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ABSTRACT
Objective: To describe the infrastructure, tools, and services developed at Stanford Medicine to maintain its data science ecosystem and
research patient data repository for clinical and translational research.

Materials and Methods: The data science ecosystem, dubbed the Stanford Data Science Resources (SDSR), includes infrastructure and tools
to create, search, retrieve, and analyze patient data, as well as services for data deidentification, linkage, and processing to extract high-value
information from healthcare IT systems. Data are made available via self-service and concierge access, on HIPAA compliant secure computing
infrastructure supported by in-depth user training.

Results: The Stanford Medicine Research Data Repository (STARR) functions as the SDSR data integration point, and includes electronic
medical records, clinical images, text, bedside monitoring data and HL7 messages. SDSR tools include tools for electronic phenotyping, cohort
building, and a search engine for patient timelines. The SDSR supports patient data collection, reproducible research, and teaching using
healthcare data, and facilitates industry collaborations and large-scale observational studies.

Discussion: Research patient data repositories and their underlying data science infrastructure are essential to realizing a learning health system
and advancing the mission of academic medical centers. Challenges to maintaining the SDSR include ensuring sufficient financial support while
providing researchers and clinicians with maximal access to data and digital infrastructure, balancing tool development with user training, and
supporting the diverse needs of users.

Conclusion: Our experience maintaining the SDSR offers a case study for academic medical centers developing data science and research
informatics infrastructure.

LAY SUMMARY
Research patient data repositories are essential for health systems to learn from the experiences of their patients and for advancing the mission
of academic medical centers. In this paper, we describe methods, tools, and practices at Stanford Medicine to maintain its research patient data
repository and computing resources to support clinical and translational research, which together comprise the Stanford Medicine Data Science
Resources (SDSR). The SDSR includes computing infrastructure and tools to create, search, retrieve, and analyze patient data. Data are made
available via self-service and staff supported access, on secure computers. The Stanford Medicine Research Data Repository functions as the
SDSR data integration point, and includes patient records such as clinical images, text, bedside monitoring data and administrative records.
SDSR tools include a search engine for patient data and data analysis tools for identifying and retrieving data about groups of patients with shared
characteristics, such as a diagnosis or treatment. The SDSR also supports patient data collection, reproducible research, and teaching using
healthcare data, and facilitates industry collaborations and observational studies. Challenges to maintaining the SDSR include ensuring sufficient
financial support while providing researchers and clinicians with maximal access to data and digital infrastructure, balancing tool development
with user training, and supporting the diverse needs of users.
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OBJECTIVE

The objective of this work is to describe the Stanford Medi-
cine Data Science Resources (SDSR) which comprise the Stan-
ford Medicine Research Data Repository (STARR) and the
infrastructure and services developed at Stanford Medicine to
maintain and provide access to STARR for clinical and trans-
lational research.

BACKGROUND AND SIGNIFICANCE

A typical health system has hundreds of independent informa-
tion technology (IT) systems, each capturing specific data
modalities over time, at widely varying levels of granularity
and frequency, and for different purposes. Research patient
data repositories at academic medical centers (AMCs)1–8 pro-
vision these data to advance data science and artificial intelli-
gence (AI) applications in medicine,9 including the design and
evaluation of machine learning models to identify and predict
clinical events,10,11 to enable clinical trial recruitment and
prospective clinical research,12 and to serve as sources of data
for large scale observational studies.13–15 To be useful for
research, operational and transactional data must be trans-
formed into events on a patient timeline that aggregates data
from multiple sources (imaging studies, bedside monitors,
electronic medical records, pharmacy records, insurance
claims), to provide a comprehensive record of each patient’s
interactions with the health system, and their outcomes over
time.16 Research data repositories must also balance provid-
ing “processed” data with providing raw data that are amena-
ble to custom analysis, such as information extraction from
unstructured clinical text.17–20 Achieving this balance is an
active process requiring engagement of a broad community of
stakeholders.

