantification 

of morphologic phenotypes in the tumor microenvironment. Using weakly-supervised 

learning, slide-level clinical annotations can be used to guide deep learning algorithms 

in recapitulating routine diagnostic tasks such as cancer detection, grading and subtyping 

(Campanella et al.,2019;Lu et al.,2021). Though such algorithms can reach performance 

on-par with human experts for narrowly-defined problems, the quantification of novel 

prognostic morphological features is limited as training with subjective human annotations 

may fail to extract heretofore unrecognized properties that could be used to improve 

patient prognostication (Echle et al.,2020). To capture more objective and prognostic 

morphological features not extracted in routine clinical workflows, recent deep learning-

based approaches propose supervision using outcome-based labels such as disease-free and 

overall survival times as ground truth (Harder et al.,2019;Courtiol et al.,2019;Kather et 

al.,2019;Kulkarni et al.,2020;Wuclzyn et al.,2021). Indeed, recent work has shown there is 

enormous potential in using deep learning for automated biomarker discovery of novel and 

prognostic morphological determinants (Beck et al.,2011;Echle et al.,2020;Diao et al.,2021).

Though prognostic morphological biomarkers may potentially be elucidated using outcome-

based labels as supervision in WSIs, in the broader context, cancer prognostication is a 

multimodal problem that is driven by markers in histology, clinical data, and genomics 

(Ludwig and Weinstein,2005;Gentzler et al.,2014;Fridman et al.,2017; Mobadersany et 

al., 2018). From the emergence of next generation sequencing and development of 

targeted molecular therapies, therapeutic decision-making processes for many cancer types 

have become increasingly complex due to the inclusion of molecular biomarkers in 

prognostication (Hyman et al., 2015). For instance, the presence of Epidermal Growth 

Factor Receptor (EGFR) exon 19 deletions and exon 21 p.Leu858Arg substitutions are 

indications for the use of targeted therapies such as erlotinib in EGFR mutant lung 

and pancreatic cancers (Mayekar and Bivona,2017;Zhou et al.,2021). In combination 

with histological assessment, joint image-omic biomarkers such as oligodendroglioma 

and astrocytoma histologies with IDH1 mutation and 1p/19q-codeletion status is able to 

perform fine-grained stratification of patients into low-, intermediate-, and high-risk groups 

(Louis et al.,2016;Bai et al.,2016;Cloughesy et al.,2019) and determing the presence or 

absence of these integrated biomarkers has become standard of care in assessment of brain 

tumors by pathologists. Using deep learning, multimodal fusion of molecular biomarkers 

and extracted morphological features from WSIs has potential clinical application in not 

only improving precision in patient risk stratification, but also assist in the discovery and 

validation of multimodal biomarkers where combinatory effects of histology and genomic 

biomarkers are not known (Bera et al.,2019). Recent multimodal studies performed on the 
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TCGA have focused on learning genotype-phenotype associations via predicting molecular 

aberrations using histology, which can assist in deciding targeted molecular therapies for 

patients without next-generation sequencing (Coudray et al.,2018; Kather et al.,2019;Fu 

et al.,2020;Kather et al.,2020). Though multimodal, in this direction of work, feature 

extraction of WSIs is guided using molecular aberrations as a supervisory signal, rather 

than multimodal integration of histology and genomics guided using outcome-based labels.

Results

Deep learning-based Multimodal Integration

In order to address the challenges in developing joint image-omic biomarkers that can be 

used for cancer prognosis, we propose a deep learning-based multimodal fusion (MMF) 

algorithm that uses both H&E whole slide images and molecular profile features (mutation 

status, copy number variation, RNA-Seq expression) to measure and explain relative risk of 

cancer death (Figure 1A). Our multimodal network is capable of not only integrating these 

two modalities in weakly-supervised learning tasks such as survival outcome prediction, 

but also explaining how histopathology features, molecular features, and their interactions 

contribute locally towards low- and high-risk patients (Figure 1B, 1C, 1D, 1E). After risk 

assessment within a patient cohort, our network uses both attention- and attribution-based 

interpretability as an untargeted approach for estimating prognostic markers across all 

patients (Figure 1B, 1C, 1D, 1E, 1F). Our study uses 6,592 gigapixel WSIs from 5,720 

patient samples across 14 cancer types from the TCGA (Table S1). For each cancer 

type, we trained our multimodal model in a five-fold cross-validation using our weakly-

supervised paradigm and conducted ablation analyses comparing with the performance 

of unimodal prognostic models. Following training and model evaluation, we conducted 

extensive analyses on the interpretability of our networks, investigating local- and global-

level image-omic explanations for each cancer type, quantifying the tissue microarchitecture 

corresponding relevant morphology and also investigating shifts in feature importance when 

comparing unimodal interpretability versus multimodal interpretability.

We additionally developed a research tool that uses model explanations of both whole slide 

image and molecular profile data to drive the discovery of new prognostic biomarkers. 

Using our multimodal network, we developed the Pathology-Omics Research Platform for 

Integrative Survival Estimation (PORPOISE), an interactive platform that directly yields 

prognostic markers learned by our model for thousands of patients across multiple cancer 

types, available at http://pancancer.mahmoodlab.org (Interactive Demo). Specifically, 

PORPOISE allows the user to visualize: 1) raw H&E image pyramidal TIFFs overlayed 

with attention-based interpretability from both unimodal and multimodal training, 2) local 

explanations of molecular features using attribution-based interpretability for each patient, 

and 3) global patterns of morphological and molecular feature importance for each disease 

model. To validate that PORPOISE can be used to drive the discovery of human-identifiable 

prognostic biomarkers, we analyzed high attention morphological regions in WSIs and 

further quantified the tumor microenvironment to quantify morphologic correlates of high 

and low risk patients.
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Multimodal Integration Improves Patient Risk Stratification

We first evaluated our proposed multimodal fusion deep learning model (MMF) using 

5-fold cross validation on the paired WSI-molecular datasets from 14 cancer types. We 

also compared our model with unimodal deep learning models trained with one modality: 

an Attention-based Multiple Instance Learning (AMIL) model that uses only WSIs, and 

a Self-Normalizing Network (SNN) model that uses only molecular features. To compare 

the performances of these models, we used cross-validated concordance index (c-Index) to 

measure the predictive performance of each model, Kaplan-Meier curves to visualize the 

quality of patient stratification between predicted low- and high-risk patient populations, and 

the logrank test to assess patient stratification statistical significance in distinguishing low- 

and high-risk groups at the 50% percentile of predicted risk scores (Figure 2A, 2B, S1, and 

Table S2). In addition to c-Index, we also report Dynamic AUC (termed Survival AUC) 

which corrects for optimistic bias from censorship in computing model performance (Table 

S3).

Across the 14 cancer types, MMF achieved an overall c-Index of 0.645, whereas AMIL 

and SNN had overall c-Indices of 0.585 and 0.607 respectively. On Survival AUC, similar 

improvement in multimodal integration was found with an overall performance of 0.662 

in comparison to 0.616 and 0.598 in SNN and AMIL respectively (Table S2). In one-

versus-all model performance comparisons on individual cancer types, MMF achieved the 

highest c-Index on 12 out of 14 (12/14) cancer types, with models for 10/14 cancer types 

demonstrating statistical significance in binary patient stratification (Figure 2A,2B, 2C). In 

comparison to SNN which uses only molecular features, MMF also demonstrated consistent 

performance in both c-Index and Survival AUC across all cancer types. Though SNN had 

comparable performance on some cancer types, we observed both substantial improvement 

in model performance and patient stratification for BRCA, COADREAD, LUAD, PAAD, 

UCEC, which did not show significance in SNN patient stratification (Figure 2B, Table S2). 

In comparison to AMIL, MMF showed improvement on all cancer types except LUSC and 

UCEC, with improvement in patient stratification significance in 7/14 cancer types. We note 

that SKCM has an admixture of easily-distinguished disease forms (e.g. containing both 

primary and metastatic cases), which may optimistically bias model performances. Overall, 

however, model performances were found to improve following multimodal integration for 

almost all cancer types (Figure 2B). In examining unimodal models that were close to MMF 

performance, SNN showed significance in stratifying KIRC and KIRP (though predicted 

risk groups are better delineated in MMF, and AMIL showed significance in stratifying 

LIHC, STAD, and UCEC.