We have built on the foundation of the Stanford Transla-
tional Research Integrated Database Environment
(STRIDE),21 evolving it into the STARR to link resources
comprising the SDSR.19,22 This process began with the con-
ception and design of STARR in 2016, which expanded to
new data sources, tools, and infrastructure in 2017–2021. In
this paper, we describe the infrastructure, tools, and services
developed during this evolution, as well as the teaching, clini-
cal and translational research, and collaborations it enables.
We also compare the SDSR to data science platforms devel-
oped at other Clinical and Translational Science Award
(CTSA) Program Hubs.

MATERIALS AND METHODS

The SDSR comprises compute and data infrastructure, serv-
ices for data deidentification, linkage, and processing to
extract information from different healthcare IT systems, and
tools to create, search, retrieve, and analyze patient data.
Linked patient data generated by these services are stored
using a common data model maintained by the Observational
Health Data Sciences and Informatics (OHDSI) community.
Data are made available in deidentified form via self-service
as well as concierge supported access, on HIPAA compliant
secure computing infrastructure, with the ability to link to
images, waveforms, and wearables data. The SDSR is main-
tained via coordination amongst approximately 30 engineers
and analysts as well as 10 honest broker personnel in Stan-
ford Medicine’s Technology and Digital Solutions (TDS)

team,23 Research Informatics Center (RIC), and the Stanford
Research Computing Center (SRCC).24 Each SDSR compo-
nent is described in the following dedicated sections, with
references to technical whitepapers for additional details.

Infrastructure
A common data model to organize clinical data

STARR19 uses the OHDSI Observational Medical Outcomes
Partnership (OMOP) Common Data Model (CDM),25 which
provides interoperability across research centers and data
sources25–27 to enable OHDSI network studies.14 The OMOP
CDM is used widely by a large community of developers and
researchers26,28,29 to support a suite of open source data proc-
essing and analysis tools in the OHDSI community for creat-
ing cohort definitions, analysis designs, and reporting of
results.30

The OMOP CDM captures patient-specific variables
including demographics, diagnosis records, procedure
records, medication records, physiologic measurements (vital
signs, height, weight etc.), laboratory test results, structured
content extracted from clinical notes via text processing, as
well as information about providers and health systems. The
OMOP CDM does not yet provide a data representation
scheme for other data such as images but related efforts are in
progress, including a pilot implementation of Picture Archiv-
ing and Communication System (PACS) data in the OMOP
CDM.31

Computing resources

We use Google Cloud Platform (GCP) under a Business Asso-
ciate Agreement (BAA) between Stanford and Google. We use
containerization solutions for software encapsulation, includ-
ing Docker and Singularity. We use GCP to instantiate virtual
machines for data processing (described below) and provi-
sioning data to researchers as BigQuery datasets. The decision
to use cloud infrastructure is based on our experience in
developing data processing workflows in genomics, where
cloud versus on-premise infrastructure, including data center
support staff, did not differ substantially in terms of cost.32

However, cloud computing offers the ability to easily experi-
ment with new software stacks, eg, comparing tools such as
DBT33 and WDL,34 as well as technical advantages including
faster query times using BigQuery, the ability to scale up com-
putational resources on-demand, and the ability to instantiate
data science toolkits for researchers within a secure
environment.35

Self-serve access to secure computing infrastructure and
deidentified data

SRCC maintains a secure data science platform, Nero, which
uses a combination of on-premise servers, containerization,
and cloud computing to support large scale data analytics36

by providing researchers with self-serve access to compute
environments with tools such as Jupyter notebooks, Python,
Anaconda, TensorFlow, and RStudio. Nero also supports
OHDSI tools including the ATLAS tool for search and cohort
building and underlying R packages. TDS maintains
researcher self-service cohort building and tools developed
internally at Stanford,21 and the OHDSI ATLAS web-based
cohort analysis tool, for creating cohort definitions and build-
ing patient datasets from STARR data. Costs for using Nero
vary with usage, but on average users can expect to spend
�$40/month/TB for storage, �$25/month/TB (storage) and
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�$5/TB (query) for BigQuery, and �$100/month for running
a compute instance with 30GB RAM, a 100 GB disk, and
8vCPUs.37

Stanford University classifies even deidentified patient data
as high risk, and thus all SDSR datasets (see “Results”) are
provisioned via Nero. To gain access to deidentified data on
Nero, researchers complete privacy training and sign a data
use agreement, referred to as a Data Privacy Attestation, that
prohibits recipients from attempting to reidentify the data
subjects, or from sharing the data. The signed Data Privacy
Attestation serves as a record of who has access to the deiden-
tified data, and their agreement to its terms of use. Research-
ers who access high risk data are also required to use laptops
configured with encrypted hard drives by University IT, and
to attest that they only store high risk data on approved com-
pute environments.

Services
Data ingestion and quality assurance

The Stanford adult and children’s hospitals are on separate
Epic instances and corresponding Clarity data warehouses.
When patients check in for an appointment at either of the
hospitals they provide informed consent regarding how their
data (identified or deidentified) may be collected by these sys-
tems and used in providing care or for research. SDSR serv-
ices migrate data from Clarity to GCP BigQuery using the
Apache Avro format on a weekly basis19 for extract-
transform-load (ETL) into STARR.

Two essential and related components of the ETL are: (1)
deidentification and (2) patient identifier creation and mainte-
nance. The deidentification process first removes structured
fields containing known identifying information (Medical
Record Numbers, Social Security Numbers, names, addresses
etc.), and also deidentifies unstructured data including notes
and images (as described in the “Deidentification of Notes
and Images” section below). A randomly chosen date shift is
then applied to the dates of each patient record. The same
date shift value is used for all records associated with a single
patient such that the amount of time between events for each
patient remains unchanged. Lastly, a new random “person
identifier” is created for each patient, which is consistent
across STARR datasets to enable automatic linkage. In other
words, a query for Person “12345” will retrieve all records
across STARR datasets for the same patient. Identifiers are
also persistent across data refreshes, such that a query for Per-
son “12345” to a dataset created in Q1 2021 and an updated
version of that dataset created in Q2 2021 will retrieve data
for the same patient. We also maintain “codebooks” that
keep track of patient medical record numbers (MRNs) from
Epic Clarity and their corresponding person identifiers cre-
ated for each patient during ETL in a secure location with
access restricted to TDS staff. The date shift applied for each
patient is also stored in the patient identifier codebooks.
These codebooks enable linkage from STARR deidentified
datasets to other project-specific datasets that may contain
identified data (eg, data collected by providers as part of IRB
approved human subjects research) without releasing identify-
ing information to investigators.

The ETL also balances providing processed data with pro-
viding raw data that are needed in original form for research
purposes. For example, the ETL converts partially unstruc-
tured data from clinical flowsheets into structured records,
such as vital sign measurements including blood pressure,

oxygen level, heart rate, respiratory rate, Sequential Organ
Failure Assessment (SOFA) scores, Glasgow Coma Scale
Scores, and Deterioration Index scores, but ingests and pro-
vides access to clinical notes as-is. The ETL preserves visit-
level linkage of encounter details (such as diagnoses, proce-
dures etc.) from the source Clarity data.

During and after ETL, we use a combination of custom
processes and OHDSI tools including the Data Quality Dash-
board (DQD) for data quality checks. Internal quality assur-
ance processes include manual review of small numbers of
records to ensure integrity across source records and their
OMOP CDM counterparts, and comparison of aggregate
counts of clinical events over time to identify anomalous var-
iation that could indicate errors in ETL.

In addition to data from Epic EMRs, the SDSR also hosts
radiology, cardiology, and bedside monitor data. In 2018, we
ingested all historical radiology data from the shared Stanford
Health Care and Stanford Children’s Health PACS into
STARR. In 2021, we redesigned the imaging ingestion pipe-
line to an incremental model that pushes PACS data updates
on a daily basis to STARR from a Vendor Neutral Archive
(VNA) that aggregates imaging data from multiple clinics and
applications.19,38 This redesign, part of the larger evolution of
STRIDE into STARR, has eliminated the need for large,
expensive retrieval, and deidentification requests from Stan-
ford’s PACS. The processing, cleaning, and deidentification
rely on the DICOM standard38 and are independent of the
ingestion mechanism. The DICOM processing pipeline sup-
ports both radiology and cardiology DICOM records.