Amongst all single cancer types included in our study, KIRP had the largest performance 

increase with multimodal training, reaching a c-Index performance of 0.816 (95% CI: 

0.705–0.880, P-Value = 3.83 × 10−4, logrank test), compared to 0.539 (95% CI: 0.408–

0.625, P-Value = 5.86 × 10−1, logrank test) using AMIL and 0.779 (95% CI: 0.678–0.857, 

P-Value = 2.27 × 10−3, logrank test) using SNN (Table S2). Following correction of 

potential optimistic bias with high censorship via Survival AUC evaluation, we observed 

similar model performances with MMF reaching an AUC of 0.791 (SD: 0.102) compared 

to 0.530 (SD: 0.082) in AMIL and 0.743 (SD: 0.095). PAAD demonstrated substantial 
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improvement with multimodal training, with a c-Index of 0.653 (95% CI: 0.571–0.696, 

P-Value = 1.69 × 10−3, logrank test), compared to 0.580 (95% CI: 0.485–0.613, P-Value = 

2.30 × 10−1, logrank test) using AMIL and 0.593 (95% CI: 0.507–0.656, P-Value = 5.59 × 

10−2, logrank test) using SNN (Table S2). For PAAD, we observed that training unimodal 

models using either only histology or genomics did not show statistical significance as 

Kaplan-Meier survival curves demonstrate poor stratification of predicted low- and high-risk 

groups of patients with low survival in these two cancer types. However, these groups 

were disentangled following multimodal integration, which is in line with our observed 

improvement in MMF performance in PAAD. We demonstrate similar stratification results 

in BRCA, COADREAD, and LUAD in separating low survival groups using MMF (Figure 

S2, S3, S6, and S11).

In addition to conducting ablation studies in comparing unimodal and multimodal models, 

we also assessed Cox proportional hazard models using age, gender, and tumor grade 

covariates as baselines, which were still outperformed by MMF (Table S3). In head-to-head 

comparisons on cancer types with only available grade information, AMIL outperforms Cox 

models with an average c-Index of 0.601 compared to 0.592, which suggests that current 

subjective assessments for tumor grade in cancer prognosis may be refined using objective, 

deep learning-based phenotyping for evaluating prognosis.

We additionally quantify the prognostic importance of each modality, giving us the ability 

to determine which cancer types warrant development of multimodal prognostic models 

and for which tumor type histology or genomics alone may be enough to build sufficient 

prognostic models. In quantifying the contribution of using WSIs in cancer prognosis, WSIs 

on average accounted for 16.8% of input attributions in MMF for all cancer types, which 

suggests that molecular features drive most of the risk prediction in MMF (Figure 2C, 

Table S3). This substantiates the observation that molecular profiles are more prognostic 

for survival than WSIs in most cancer types (in comparing the performances of SNN and 

AMIL). However, we note that for MMF models evaluated on UCEC, WSIs contributed to 

55.1% of all input attributions, which corroborates with high AMIL performance on this 

cancer type. We also observe relatively larger average WSI contributions in HNSC, STAD, 

and LIHC as well, which corroborates with the cancer types in which AMIL outperformed 

SNN. For LUSC, in which AMIL also outperformed SNN, we observe a relatively low 

average WSI attribution of 5.8%, which potentially corroborates MMF under-performance 

as the model was unable to attribute feature importance to prognostic information in WSIs. 

Interestingly, WSIs contributed to 32.4% of input attributions in PAAD, despite AMIL 

performing worse than SNN, which may suggest that MMF is able to extract prognostic 

morphological features not captured in molecular biomarkers via SNN or unimodal feature 

extraction via AMIL.

Multimodal Interpretability for Joint Image-Omic Biomarker Discovery

For interpretation and further validation of our models, we applied attention- and gradient-

based interpretability to our trained SNN, AMIL, and MMF models in order to explain 

how WSI and molecular features are respectively used to predict prognosis. For WSIs, we 

used a custom visualization tool that overlays attention weights computed from AMIL (and 
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the AMIL subnetwork from MMF) onto the H&E diagnostic slide, which is displayed as a 

high-resolution attention heatmap that shows relative prognostic relevance of image regions 

used to predict risk (Figure 3A, 4A, 5A, 6A). For molecular features, we used Shapley 

Additive Explanation (SHAP)-styled attribution decision plots to visualize the attribution 

weight and direction of each molecular feature calculated by Integrated Gradients in SNN 

(and the SNN subnetwork of MMF) (Figure 3B, 4B, 5B, 6B and Figures 3D, 4D, 5D, 

6D). These interpretation and visualization techniques were then used to build our discovery 

platform, PORPOISE, which we then applied to each of our models and across all patients, 

yielding attention heatmaps and attribution decision plots for all 6,592 WSIs and 5,720 

patients. Visualizations for analyses for individual patient model explanations in PORPOISE 

are termed local interpretability, with analyses performed on cancer-wide patient populations 

termed global interpretability. Figures 3–6 show local and global interpretability for KIRC, 

KIRP, LGG, and PAAD. Global interpretability results for the rest of the cancer types, as 

well as local interpretability results for all patients in the best validation splits are made 

available in Figures S2-S11.

Patient stratification for unimodal and multimodal prognostic models is shown in Figures 

3C, 4C, 5C, 6C, 7C and S2-S11. To obtain an understanding of how morphological features 

were used by the model, we assessed high attention regions of WSIs in the top 25% 

(high-risk group) and bottom 25% (low-risk group) of predicted patient risks for each cancer 

type, which reflect favorable and poor cancer prognosis respectively. In addition to visual 

inspection from two pathologists, we simultaneously segmented and classified cell type 

identities across high attention regions in our WSIs. Figure 3A, 4A, 5A, 6A show attention 

heatmaps with exemplar ROIs for low- and high-risk cases in KIRC, KIRP, LGG, and 

PAAD, and Figure 3E, 4E, 5E, and 6E shows semantic segmentation of cell types in high 

attention tissue regions in low- and high-risk cases. Figure 3F, 4F, 5F, and 6F compares 

quantitative cell type distributions in high attention patches of low- and high-risk cases 

in these cancer types. Across all cancer types, we generally observed that high attention 

regions in low-risk patients corresponded with greater immune cell presence and lower 

tumor grade than that of high-risk patients, with 8/14 cancer types demonstrating statistically 

significant differences in lymphocyte cell fractions in high attention regions (Figure 6F, 

S3-10). Furthermore, we also observed that high attention regions in high-risk patients 

corresponded with increased tumor presence, higher tumor grade and tumor invasion 

in certain cancer types, with 6/14 cancer types demonstrating statistically significance 

differences in tumor cell fractions (Figure S3, S5, S6, S7, S9, S11). Figure 6F, S3, and 

S7 show clear differences in cell fraction distributions in comparing tumor cell fraction 

(BRCA P-Value: 2.17 × 10−9, LUAD P-Value: 1.45 × 10−3) and lymphocyte cell fraction 

(BRCA P-Value: 6.79 × 10−14, LUAD P-Value: 1.06 × 10−9, PAAD P-Value: 2.04 × 10−8 

t-test). Figure 3E, 4E, 5E and 6E show exemplar high attention regions in low- and high-risk 

respectively, with attention-based interpretability identifying dense immune cell infiltrates 

(green) in low-risk patients and nuclear pleomorphism and atypia in tumor cells (red) in 

high-risk patients. Interestingly, increased fractional tumor cell content in high attention 

regions were not discovered in high-risk patients for KIRC and KIRP (Figure 3F and 

4F). However, visual inspection of high attention regions in these cancer types revealed 

that tumor cells in low-risk patients corresponded with lower tumor grade than that of 
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high-risk patients. Figure 3A and 4A provide examples of attention heatmaps for low- and 

high-risk patients in KIRC and KIRP, in which high attention regions in high-risk KIRC 

patients corresponded with central necrosis, and high attention regions in high-risk KIRP 

correspond with tumor cells invading the renal capsule. To understand how attention shifts 

when conditioning on molecular features in multimodal interpretability, we also had two 

pathologists use PORPOISE to assess unimodal and multimodal attention heatmaps. For 

certain cancer types such as BRCA and KIRC, attention in MMF shifted way from tumor-

only regions and towards both stroma and tumor regions, which demonstrates the prognostic 

relevance of stromal regions (Figure S12) (Beck et al.,2011;Bejnordi et al., 2017).