Bedside monitoring data include waveform and vitals signs
from patient monitors, telemetry devices, and third-party
devices connected to the Philips IntelliBridge family, such as
heart rate, blood pressure, pulse oximetry, alarms and alerts,
and continuous waveforms such as electrocardiograms and
invasive pressures. A nightly extract is compressed, deidenti-
fied, and copied to GCP cloud storage. Data is validated at
this stage by verifying daily counts in the clinical database
against the number of rows in the extracted files. Identified
and deidentified vitals and metadata are stored in separate
cloud storage locations and datasets. We also generate meta-
data to record if a given list of patients, bed locations or calen-
dar times have bedside monitoring data and store the
locations of the corresponding data, enabling researchers to
identify waveform and vitals records specific to patients or
studies of interest. The data are cross-linked with EMRs as
well as other sources such as electroencephalogram (EEG),
radiology, and video monitoring data.39 We use Google Big-
Query for storing and retrieving metadata and cloud storage
for storing and retrieving raw and waveform data. We also
use on-demand GCP virtual machines for the data processing
described above.

Deidentification of notes and images

In addition to the deidentification of structured patient data,
we use a 2-step process to deidentify clinical text. We first use
TiDE, a hybrid NLP approach composed of CoreNLP38,40

and pattern-matching heuristics, to find mentions of identify-
ing information. We then use a “hiding in plain sight”
(HIPS)41 approach, whereby we replace identifiers (including
names, places, and addresses) flagged by TiDE with surrogate
text. For example, names are detected using a database of
known names from source data and are replaced with surro-
gate names. If TiDE misses a mention of a real name, using
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HIPS ensures that it will not be apparent which names are
original and which have been replaced. At the time of writing,
name replacement is gender aware but not ethnicity aware.
Surrogate addresses are selected randomly. The results of dei-
dentification are reviewed via manual quality control,
described in Datta et al, supplement 6.19

To deidentify clinical images we developed a distributed
software application that operates on-demand in response to
user requests for images.38 The deidentification mechanisms
are based on the Radiological Society of North America Clini-
cal Trial Processor (CTP)42 updated with custom filtering,
deidentification, and pixel scrubbing rules to manage
Stanford-specific imaging types and features.38 This on-
demand service avoids having to deidentify images in large
batches (Stanford Medicine generates �450 terabytes of radi-
ology imaging data each year), enabling us to meet researcher
needs while maintaining computational efficiency.

Entity extraction from text

SDSR services process clinical notes using an entity recogni-
tion pipeline43 to provide researchers with a simple represen-
tation of provider note content. This pipeline constructs a
dictionary of clinical terms from the Unified Medical Lan-
guage System terminologies44 and searches for mentions of
these dictionary terms in all provider notes. Using additional
rule-based modules based on note section headers, as well as
negation45 and context46 detection methods, we flag each
mention to indicate whether it is negated, about the patient
(vs a family member, as in the Family History section of
notes) and present or past tense. The processed output only
retains whether a term occurred in a given note or not. This
“bag-of-words” representation of the content of clinical notes
can then be used for advanced electronic phenotyping47–50

alongside other structured data such as diagnosis codes, pro-
cedure records, vitals, and laboratory test results.

Governance and funding

The priorities and activities of the TDS, RIC, and SRCC
teams are informed by 2 advisory committees—the Research
Technology Advisory Committee and the Dean’s Office Gov-
ernance committee—composed of School of Medicine faculty,
the Office of the Senior Associate Dean of Research, and Stan-
ford Health Care leadership including the Chief Information
Officer and Chief Analytics Officer. The first provides advice
via a transparent, consensus driven process for investments
and management of technology that supports our research
mission. The second synthesizes input from other advisory
committees (such as on Education Technology and Adminis-
trative IT systems) to make a recommendation for approval
by the Dean’s office. This approach is analogous to NIH grant
reviews where a study section scores a proposal on its scien-
tific merits, and then the relevant institute’s program office
and council score based on alignment with strategic priorities.
An independent Data Management and Access committee
decides on which data can be used for what purpose as well
as manages decisions around requests to access financial or
other sensitive data for research. Prioritization is also
informed by user requests, for example if many STARR users
request a specific data type or tool functionality, resources are
dedicated to that work.

The personnel, services, and datasets that make up the
SDSR are supported with a mix of institutional and grant
sources. Institutional support includes funding from the

School of Medicine Dean’s Office, Stanford’s CTSA (Spec-
trum), and Stanford Health Care (as the parent organization
of the TDS team). Investigators that use SDSR resources,
including BigQuery and GCP infrastructure, allocate grant
funding to support their use. Concierge Service consultations
(described above) are subsidized by the Dean’s Office; any
resulting custom data extracts may require additional support
from other sources, such as investigator grants, to cover com-
pute infrastructure and labor. In the future, SDSR will imple-
ment a cost recovery model for use of STARR datasets and
imaging deidentification, whereby investigators and TDS
jointly create Statements of Work to be invoiced and reim-
bursed from investigator funds. In general, Dean’s Office
funds support new SDSR projects and infrastructure improve-
ments (eg, the addition of a new data source to STARR, such
as whole-slide pathology data), and maintenance is supported
via cost recovery.

RESULTS

The STARR was launched in the fall of 2019, and includes
EMR data, deidentified clinical images and text, bedside mon-
itor data, and HL7 messages. STARR serves as an integration
point for other SDSR components, including a real-time alert-
ing system for clinical trials recruitment and tools for collect-
ing patient reported outcomes, survey responses, and data
from wearables (Figure 1). This collection of resources
anchors the development of analytic tools, supports reprodu-
cible research, enhances graduate teaching on the use of
healthcare data, and enables industry collaborations and
international clinical studies.

STARR datasets

STARR houses patient-level data from a number of sources
(see “Materials and Methods” section titled “Data Ingestion
and Quality Assurance”) consisting of many data types, each
of which we describe below. Datasets in STARR (Table 1)
can be cross-linked on a project-specific basis with other
datasets.

STARR OMOP51 is the primary clinical data warehouse
for Stanford Medicine researchers, with records for more
than 3.4 million patients from the adult hospital and outpa-
tient clinics that make up Stanford Health Care and the Lucile
Packard Children’s Hospital and its affiliated clinics that com-
prise Stanford Children’s Health. STARR OMOP data are
updated and released monthly to the research community.
Hundred percent of the patients with at least one encounter in
STARR OMOP have age and date of birth on record. Sixty-
four percent of patients have at least one diagnosis code, over
46% have medication information, 78% have laboratory test
information, and over 85% of patients have clinical notes
data available. STARR OMOP data are available to research-
ers in both identified and deidentified form, as described
above.

STARR Radio38 contains records from the Stanford PACS,
from over 5.7 million studies and over 1 billion Digital Imag-
ing and Communications in Medicine (DICOM) records,
totaling more than 2 petabytes of data. This represents over
95% of the data in PACS generated over the last 10 years.
STARR Radio data includes images from multiple modalities
such as radiography, computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography
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(PET), and ultrasound (including video), from both the adult
and children’s hospitals.

STARR Wave39,52 consists of pediatric bedside monitoring
data linkable to EMR data in STARR OMOP and radiology
data in STARR Radio. Bedside monitors capture heart rate,
blood pressure, pulse oximetry, and electrocardiogram data
at second-level resolution, as well as alerts related to these
vital signs. These data include an average of 180 000 alerts
from hundreds of monitors for approximately 280 patients
per day, corresponding to approximately 75 gigabytes of data
extracted per day and a total of more than 17 terabytes as of
this writing. Future versions of STARR Wave will include
data from the adult hospital as well as the children’s hospital.

SDSR tools

A key component of the SDSR ecosystem is the development
and maintenance of tools to support clinical data science.
Table 2 summarizes tools developed at Stanford and available
to Stanford Medicine researchers for patient data collection,
analytics, and machine learning for diverse informatics and
research applications. These tools operate over the foundation
of the data ingestion, processing (including deidentification),
and access mechanisms described in the “Materials and Meth-
ods” section.