In parallel with assessing WSI interpretability, we also interrogated important model 

explanations in our molecular feature inputs. Figure 3B, 4B, 5B, 6B shows local 

interpretability and 3D, 4D, 5D, and 6D shows global importance of molecular features 

for KIRC, KIRP, LGG, and PAAD. Across all cancer types, gradient-based interpretability 

was able to identify many well-known oncogenes and immune-related genes established in 

existing biomedical literature and used in targeted molecular therapies (Uhlen et al.,2017). 

In the LGG cohort which has distinct molecular signatures, gradient-based interpretability 

identifies IDH1 mutation (P-Value: 2.31 × 10−89, t-test) status as the most attributed gene 

feature, which has important functions in cellular metabolism, epigenetic regulation and 

DNA repair and defines the IDH1-wildtype astrocytoma, IDH1-mutant astrocytoma and 

IDH1-mutant oligodendroglioma molecular subtypes (Louis et al., 2016). In addition, IDH1 
mutation is associated with lower grade gliomas and thus favorable prognosis in comparison 

with IDH1-wildtype gliomas, which successfully corroborates with the attribution direction 

of IDH1 mutation in the attribution decision plot, in which the distribution of IDH1 mutation 

attributions has only negative attribution values (low-risk) (Figure 5D). The model also 

uses several other key oncogenes in other cancer types such as PIK3CA mutation (P-Value, 

4.04 × 10−118, t-test) in BRCA, SOX9 mutation (P-Value, 7.56 × 10−64, t-test) and SOX11 
mutation (P-Value, 1.65 × 10−58, t-test) in COADREAD, KRAS mutation in LUAD (P-

Value, 1.98 × 10−63, t-test) and PAAD (P Value, 9.00 × 10−12, t-test), VHL (P-Value, 1.76 

× 10−62, t-test) and BAP1 (P-Value, 5.57 × 10−18, t-test) mutations in KIRC (Figure 3D, 

5D, S3, S6). In PAAD, we additionally observe attributions of immune-related genes such as 

CD81, CDK1, IL8, and IL9 RNA-Seq expression are found to be the most highly attributed, 

which corroborates with their roles in innate immunity and inflammatory cell signaling 

(Network et al.,2013;Uhlen et al.,2015;Chevrier et al.,2017;Uhlen et al.,2017,2019) (Figure 

6D). Moreover, we note following conditioning on WSIs, MMF models for PAAD show 

a relative decrease in attribution for many genes, which corroborates with our previous 

observation of much higher WSI attribution in PAAD for MMF patient stratification. Across 

most cancer types, gene mutations that encode for extremely large proteins such as TTN, 

OBSCN, RYR3, and DNA5 were frequently found to be highly attributed. Though many of 

these genes are not explicitly cancer-associated and prognostic due to heterogeneity in the 

mutational processes of each cancer type, genomic instabilities in these large protein-coding 

domains may be an indirect measure of tumor mutational load (Lawrence et al.,2013;Rizvi 

et al.,2015;Shi et al.,2020;Oh et al.,2020). Attributions for all gene features for SNN and 

MMF can be found in Table S4.
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Immune response as a prognostic marker

Lastly, we used the interpretability of PORPOISE as a mechanism to test the hypothesis that 

TIL presence corroborates with favorable cancer prognosis. Figure 7 shows the fractional 

distribution of TILs in the high attention regions for all 14 cancer types across the previously 

defined risk groups. In comparing TIL presence between low-risk and high-risk patients, we 

found that 9 out of 14 cancer types had a statistically significant increase in TIL presence 

amongst patients with predicted low-risk, indicating that model attention was localized to 

more immune-hot regions. For cancer types in our dataset that have been FDA approved 

immune checkpoint inhibitor therapies, TIL presence was used as model explanations for 

favorable prognosis in BRCA (P-Value, 5.17×10−11, t-test), HNSC (P-Value, 1.97×10−18, 

t-test), KIRC (P-Value, 1.86×10−3, t-test), LIHC (P-Value, 2.54 × 10−17, t-test), LUAD 

(P-Value, 1.54 × 10−21, t-test), LUSC (P-Value, 2.92 × 10−12, t-test), PAAD (P-Value, 

3.77×10−6, t-test), STAD (P-Value, 1.09×10−9, t-test), and SKCM (P-Value, 6.29×10−10, 

t-test). This suggests that our trained models use morphological features for immune 

response as markers for predicting cancer prognosis, and supports a growing body of 

evidence that TILs have a prognostic role in many cancer types (Thorsson et al.,2018;Saltz 

et al.,2018;Shaban et al.,2019;AbdulJabbar et al.,2020). In breast cancer, Maley et al. 
performed hotspot analysis on the co-localization of immune cancer cells in WSIs and 

showed that immune-cancer co-localization was a significant predictive factor of long-term 

survival (Maley et al.,2015). In Oral Squamous Cell Carcinoma, Shaban et al. proposed 

a co-localization score for quantifying TIL density that showed similar findings (Shaban 

et al.,2019). In lung cancer, AbdulJabbar et al. proposed a deep learning framework for 

spatially profiling immune infiltration in H&E and IHC WSIs, and similarly found that 

tumors with more than one immune cold region had a higher risk of relapse (AbdulJabbar et 

al.,2020). Saltz et al. performed a pan-cancer analysis on the spatial organization of TILs in 

the TCGA, and showed how different phenotypes of TIL infiltrates correlates with survival 

(Saltz et al.,2018). The distinction of these analyses in comparison to PORPOISE, is that 

our method is not specifically trained in identifying TILs and correlating TILs with outcome. 

Rather, dissection of model interpretability reveals that TIL presence is used as prognostic 

morphological features in stratifying low- and high-risk patients.

Discussion

There is much promise that incorporating computational-derived, histomorphological 

biomarkers into clinical staging systems will allow for better risk stratification of patients 

(Echle et al.,2020;Bera et al.,2019). Current cancer staging systems, such as the TNM 

classification system struggle with precision and consistency, leading to subsequent variation 

in patient management and patient outcomes (Nicholson et al.,2001;Novara et al.,2007;Rabe 

et al.,2019). In this study, we present a method for interpretable, weakly-supervised, 

multimodal deep learning that integrates WSIs and molecular profile data for cancer 

prognosis, which we trained and validated on 6,592 WSIs from 5,720 patients with paired 

molecular profile data across 14 cancer types, and compared our method with unimodal 

deep learning models as well as Cox models with clinical covariates, achieving the highest 

c-Index performance on 12 out of 14 cancer types in a one-versus-all comparison. Our 

method also explores multimodal interpretability in explaining how features from WSIs 
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and molecular features contribute towards risk. We developed PORPOISE, an interactive, 

freely available platform that directly yields both WSI and molecular feature explanations 

made by our model in our 14 cancer types. Our goal with PORPOISE is to begin making 

current black-box state-of-the-art methods in computational pathology, especially emerging 

multimodal methods, more transparent, explainable and usable for the broader biomedical 

research community. In making heatmaps and decision plots available for each cancer type, 

we hope that our tool would allow clinicians and researchers to devise their own hypotheses 

and investigate the discoveries explained using deep learning.

Though we find that multimodal integration benefits patient risk stratification for most 

cancer types, our results also suggest that for some cancer types, training unimodal 

algorithms using either WSIs or molecular features alone may achieve comparable 

stratification performance, as variance of cancer outcomes can be equally captured in 

either modality. Many practical settings may lack paired diagnostic slide or high-throughput 

sequencing data for the same tissue specimen, and here, unimodal deep learning-based 

cancer prognosis algorithms may have reduced barriers to clinical deployment. Though 

multimodal learning has been successful in technical domains such as the integration of 

audio, visual and language modalities, for clinical translational tasks, we note that the 

basis of improvement from multimodal integration needs to be grounded in the biology 

of each cancer type, as phenotypic manifestations in the tumor microenvironment that are 

entirely explained by contributions from genotype have high mutual information (Kather et 

al.,2020). In establishing unimodal and multimodal baselines for 14 diverse cancer types, 

our results advocate that the application of multimodal integration should be determined 

on a per-cancer basis, which may aid in introspecting clinical problems for unimodal or 

multimodal biomarkers on single disease models.

A limitation of our approach is that though our approach can point to “what” and “where”, 

it cannot always explain “why” for discovered features which must be further quantified 

and introspected based on human knowledge. For example, though TILs were found in 

most cancer types to distinguish low- and high-risk patients, post-hoc analyses still had to 

be done to quantify TIL presence and assess statistically significance between the two risk 

groups. In analyses on feature shift in WSIs, we observe that high attention often shifted 

way from tumor regions to stroma, normal tissue and other morphological regions in some 

cancer types. We speculate this observation is a result of the intrinsic differences between 

WSIs and molecular profile data, in which training dynamics may be biased towards using 

more information from the simpler modality (Wang et al.,2020). In molecular features, 

the genotypic information from gene mutation, copy number variation, and RNA-Seq 

abundances have no spatial resolution are averaged across cells in the tumor biopsies, 

whereas phenotypic information such as normal tissue, tumor cells, and other morphological 

determinants are spatially represented in WSIs. As a result, when our multimodal algorithm 

is already conditioned with tumor-related features (e.g. - TP53 mutation status, PTEN loss) 

in the molecular profile, it can attend to morphological regions with non-tumor information 

such as stroma to explain subtle differences in survival outcomes (Beck et al.,2011). In other 

words, feature importance does not need to be attributed to oncogenes in molecular features 

and tumor-containing image regions in WSIs which have high collinearity, which allows the 
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multimodal network to learn other histology-specific prognostic information beyond tumor 

grades.

In addition to characterizing known human-identifiable phenotypes such as TILs in cancer, 

PORPOISE can potentially be used by the research community in further characterization 

of phenotypes that are currently not well understood via robust quantification of cell-type 

populations and tissue architecture (Diao et al.,2021). Moreover, multimodal networks 

for general disease prognostication and outcome prediction adapted to larger and well-

curated clinical trial data can be used to aid in both discovery and validation of human-

interpretable image-omic biomarkers in guiding treatment decisions. Tangential research 

directions in similar pursuit of this goal are the prediction of molecular biomarkers from 

WSIs and other genotype-phenotype correlations, which would decrease complexity of 

routine clinical workflows that require molecular assays for therapeutic decision-making. 

Though multimodal and elucidating morphological biomarkers that would predict molecular 

aberrations, there may exist orthogonal morphological biomarkers that are prognostic 

but do not have correlation with molecular features. As observed in PAAD, though 

AMIL is not prognostic for survival outcomes and performs worse than SNN, we 

demonstrate not only performance increase in multimodal integration, but also relatively 

high attribution given to WSIs, suggesting the existence of prognostic information not 

currently captured using molecular features or unimodal feature extraction in WSIs. On 

the other hand, in cancer types such as BRCA, COADREAD, and LUAD which benefit 

from multimodal integration, MMF models have lower attribution given to WSIs, which 

may result from prognostic information also partially explained via genomics as aberrations 

such as ERBB2 or KRAS mutation and the presence of microsatellite instability can 

be determined from histology (Coudray et al., 2018;Kather et al.,2019,2020;Gamble et 

al.,2021). Towards the development of computational support systems for therapeutic 

decision-making, further work in genotype-phenotype correlation-based analyses would 

develop more formal intuition in understanding shared and modality-specific prognostic 

information for multimodal integration-based approaches, which may lead to clinical 

validation of either single-modality or joint image-omic computational biomarkers (per 

cancer type) for downstream prognostication.

Overall, this study is a proof-of-concept showing the development multimodal prognostic 

models from orthogonal data streams using weakly supervised deep learning and 

subsequently identifying correlative features that drive such prognosis. Future work will 

focus on developing more focused prognostic models by curating larger multimodal datasets 

for individual disease models, adapting models to large independent multimodal test cohorts, 

and using multimodal deep learning for predicting response and resistance to treatment. As 

research advances in sequencing technologies such as single-cell RNA-Seq, mass cytometry, 

and spatial transcriptomics, these technologies continue to mature and gain clinical 

penetrance, in combination with whole slide imaging, and our approach to understanding 

molecular biology will become increasingly spatially-resolved and multimodal (Abdelmoula 

et al., 2016; Berglund et al., 2018; Giesen et al., 2014; Jackson et al., 2020; Schapiro 

et al., 2017, He et al.,2020). In using bulk molecular profile data, our multimodal 

learning algorithm is considered a “late fusion” architecture, in which unimodal WSI 

and molecular features are fused near the output end of the network (Baltrušaitis et al., 
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2018). However, spatially-resolved genomics and transcriptomics data in combination with 

whole slide imaging has the potential to enable “early fusion” deep learning techniques 

that integrate local histopathology image regions and molecular features with exact spatial 

correspondences, which will lead to more robust characterizations and spatial organization 

mappings of intratumoral heterogeneity, immune cell presence, and other morphological 

determinants.

Star Methods

Resource Availability

Lead Contact—Further information and requests regarding this manuscript should 

be sent to and will be fulfilled by the lead investigator, Faisal Mahmood 

(faisalmahmood@bwh.harvard.edu).

Materials Availability—This study did not generate any unique reagents.

Data and Code Availability

All diagnostic whole slide images (WSIs) and their corresponding molecular and clinical 

data were obtained from The Cancer Genome Atlas and are publicly accessible through 

the NIH Genomic Data Commons Data Portal https://portal.gdc.cancer.gov/. All code was 

implemented in Python, using PyTorch as the primary deep learning package. All code 

and scripts to reproduce the experiments of this paper are available at: https://github.com/

mahmoodlab/PORPOISE.

Method Details

Dataset Description—6,592 H&E diagnostic WSIs with corresponding molecular and 

clinical data were collected from 5,720 patients across 14 cancer types from TCGA via the 

NIH Genomic Data Commons Data Portal. Sample inclusion criteria in dataset collection 

were defined by: 1) dataset size and balanced distribution of uncensored-to-censored patients 

in each TCGA project, and 2) availability of matching CNV, mutation, and RNA-Seq 

abundances for each WSI (WSI-CNV-MUT-RNA). To mitigate overfitting in modeling the 

survival distribution during survival analysis, TCGA projects with less than 150 patients 

(after WSI and molecular data alignment) and have poor uncensorship (less than 5% 

uncensored patients) were excluded from the study. For the gastrointestinal tract, cancer 

types from these organs were grouped together respectively, forming the combined TCGA 

project - COADREAD (colon (COAD) and rectal (READ) adenocarcinoma). For LGG, 

other cases in the TCGA glioma cohort (such as glioblastomas) were included during model 

training, with evaluation and interpretability only performed on LGG cases. For inclusion 

of Skin Cutaneous Melanoma (TCGA-SKCM) and Uterine Corpus Endometrial Carcinoma 

(TCGA-UCEC) that have large data missingness, criteria for data alignment were relaxed to 

include samples with only matching WSI-MUT-RNA and WSI-CNV-MUT respectively. We 

note that in TCGA-SKCM, we also included metastatic cases as very few primary tumors 

had matching molecular profile information. To decrease feature sparsity in molecular 

profile data, genes with greater than 10% CNV or 5% mutation frequency in each cancer 

study were used. In TCGA-SKCM and TCGA-UCEC, we used mutation frequency cutoffs 
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of 10%, as using the cutoff for other cancer types resulted in few-to-zero gene features.. To 

limit the number of the features from RNA-Seq, we used gene sets from the gene family 

categories from the Molecular Signatures Database (Subramanian et al., 2005). Molecular 

and clinical data were obtained from quality-controlled files from the cBioPortal. Summary 

tables of cohort characteristics, censorship statistics, and feature alignment can be found in 

Table S1 and Table S3.