SDSR data migration and data deidentification services
have also enabled the public release of a large number of data

sets, including 19 imaging data sets spanning a variety of
imaging modalities and body systems and comprising hun-
dreds of thousands of imaging studies and millions of
images.69–72 These large high-quality clinical datasets are
available to the broader research community beyond Stan-
ford. The majority of these data sets has been compiled from
Stanford Health Care patient records and is provided specifi-
cally for the purpose of developing and validating machine
learning applications.

SDSR user community

SDSR supports more than 120 faculty research groups, more
than 800 cloud compute users, and more than 300 self-serve
deidentified STARR data users as of this writing. Since March
2020, the number of STARR data users has increased by
86% and the number of principal investigators using STARR
data and services by 70%. As a baseline for comparison,
approximately 630 users searched patient data using STRIDE
tools (the other primary entry point for Stanford patient data
access) in 2021, with more than 460 conducting chart review.
Approximately 25–30 investigators per quarter receive con-
cierge support by RIC for data delivery and analysis.

Research and education

TDS provides workshops, office hours, and documentation as
an integral part of the SDSR ecosystem. Day-long tutorials
train users in data science tools and resources for analyzing
STARR datasets, as well as provide the TDS staff a view into
researchers’ processes and methodology. The tutorial series
“Stanford Medicine Tools for Healthcare Data Science” is
available as a YouTube channel.73 We also maintain a Gitlab
with sample code.74 To date, we have trained approximately
115 researchers in our workshops and held more than 125
office hours.

Table 1. Year range, number of records, and approximate size of each

STARR dataset

Dataset Year range Number of records (unit) Size (TB)

STARR OMOP 1997–present >3 400 000 (patients) 0.3
STARR Radio 2010–present >1 000 000 000 (images) 2000
STARR Wave 2017–present >1 000 000 (studies) 17

Figure 1. Overview of the SDSR ecosystem. From left to right: the sources of data that comprise patient timelines, which are processed to create the

STARR datasets that can be retrieved and analyzed using community and internally developed tools. These processing systems, datasets and tools are

maintained on a secure computing infrastructure. Consulting support in the form of informatics and analytics services, user training, and office hours, is

provided.
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The Biomedical Informatics graduate course, Data Science
in Medicine, teaches students to search, retrieve, process, and
analyze deidentified patient data from STARR OMOP via lec-
tures and projects. Similarly, the Epidemiology undergraduate
and graduate course Big Data Methods for Behavioral, Social,
and Population Health Research incorporates hands-on expe-
rience using OHDSI tools with STARR deidentified patient
data. The Biodesign course Biodesign for Digital Health gives
students the opportunity to prototype tools using resources
such as the mHealth platform to tackle real digital health
challenges. In all of these courses, students gain experience
working with real clinical data and tools, with minimal over-
head for instructors, while protecting patient privacy via
SDSR deidentification and access control services.

The combination of data, tools, training, and course offer-
ings have enabled diverse research including hackathons and
challenges,75–79 multi-institutional80–87 and industry collabo-
rations,88–90 interdisciplinary studies,91,92 and health system
implementations of informatics-driven research.93–96

Comparison to data science platforms at other

CTSA program hubs

We reviewed materials published online by 4 other CTSA Pro-
gram Hubs to identify and compare their data science plat-
forms (compute environments, common data models, and
user-facing tools) to the SDSR (Table 3). We found that the
SDSR shares different design elements with the data science
platforms developed and maintained by each of these hubs.
The SDSR is most similar to UCSF’s data resources in its
emphasis on self-serve data access and compute resource
availability for researchers. UCSF also makes deidentified
patient data available on-demand to researchers.97 In

contrast, Harvard98 emphasizes services to support research,
including bioinformatics and biostatistics consulting services,
and its Streamlined, Multisite, Accelerated Resources for Tri-
als (SMART) IRB Reliance Platform for creating, tracking
and sharing study protocols, and streamlining IRB review. It
also maintains research resources including RedCap, the ACT
(Accrual to Clinical Trials) Network platform for querying
patient data to assess feasibility for clinical studies across the
CTSA Consortium, and the Harvard Catalyst Profiles
resource for discovering research done by Harvard faculty.
Duke, Harvard, and Vanderbilt use CDMs other than
OMOP, while both Duke and Vanderbilt also provide user
access to self-serve data search tools.