WSI Processing—For each WSI, automated segmentation of tissue was performed using 

the public CLAM (Lu et al., 2021) repository for WSI analysis. Following segmentation, 

image patches of size 256 × 256 were extracted without overlap at the 20× equivalent 

pyramid level from all tissue regions identified. Subsequently, a ResNet50 model pretrained 

on ImageNet is used as an encoder to convert each 256 × 256 patch into 1024-dimensional 

feature vector, via spatial average pooling after the 3rd residual block. To speed up this 

process, multiple GPUs were used to perform computation in parallel using a batch-size of 

128 per GPU.

Deep Learning-based Survival Analysis for Integrating Whole Slide Images 
and Genomic Features—PORPOISE (Pathology-Omics Research Platform for 

Integrated Survival Estimation) uses a high-throughput, interpretable, weakly-supervised, 

multimodal deep learning algorithm (MMF) designed for integrating whole slide images 

and molecular profile data in weakly-supervised learning tasks such as patient-level cancer 

prognosis via survival analysis. Given 1) diagnostic WSIs as pyramidal files and 2) 

processed genomic and transcriptomic features for a single patient, MMF learns to jointly 

represent these two heterogenous data modalities. Though tasked for survival analysis, 

our algorithm is adaptable to any combination of modalities, and flexible for solving any 

learning tasks in computational pathology that have patient-level labels. Our algorithm 

consists of three components: 1) attention-based Multiple Instance Learning (AMIL) for 

processing WSIs, 2) Self-Normalizing Networks (SNN) for processing molecular profile 

data, and 3) a multimodal fusion layer (extended from Pathomic Fusion) for integrating 

WSIs and molecular profile data (Chen et al., 2020; Ilse et al., 2018; Klambauer et al., 2017; 

Lu et al., 2021).

AMIL.: To perform survival prediction from WSIs, we extend the attention-based 

multiple instance learning algorithm, which was originally proposed for weakly-supervised 

classification. Under the multiple instance learning framework, each gigapixel WSI is 

divided into smaller regions and viewed as a collection (bag) of patches (instances) with 

a corresponding slide-level label used for training. Accordingly, following WSI processing, 

each WSI bag is represented by a Mi × C matrix tensor, where Mi is the number of patches 

(bag size), which varies between slides, and C is the feature dimension and equals 1024 

for the ResNet50 encoder we used. Since survival outcome information is available at the 

patient-level instead of for individual slides, we collectively treat all WSIs corresponding to 

a patient case as a single WSI bag during training and evaluation. Namely, for a patient case 

with N WSIs with bag sizes M1, ⋯, MN respectively, the WSI bag corresponding the patient 

is formed by concatenating all N bags, and has dimensions M × 1024, where M = ∑i = 1
N Mi.
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The model can be described by three components, the projection layer fp, the attention 

module fattn, and the prediction layer fpred. Incoming patch-level embeddings of each WSI 

bag, H ∈ ℝM × 1024 are first mapped into a more compact, dataset-specific 512-dimensional 

feature space by the fully-connected layer fp with weights Wproj ∈ ℝ512 × 1024 and bias 

bbias ∈ ℝ512. For succinctness, from now on, we refer to layers using their weights only 

(the bias terms are implied). Subsequently, the attention module fattn learns to score each 

region for its perceived relevance to patient-level prognostic prediction. Regions with high 

attention scores contribute more to the patient-level feature representation relative to regions 

assigned low attention scores, when information across all regions in the patient’s WSIs 

are aggregated, in an operation known as attention-pooling (Ilse et al., 2018). Specifically, 

fattn consists of 3 fully-connected layers with weights Ua ∈ ℝ256 × 512, Va ∈ ℝ256 × 512 and 

Wa ∈ ℝ1 × 256. Given a patch embedding hm ∈ ℝ512 (the mtℎ row entry of H), its attention 

score am is computed by:

am = exp Wa tanh Vahm
⊤ ⊙ sigm Uahm

⊤

∑m = 1
M exp Wa tanh Vahm

⊤ ⊙ sigm Uahm
⊤

The attention-pooling operation then aggregates the patch-level feature representations 

into the patient representation hpatient ∈ ℝ512 using computed attention scores as weight 

coefficients, where A ∈ ℝM is the vector of attention scores:

hpatient = Attn‐pool(A, H) = ∑
m = 1

m
amhm

The final patient-level prediction scores s are computed from the bag representation using 

the prediction layer fpred with weights Wpred ∈ ℝ4 × 512 and sigmoid activation: s = fpred hbag . 

This architectural choice and the negative-log-likelihood function for discrete-time survival 

modeling, are described in detail in a proceeding section. The last fully-connected layer is 

used to learn a representation hWSI ∈ ℝ32 × 1, which is then used as input to our multimodal 

fusion layer.

SNN.: For survival prediction using molecular features, we used the Self-Normalizing 

Network (SNN) which has previously been demonstrated to work well in high-dimensional 

low-sample size (HDLSS) scenarios (Klambauer et al., 2017). For learning scenarios such as 

genomics that have hundreds to thousands of features with relatively few training samples, 

traditional Feedforward networks are prone to overfitting, as well as training instabilities 

from current deep learning regularization techniques such as stochastic gradient descent 

and Dropout. To employ more robust regularization techniques on high-dimensional low 

sample size genomics data, we adopted the normalizing activation and dropout layers from 

the SNN architecture: 1) scaled exponential linear units (SeLU) and 2) Alpha Dropout. In 

comparison with rectified linear unit (ReLU) activations common in current Feedforward 
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networks, SeLU activations would drive the outputs of every layer towards zero mean and 

unit variance during layer propagation. The SeLU activation is defined as:

SeLU(x) = λ
x if x > 0
αex − α if x ≤ 0

where α ≈ 1.67, λ ≈ 1.05. To main normalization after Dropout, instead of setting the 

activation value to be 0 with with probability 1 − q for 0 < q ≥ 1 for a neuron in a given 

layer, the activation value is set to be limx − ∞SeLU(x) = − λα = α′, which ensures the self-

normalization property with updated mean and variance:

E xd + α′(1 − d) = qμ + (1 − q)α′, Var xd + α′(1 − d) = q (1 − q) α′ − μ 2 + v .

The SNN architecture used for molecular feature input consists of 2 hidden layers of 

256 neurons each, with SeLU activation and Alpha Dropout applied to every layer. The 

last fully-connected layer is used to learn a representation hmolecular ∈ ℝ32 × 1, which is then 

used as input to our multimodal fusion layer. We ablated performance of MMF using 

fully-connected layers without self-normalization and also without L1 regularization, and 

found that self-normalization and L1 regularization are important for multimodal training 

(Table S3 and S3)

Multimodal Fusion Layer.: Following the construction of unimodal feature representations 

from the AMIL and SNN subnetworks, we learn a multimodal feature representation using 

Kronecker Product Fusion, which would capture important interactions between these two 

modalities (Chen et al., 2020; Zadeh et al., 2017). Our joint multimodal tensor is computed 

by the Kronecker product of hWSI and hmolecular, in which every neuron in hmolecular is multiplied by 

every other neuron in hWSI to capture all bimodal interactions. To also preserve the unimodal 

features, we also append “1” to each unimodal feature representation before fusion, which is 

shown the equation below:

hfusion =
hWSI

1
⊗

hmolecular

1

where ⊗ is the Kronecker Product, and hfusion ∈ ℝ33 × 33 is a differentiable multimodal tensor 

that models all unimodal and biomodal interaction with O(1) computation. To decrease 

impact of noise unimodal features and to reduce feature collinearity between the WSI and 

molecular feature modalities, we used a gating-based attention mechanism that additionally 

controls the expressiveness of each modality:

hi, gated = zi ∗ hi, ∀hi ∈ hWSI, hmolecular

where, hi = ReLU W i ⋅ hi
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zi = σ W j ⋅ hWSI, hmolecular

For a modality i with learned unimodal features hi, we learn a weight matrix W j that would 

score the relative importance of each feature in modality i. After performing Softmax, zi

can be interpreted as an attention score of how hWSI and hmolecular attends to each feature in hi. 