DISCUSSION

The primary goal of the SDSR is to make data assets available
for research and provide computational resources to use those
data. Just as libraries (which increasingly steward digital
resources) are essential for schools and research institutions,
patient data repositories are essentially “libraries” document-
ing the patient care experience, which is necessary for advanc-
ing the mission of AMCs. They are also essential for
building a learning health system (LHS), as envisioned by the
Institute of Medicine (IOM; now the National Academy of
Medicine, or NAM), that leverages integrated digital infra-
structure to provide data-driven and coordinated care cen-
tered on the patient. The NAM and National Science
Foundation envision a LHS that can rapidly inform decisions
and have transformative effects on health.106 An ecosystem
such as the SDSR is necessary to provide exceptional care to
patients and to inform health system evaluation and improve-
ment with data.

Table 2. Tools for data collection, analytics, and machine learning in the SDSR ecosystem

Tool Summary Publications

Patient data collection
CHOIR The Collaborative Health Outcomes Information Registry (CHOIR) is an open-source platform

for generating, collecting, and summarizing patient-centered data via integration with EMR
software using SMART on FHIR, delivering surveys and tracking patient responses. CHOIR
data can be directly linked to STARR datasets.

53,54

mHealth mHealth comprises HIPAA-compliant services that provide secure storage and processing
infrastructure for data collected via mobile devices such as smartphones and watches. mHealth
services are not restricted to Stanford Health Care patients, and thus cannot be directly linked
to STARR datasets.

55–59

REDCap REDCap is a web platform that allows researchers and clinicians to develop surveys, securely
collect participant data and export that data for analysis. REDCap Surveys are not restricted to
Stanford Health Care patients, and thus cannot be directly linked to STARR datasets.

60–63

CEP Engine The Complex Event Processing (CEP) engine processes the live Stanford Health Care HL7 data
feed to identify patients who may be eligible for clinical trials operating out of Stanford
Medicine. CEP alert data can be linked to STARR datasets upon request.

64,65

Data analytics
ACE The Advanced Cohort Engine (ACE) is a scalable patient search engine and datastore designed

for electronic phenotyping and building patient cohorts. ACE is deployed over STARR OMOP
data.

66

ePAD The electronic Physician Annotation Device (ePAD) is a web-based imaging informatics platform
for quantitative imaging analysis. ePAD data can be linked to STARR datasets upon request.

67

Machine learning
Trove A natural language processing (NLP) framework using weak supervision for named entity

recognition (NER), attribute classification, and relation extraction. Trove operates over clinical
notes available in STARR OMOP.

20

CLMBR Clinical language model-based representations (CLMBR) is a deep learning architecture for
learning transferable feature representations of patient timelines, enabling the development of
patient classifiers for risk stratification and time-to-event models. CLMBR operates over patient
records in STARR OMOP.

68
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The SDSR spans the School of Medicine, Stanford Health
Care, and Stanford Children’s Health, which are legally sepa-
rate entities and historically have had separate IT depart-
ments, each with its own Chief Information Officer. We
retained an external consulting group, which advised us to
unify the IT departments, and we embarked on that journey
in 2017, completing it in 2021. TDS is the unified IT depart-
ment for the School of Medicine and Stanford Health Care.
As part of this unification, we removed redundancies such as
separate Epic Clarity instances for operational and research
use. Both the research data warehouse (STARR) and the
operational enterprise data warehouse (Health Catalyst) are
now populated from the same Clarity instance. The benefit of
this separation-with-one-source is that we can provision dei-
dentified data for research in a cloud hosted environment,
enabling a high degree of researcher self-service107 with no
impact on operational projects. The downside is that opera-
tional deployment of research innovations such as machine
learning models for classification or prediction requires either
retraining on operational data marts, or manual reconcilia-
tion of the features that are inputs to the model. Rapid (and
ideally automated) reconciliation of the feature space between
the research and operational data warehouses remains one of
the biggest pain points in implementing machine learning
models to guide care.108 So, while the separation has sped up
research (ie, the creation of classifiers and predictors across a
myriad of data types) their translation into improving care
remains a bottleneck—leading to the creation of a new data
science team in Stanford Health Care109 to streamline that
process.