We obtain the gated representation hi, gated in taking the element-wise product of the original 

unimodal features hi and attention scores zi. In our implementation of gating-based attention, 

we applied gating to both modalities prior to fusion, with additional skip connections made 

to the penultimate hidden layer of our multimodal network. Following Kronecker Product 

Fusion, we propagate our multimodal tensor through two hidden layers of size 256, which is 

then subsequently supervised using a cross entropy-based loss function for survival analysis. 

Table S3 shows an ablation study in using multimodal gating for pathology gating only, 

genomic gating only, and both pathology and genomic gating prior to Kronecker Product 

Fusion. To assess multimodal performance with other fusion mechanisms, we compared 

vector concatenation and a low-rank implementation of Kronecker Product Fusion, which 

similarly outperform unimodal approaches (Table S3) (Liu et al., 2018).

Survival Loss Function.: To perform survival prediction from right-censored, patient-level 

survival data, we first 591 partition the continuous time scale of overall patient survival time 

in months, T cont into 4 non-overlapping bins: t0, t1 , t1, t2 , t2, t3 , t3, t4 , where t0 = 0, t4 = ∞
and t1, t2, t3 define the quartiles of event times for uncensored patients. Subsequently, for each 

patient entry in the dataset, indexed by j with corresponding follow-up time T j, cont ∈ [0, ∞), 
we define the discretized event time T j as the index of the bin interval that contains T j, cont:

T j = r iff T j, cont ∈ tr, tr + 1

To avoid confusion, we refer to the discretized ground truth label of the jtℎ patient as Y j. 

For a given patient with bag-level representation hbagj, the prediction layer fpred with weights 

Wpred ∈ ℝ4 × 512 models the hazard function defined as:

fℎazard r ∣ hbagj = P T j = r ∣ T j ≥ r, hbagj

which relates to the survival function through:

fsurv r ∣ hbagj = P T j > r ∣ hbagj

= ∏
u = 1

r
1 − fℎazard u ∣ hbagj

To optimize the model parameters, we use the log likelihood function for a discrete survival 

model (Zadeh and Schmid, 2020), which given the binary censorship status cj, can be 

expressed as
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L = − l = − cj ⋅ log fsurv Y j ∣ hbagj
− 1 − cj ⋅ log fsurv Y j − 1 ∣ hbagj
− 1 − cj ⋅ log fℎazard Y j ∣ hbagj

In this formulation, we use cj = 1 for patients who have lived past the end of the follow-up 

period and cj = 0 in the event that the patient passed away precisely at time T j, cont. During 

training, the contribution of uncensored patient cases can be emphasized by minimizing a 

weighted sum of L and Luncensored

Lsurv = (1 − β) ⋅ L + β ⋅ Luncensored

The second term of the loss function corresponding uncensored patients, is defined by:

Luncensored = − 1 − cj ⋅ log fsurv Y j − 1 ∣ hbagj
− 1 − cj ⋅ log fℎazard Y j ∣ hbagj

Training Details.: For each disease model studied patient cases were randomly split into 

non-overlapping training (80%) and test (20%) sets that were used to train models and 

evaluate the performance. These training and test sets were constructed at a patient case 

level i.e., all slides corresponding to a given patient case were only present in either 

the test or train set and slides from the same case were never simultaneously part of 

training and testing. We repeated the experiments for each disease model in a five-fold 

cross-validation reassigning patient cases into non-overlapping training and testing cohorts 

five times. The same procedure was adopted for training and evaluating MMF and unimodal 

models. Across all cancer types, MMF is trained end-to-end with AMIL subnetwork, SNN 

subnetwork and multimodal fusion layer, using Adam optimization with a learning rate of 

2 × 10−4, b1 coefficient of 0.9, b2 coefficient of 0.999, L2 weight decay of 1 × 10−5, and 

L1 weight decay of 1 × 10−5 for 20 epochs. Because WSIs across patient samples have 

varying image dimension sizes, we randomly sampled paired WSIs and molecular features 

with a mini-batch size of 1. In performing comparative analyses with unimodal networks, 

AMIL and SNN were also trained independently using the same survival loss function and 

hyperparameters as MMF.

Multimodal Interpretability and Visualization

Local WSI Interpretability.: For a given WSI, to perform visual interpretation of 

the relative importance of different tissue regions towards the patient-level prognostic 

prediction, we first compute attention scores for 256 × 256 patches (without overlap) 

from all tissue regions in the slide. We refer to the attention score distribution across all 

patches from all WSIs from the patient case as the reference distribution. For fine-grained 

attention heatmaps, attention scores for each WSI are recomputed by increasing the tiling 

overlap to up to 90%. For visualization, the attention scores are converted to percentile 

scores between 0.0 (low attention) to 1.0 (high attention) using the initial reference 

distribution, and spatially registered onto the corresponding WSIs (scores from overlapping 
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patches are averaged). The resulting heatmap, referred to as local WSI interpretability, is 

transformed to RGB values using a colormap and overlayed onto the original H&E image 

with a transparency value of 0.5. To interpret these heatmaps, note that in contrast with 

classification tasks in which attention heatmaps would localize areas of diagnostic relevance 

for predicting a discrete class, survival outcome prediction is an ordinal regression task 

in which high attention weights correspond to regions with high prognostic relevance in 

determining relative predicted risk. For example, WSIs with predicted high-risk scores 

would have high attention on high tumor grade or tumor invasion regions used in explaining 

poor survival, whereas WSIs with predicted low risk scores would have high attention on 

low tumor grade or lymphocyte-containing regions used in explaining favorable survival.

Global WSI Interpretability.: For sets of WSIs belonging to different patient cohorts, we 

performed global WSI interpretability by quantifying and characterizing the morphological 

patterns in the highest-attended image patches from each WSI. Since WSIs have differing 

image dimensions, we extracted a proportional amount of high attention image patches 

(1%) to the total image dimension. On average, each WSI contained 13,487 512 × 512 

40 × images, with approximately 135 image patches used as high attention regions. These 

attention patches are analyzed using a HoverNet model pretrained for simultaneous cell 

instance segmentation and classification (Graham et al., 2019). Cells are classified as either 

tumor cells (red), lymphocytes (green), connective tissue (blue), dead cells (yellow), or non-

neoplastic epithelial cells (orange). For each of these cell types, we analyzed the cell type 

frequency across all counted cells in the highest-attended image patches in a given patient, 

then analyzed the cell fraction distribution across all patients in low-risk and high-risk 

patients, defined as patients below and above the 25% and 75% predicted risk percentiles 

respectively.

Tumor-Infiltrating Lymphocyte Detection.: To detect Tumor-Infiltrating Lymphocyte 

(TIL) presence in image patches, similar to other work, we defined TIL presence as the 

co-localization of tumor and immune cells which reflects intratumoral TIL response (Maley 

et al., 2015; Shaban et al., 2019). Following cell instance segmentation and classification 

of tumor and immune cells in the highest-attended 512 × 512 20 × image patches, we 

defined a heuristic which classified an image patch as positive for TIL presence with high 

tumor-immune cell co-localization (patch containing more than 20 counted cells, and more 

than 10 detected lymphocytes and 5 detected tumor cells). Similar to computing cell fraction 

distributions, for the highest-attended image patches in a given patient, we computed the 

fraction of TIL positive image patches, and plotted its distribution in low and high risk 

patients.