One potential limitation of SDSR’s design is the use of the
OMOP CDM to structure clinical data in STARR. The ETL
from Epic Clarity to the OMOP CDM requires many data ele-
ments from Clarity to be omitted from STARR, in order to
conform to OMOP CDM rules and conventions. For exam-
ple, medication record details such as directions for use (sig-
netur) and frequency cannot be represented in the CDM’s
drug exposure table. These data omissions limit the kinds of
analyses that can be done using STARR data. The benefits of
the ability to conduct network studies with other institutions
using the OMOP CDM and the availability of community
maintained statistical analysis packages available via OHDSI
help to balance the cost of adhering to OMOP CDM design
decisions.

Maintaining and improving the SDSR has also surfaced a
number of challenges. First, SDSR open source tools and self-

serve data access processes are free in the sense that they ena-
ble the least restrictive access possible, but they are not free in
the sense of cost. The shift to cloud computing as the primary
form of SDSR computational resources means that our costs
have shifted from buying and managing hardware and hiring
storage, server, database, and network administrators to pay-
ing for cloud services and hiring cloud DevOps engineers. In
some areas, hiring software engineers who are experienced
working with cloud services may be a challenge. Ensuring
continued financial support for SDSR infrastructure and per-
sonnel via large center grants such as the CTSAs, internal
institutional funding, and chargebacks to faculty research
funds is a crucial process. Striking the right balance among
these sources of financial support to ensure continued opera-
tion of the SDSR while maximizing researcher access remains
a challenge, and one that is not unique to Stanford Medicine.
Second, providing effective user training is essential. There is
also a substantial cost trade-off in making tools “user friend-
ly” versus training users to effectively use open source tools.
Often, user training requires a larger upfront commitment,
but training users is among the few scalable ways to create
community learning that minimizes the need for project-
specific, staff intensive concierge services. Last, finding the
right ratio of tool builders and service providers to meet vastly
differing user skill levels remains challenging. We currently
maintain teams primarily of builders, with fewer service pro-
viders, as we emphasize user training and self-service access to
data and analytic tools. We regularly solicit feedback from
SDSR team members and users, which will provide insight as
to the effects of this approach.

CONCLUSION

Research patient data repositories and data science platforms
are a cornerstone for research at AMCs and a prerequisite for
LHSs. The SDSR ecosystem provides data, methods, tools,
and personnel support for clinical and translational data sci-
ence at Stanford Medicine with the goal of seeding a vibrant
LHS. Our immediate efforts include providing data from
diverse sources including EMRs, radiology, and cardiology
imaging, bedside monitors, health system messaging services,
wearables, and patient reported data, as well as tools that
support a diverse set of downstream use cases and usage sce-
narios. We hope that our experiences and the design of the
SDSR ecosystem will serve as an informative case study for
teams at other AMCs. Keeping pace with the growing scale

Table 3. Data science platforms at other CTSA Program Hubs

CTSA Program Hub Compute environment(s) Common data model(s) User-facing tool(s)

Duke University99–101 Amazon Web Services; Google
Cloud Platform; Microsoft
Azure

PCORI DEDUCE search tool

Harvard University102,103 Amazon Web Services; Google
Cloud Platform; Microsoft
Azure; PACE private cloud
services

i2b2 Harvard Catalyst Profiles,
SHRINE network query tool,
i2b2 tranSMART, REDCap,
SMART IRB Reliance Platform

Vanderbilt University104,105 Microsoft Azure; Google Cloud
Platform; VUMC private cloud
services

OMOP, PCORI, i2b2 VUMC Office of Research Infor-
matics Synthetic Derivative and
Research Derivative search tools

University of California San
Francisco97

Amazon Web Services; on-premise
high-performance computing
Linux environment

OMOP PatientExploreR, JupyterHub,
Hue SQL Assistant
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and complexity of modern health systems will be an ongoing
challenge, but the need for an SDSR like ecosystem to support
research, education, and innovation in clinical care is clear.
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