Local and Global SNN Interpretability.: For a given set of molecular features x belonging 

to a patient sample, to characterize feature importance magnitude and direction of impact, 

we used Integrated Gradients (IG), a gradient-based feature attribution method that attributes 

the prediction of deep networks to their inputs (Sundararajan et al., 2017). IG satisfies two 

axioms for interpretability: 1) Sensitivity, in which for every desired input x and baseline xi

that differ in one feature but have different predictions, the differing feature should be given 

a non-zero attribution, and 2) Implementation Invariance, which states that two networks 
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are functionally equivalent if their outputs are equal for all inputs. For a given input x, IG 

calculates the gradients of x across different scales against a zero-scaled baseline xi, which 

then uses the Gauss-Legendre quadrature to approximate the integral of gradients.

IGi(x): : = xi − xi
′ × ∫

α = 0

1 ∂F x′ + α × x − x′
∂xi

dα

Using IG, for each molecular feature in input x belonging to a patient sample, we compute 

feature attribution values, which corresponds to the magnitude of how much varying that 

feature in x will change the output. Features that have no impact on the output would 

have zero attribution, whereas features that affect the output would have larger magnitude 

(interpreted as feature importance). In the context of regression tasks such as survival 

analysis, features that are positive attribution contribute towards increasing the output 

value (high risk), whereas negative attribution corresponds with decreasing the output 

value (low risk). For individual samples, we can use IG to understand how molecular 

features contribute towards the model risk prediction, which we can visualize as bar plots 

(termed local interpretability), where the x-axis corresponds with attribution value, the 

y-axis ranks features in order of absolute attribution magnitude (in descending order), and 

color corresponds with feature value. For binary data such as mutation status, bar colors are 

either colored blue (feature value ‘0’, wild-type) or red (feature value ‘1’, or mutation). For 

categorical and continuous data such as copy number variation and RNA-Seq abundance, bar 

colors are visualized using heatmap colors, where blue is low feature value (copy number 

loss / low RNA-Seq abundance) and red is high feature value (copy number gain / high 

RNA-Seq abundance). For large cohorts of patients from a cancer type, we can visualize the 

distribution of feature attributions across all patients (termed global interpretability), where 

each dot represents the attribution and feature value of an individual feature of an individual 

patient sample. Plots and terminology for local and global interpretability were derived from 

decision plots in Shapley Additive Explanation-based methods (Lundberg et al., 2020).

Measuring WSI Contribution in Model Prediction.: To measure the contribution of 

WSIs in model predictions, for each patient sample, we compute the attributions for each 

modality at the penultimate hidden layer before multimodal fusion (last layer of the SNN 

and AMIL subnetworks). Then, we normalize the sum of absolute attribution values for each 

modality, to estimate percentage that each modality contributes towards the model prediction 

(Kokhlikyan et al., 2020).

Computational Hardware and Software—PORPOISE was built with the 

OpenSeaDragon API and is hosted on Google Cloud. Python (version 3.7.7) packages 

used by PORPOISE include PyTorch (version 1.3.0), Lifelines (version 0.24.6), NumPy 

(version 1.18.1), Pandas (version 1.1.3), PIL (version 7.0.0), and OpenSlide (version 1.1.1). 

All WSIs were processed on Intel Xeon multi-core CPUs (Central Processing Units) and a 

total of 16 2080 Ti GPUs (Graphics Processing Units) using our custom, publicly available 

CLAM (Lu et al., 2021) whole slide processing pipeline. The multimodal fusion layer 

for integrating WSIs and molecular profiles was implemented using our custom, publicly 
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available Pathomic Fusion (Chen et al., 2020) software implemented in Python. Deep 

learning models were trained with Nvidia softwares CUDA 11.0 and cuDNN 7.5. Integrated 

Gradients was implemented using Captum (version 0.2.0) (Kokhlikyan et al., 2020). Cell 

instance segmentation and classification was implemented using the HoVerNet software 

(Graham et al., 2019). Statistical analyses such as two-sampled t-tests and logrank tests used 

implementations from SciPy (1.4.1) and Lifelines (version 0.24.6) respectively. Plotting and 

visualization packages were generated using Seaborn (0.9.0), Matplotlib (version 3.1.1), and 

Shap (0.35.0

Quantification and Statistical Analysis—To plot the Kaplan-Meier curves, we 

aggregated out-of-sample risk predictions from the validation folds and plotted them 

against their survival time (Mobadersany et al., 2018). For significance testing of patient 

stratification in Kaplan-Meier analysis, we use the logrank test to measure if the difference 

of two survival distributions is statistically significant (P-Value < 0.05) (Bland and 

Altman, 2004). Cross-validated c-Index performance is reported as the average c-Index 

over the 5-folds. To estimate 95% confidence intervals in cross-validation, we performed 

non-parametric bootstrapping using 1000 replicates on the out-of-sample predictions in the 

validation folds (LeDell et al., 2015; Tsamardinos et al., 2018). In addition to c-Index, 

we also report Cumulative / Dynamic AUC (termed Survival AUC), a time-dependent 

measure of model performance that evaluates how well the model stratifies patient risk 

across various time points, and additionally corrects for optimistic bias from censorship via 

computing an inverse probability of censor weighting. For assessing global morphological 

feature significance of individual cell type presence, two-sample t-tests were performed 

in evaluating the statistical significance of mean cell fraction distributions in the top 1% 

of high attention regions of low and high-risk patients (P-Value < 0.05). For assessing 

global molecular feature significance of individual gene features, two-sample t-tests were 

performed in evaluating the statistical significance of attribution distributions of low and 

high gene feature values (below and above median gene feature value respectively). For all 

box plots, boxes indicate the 1st, median, and 3rd quartile values of the data distribution, and 

whiskers extend to data points within 1.5× the interquartile range.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multimodal data fusion improves prognostic models for a majority of cancer 

types.

• Multimodal attribution elucidates the importance of individual modalities.

• Model interpretability elucidates morphologic and molecular correlates of 

prognosis.
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Figure 1: Pathology-Omic Research Platform for Integrative Survival Estimation (PORPOISE) 
Workflow.
A. Patient data in the form of digitized high-resolution FFPE H&E histology glass slides 

(known as WSIs) with corresponding molecular data are used as input in our algorithm. 

Our multimodal algorithm consists of three neural network modules together: 1) an 

attention-based multiple instance learning (AMIL) network for processing WSIs, 2) a self-

normalizing network (SNN) for processing molecular data features, and 3) a multimodal 

fusion layer that computes the Kronecker Product to model pairwise feature interactions 

between histology and molecular features. B. For WSIs, per-patient local explanations are 

visualized as high-resolution attention heatmaps using attention-based interpretability, in 

which high attention regions (red) in the heatmap correspond to morphological features 

that contribute to the model’s predicted risk score. C. Global morphological patterns are 

extracted via cell quantification of high attention regions in low- and high-risk patient 

cohorts. D. For molecular features, per-patient local explanations are visualized using 

attribution-based interpretability in Integrated Gradients. E. Global interpretability for 

molecular features is performed via analyzing the directionality, feature value and magnitude 

of gene attributions across all patients. F. Kaplan-Meier analysis is performed to visualize 

patient stratification of low- and high-risk patients for individual cancer types.

See also Table S1.
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Figure 2: Model performances of PORPOISE and understanding impact of multimodal training.
A. Kaplan-Meier analysis of patient stratification of low- and high-risk patients via MMF 

across all 14 cancer types. Low- and high-risks are defined by the median 50% percentile 

of hazard predictions via MMF. Logrank test was used to test for statistical significance in 

survival distributions between low- and high-risk patients (with * marked if P-Value < 0.05). 

B. c-Index performance of SNN, AMIL and MMF in each cancer type in a five-fold cross-

validation (n=5,720). Horizontal line for each model shows average c-Index performance 

across all cancer types. Box plots correspond to c-indices of 1000 bootstrap replicates on 

the aggregated risk predictions. C. Distribution of WSI attribution across 14 cancer types. 

Each dot represents the proportion of feature attribution given to the WSI modality input 

compared to molecular feature input. Attributions were computed on the aggregated risk 

predictions in each disease model.

See also Figure S1-S3, S11, S12 Table S1-S3.
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Figure 3: Quantitative performance, local model explanation, and global interpretability 
analyses of PORPOISE on clear cell renal cell carcinoma (KIRC).
A. For KIRC (n=345), high attention for low-risk cases (top, n=80) tends to focus on 

classic clear cell morphology while in high-risk cases (bottom, n=80), high attention often 

corresponds to areas with decreased cytoplasm or increased nuclear to cytoplasmic ratio. B. 
Local gene attributions for the corresponding low-risk (top) and high-risk (bottom) cases. 

C. Kaplan–Meier curves for omics-only (left, “SNN”), histology-only (center, “AMIL”) and 

multimodal fusion (right, “MMF”), showing improved separation using MMF. D. Global 

gene attributions across patient cohorts according to unimodal interpretability (left, “SNN”), 

and multimodal interpretability (right, “MMF”). SNN and MMF were both able to identify 

immune-related and prognostic markers such as CDKN2C and VHL in KIRC. MMF 

additionally attributes to other immune-related / prognostic genes such as RUNX1 and NFIB 
in KIRC. E. Exemplar high attention patches from low-risk (top) and high-risk (bottom) 

cases with corresponding cell labels. F. Quantification of cell types in high attention patches 

for each disease overall, showing increased tumor and TIL presence.

See also Figure S2-11, Table S4.
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Figure 4: Quantitative performance, local model explanation, and global interpretability 
analyses of PORPOISE in papillary renal cell carcinoma (KIRP).
A. For KIRP (n=253), low-risk cases (top, n=36) often have high attention paid to complex 

and curving papillary architecture while for high-risk cases (bottom, n=63), high attention 

is paid to denser areas of tumor cells. B. Local gene attributions for the corresponding 

low-risk (top) and high-risk (bottom) cases. C. Kaplan–Meier curves for omics-only 

(left, “SNN”), histology-only (center, “AMIL”) and multimodal fusion (right, “MMF”), 

showing improved separation using MMF. D. Global gene attributions across patient cohorts 

according to unimodal interpretability (left, “SNN”), and multimodal interpretability (right, 

“MMF”). SNN and MMF were both able to identify prognostic markers such as BAP1 

in KIRP. MMF additionally attributes to other immune-related / prognostic genes such as 

PROCR and RIOK1 in KIRP. E. Exemplar high attention patches from low-risk (top) and 

high-risk (bottom) cases with corresponding cell labels. F. Quantification of cell types in 

high attention patches for each disease overall, showing increased epithelial cell and TIL 

presence.

See also Figure S2-11, Table S4.
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Figure 5: Quantitative performance, local model explanation, and global interpretability 
analyses of PORPOISE on lower-grade gliomas (LGG).
A. For LGG (n=404), high attention for low-risk cases (top, n=133) tends to focus on 

dense regions of tumor cells, while in high-risk cases (bottom, n=68), high attention focuses 

on both dense regions of tumor cells and areas of vascular proliferation. B. Local gene 

attributions for the corresponding low-risk (top) and high-risk (bottom) cases. C. Kaplan–

Meier curves for omics-only (left, “SNN”), histology-only (center, “AMIL”) and multimodal 

fusion (right, “MMF”), demonstrating improvement in patient stratification in MMF. D. 
Global gene attributions across patient cohorts according to unimodal interpretability (left, 

“SNN”), and multimodal interpretability (right, “MMF”). SNN and MMF were both able 

to identify immune-related and prognostic markers such as IDH1, ATRX, EGFR, and 

CDKN2B in LGG. E. High attention patches from low-risk (top) and high-risk (bottom) 

cases with corresponding cell labels, showing oligodendroglioma and astrocytoma subtypes 

respectively. F. Quantification of cell types in high attention patches for each disease overall, 

with statistical significance for increased necrosis in high-risk patients.

See also Figure S2-11, Table S4.
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Figure 6: Quantitative performance, local model explanation, and global interpretability 
analyses of PORPOISE on pancreatic adenocarcinoma (PAAD).
A. For PAAD (n=160), high attention for low-risk cases (top, n=40) tends to focus on 

stroma-contained dispersed glands and aggregates of lymphocytes, while in high-risk cases 

(bottom, n=40), high attention focuses on tumor-associated and myxoid stroma. B. Local 

gene attributions for the corresponding low-risk (top) and high-risk (bottom) cases from 

a and g. C. Kaplan–Meier curves for omics-only (left, “SNN”), histology-only (center, 

“AMIL”) and multimodal fusion (right, “MMF”), demonstrating SNN and AMIL showing 

poor separation of patients with low survival, with better stratification following multimodal 

integration. D. Global gene attributions across patient cohorts according to unimodal 

interpretability (left, “SNN”), and multimodal interpretability (right, “MMF”). SNN and 

MMF were both able to identify immune-related and prognostic markers such as IL8, 
EGFR, and MET in PAAD. MMF additionally shifts attribution to other immune-related / 

prognostic genes such as CD81, CDK1, and IL9. E. High attention patches from low-risk 

(top) and high-risk (bottom) cases with corresponding cell labels. F. Quantification of cell 

types in high attention patches for each disease overall, showing increased lymphocyte and 

TIL presence in low-risk patients, as well as increased necrosis presence in PAAD.

See also Figure S2-11, Table S4.
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Figure 7: Tumor Infiltrating Lymphocyte Quantification in Patient Risk Groups.
TIL quantification in high attention regions of predicted low- (BLCA n=90, BRCA n=220, 

COADREAD n=74, HNSC n=96, KIRC n=80, KIRP n=36, LGG n=133, LIHC n=85, 

LUAD n=105, LUSC n=97, PAAD n=40, SKCM n=29, STAD n=53, UCEC=104) and 

high-risk patient cases (BLCA n=93, BRCA n=223, COADREAD n=80, HNSC n=103, 

KIRC n=80, KIRP n=63, LGG n=68, LIHC n=84, LUAD n=89, LUSC n=103, PAAD n=40, 

SKCM n=55, STAD n=78, UCEC=125) across 14 cancer types. For each patient, the top 

1% of scored high attention regions (512 × 512 40× image patches) were segmented and 

analyzed for tumor and immune cell presence. Image patches with high tumor-immune 

co-localization were indicated as positive for TIL presence (and negative otherwise). Across 

all patients, the fraction of high attention patches containing TIL presence was computed 

and visualized in the box plots. A two-sample t-test was computed for each cancer type to 

test the if the means of the TIL fraction distributions of low- and high-risk patients had a 

statistically significant difference (with * marked if P-Value < 0.05).
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Biological samples

Whole slide images (TCGA) https://portal.gdc.cancer.gov/ RRID:SCR_003193

Chemicals, peptides, and recombinant proteins

Critical commercial assays

Deposited data

The Cancer Genome Atlas https://portal.gdc.cancer.gov/ RRID:SCR_003193

Experimental models: Cell lines

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA

Software and algorithms

PORPOISE This paper; https://github.com/mahmoodlab/PORPOISE
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REAGENT or RESOURCE SOURCE IDENTIFIER

CLAM https://github.com/mahmoodlab/CLAM

Pathomic Fusion https://github.com/mahmoodlab/PathomicFusion

HoVeR-Net https://github.com/vqdang/hover_net

Python (3.7.7) https://www.python.org/ RRID:SCR_008394

NVIDIA CUDA (11.0) https://developer.nvidia.com/cuda-toolkit

NVIDIA cuDNN (7.5) https://developer.nvidia.com/cudnn

PyTorch (1.6.0) https://pytorch.org RRID:SCR_018536

Captum (0.2.0) https://captum.ai

NumPy (1.18.1) http://www.numpy.org RRID:SCR_008633

Pandas (1.1.3) https://pandas.pydata.org RRID:SCR_018214

PIL (7.0.0) https://pillow.readthedocs.io/en/stable/

Openslide (1.1.1) https://openslide.org/

Scipy (1.4.1) http://www.scipy.org RRID:SCR_008058

Lifelines (0.24.6) https://lifelines.readthedocs.io/

Seaborn (0.9.0) https://seaborn.pydata.org/

Matplotlib (3.1.1) https://matplotlib.org/ RRID:SCR_008624

Shap (0.35.0) https://shap.readthedocs.io/en/latest/index.html

Other
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