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Abstract 
Background: More than four million people die each year in the 
month following surgery, and many more experience complications 
such as acute kidney injury. Some of these outcomes may be 
prevented through early identification of at-risk patients and through 
intraoperative risk mitigation. Telemedicine has revolutionized the 
way at-risk patients are identified in critical care, but intraoperative 
telemedicine services are not widely used in anesthesiology. Clinicians 
in telemedicine settings may assist with risk stratification and 
brainstorm risk mitigation strategies while clinicians in the operating 
room are busy performing other patient care tasks. Machine learning 
tools may help clinicians in telemedicine settings leverage the 
abundant electronic health data available in the perioperative period. 
The primary hypothesis for this study is that anesthesiology clinicians 
can predict postoperative complications more accurately with 
machine learning assistance than without machine learning 
assistance. 
Methods: This investigation is a sub-study nested within the 
TECTONICS randomized clinical trial (NCT03923699). As part of 
TECTONICS, study team members who are anesthesiology clinicians 
working in a telemedicine setting are currently reviewing ongoing 
surgical cases and documenting how likely they feel the patient is to 
experience 30-day in-hospital death or acute kidney injury. For 
patients who are included in this sub-study, these case reviews will be 
randomized to be performed with access to a display showing 
machine learning predictions for the postoperative complications or 
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without access to the display. The accuracy of the predictions will be 
compared across these two groups. 
Conclusion: Successful completion of this study will help define the 
role of machine learning not only for intraoperative telemedicine, but 
for other risk assessment tasks before, during, and after surgery. 
Registration: ORACLE is registered on ClinicalTrials.gov: 
NCT05042804; registered September 13, 2021.
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Introduction
Background and rationale
Each year, more than four million people worldwide die within 30 days after surgery, making perioperative events the
third-leading cause of death.1 One common postoperative complication that is associatedwith an increased risk of death is
acute kidney injury (AKI).2–6 In one retrospective study, postoperative AKI occurred in 39% of hospitalized surgical
patients who had their creatinine checked after surgery.7 In-hospital mortality increased from 0.6% among those without
AKI to 8.8% among those who experienced AKI.

Some postoperative deaths and AKI may be prevented through identification and modification of risk factors. Although
some risk factors (e.g., age8–10) are not modifiable and other risk factors (e.g., preoperative glycemic control8,11,12) are no
longer modifiable once surgery has begun, several important risk factors are under the anesthesiologist’s control during
surgery. For example, intraoperative hypotension is a well-established risk factor both for postoperative death13–15 and
for postoperative AKI.15–17 Interventions on such risk factors may therefore affect outcomes.18,19 Appropriate adjust-
ments to the postoperative care plan may also impact outcomes.19

Telemedicine has successfully improved mortality and other outcomes in the intensive care unit (ICU), and similar
results may be expected in the operating room. In a stepped-wedge trial across units in a single medical center, tele-ICU
implementationwas associatedwith an absolutemortality reduction of nearly 2%.20 In a subsequentmulti-center pre-post
study, tele-ICU was associated with reduced in-hospital mortality and length of stay.21 Improved outcomes were
associated with enhanced compliance with best clinical practice guidelines.20,21 The effect of telemedicine on outcomes
may depend on characteristics of the patients in question—in one study, tele-ICU implementation improved mortality
only among patients with higher illness severity scores.22

The effectiveness of a telemedicine intervention depends on how well clinicians working in the telemedicine setting can
assess patient risk and identify potential interventions to reduce risk. Accurate intraoperative risk assessment by clinicians
is challenging for the following reasons. First, the sheer volume of data available is more than the human brain can
comprehend with its limited data processing capacity.23,24 Competing clinical demands reduce the cognitive capacity
available to process these data.25,26 Second, anesthesiology clinicians frequently use the available data to make decisions
that are not based on sound logic.27 Clinicians may anchor on the first diagnosis that comes to mind, only seek out data
that confirm a previously suspected diagnosis, or interpret ambiguous findings with a false sense of certainty.27 These
concerns become increasingly significant as clinicians monitor increasing numbers of patients and have less time to
review each patient’s information.

Clinicians in telemedicine settings may use machine learning (ML) tools to address their innate cognitive deficiencies.
Computers can process larger quantities of data more quickly than a human, model more complex relationships and
interactions among inputs, and will not fatigue.28–30 The ability of clinicians to integrate the output of ML tools into their
overall assessment of the patient depends on theML output being presented in a manner that makes sense to the clinician
and caters to the clinician’s information needs.31,32 These needs will vary depending on the clinician’s background and
the context in which the clinician is working.

Preliminary data
This study is possible because the investigators have previously developed ML algorithms for predicting postoperative
death and AKI. They used a retrospective cohort of approximately 110,000 patients who underwent surgical procedures
at Barnes-Jewish Hospital between 2012 and 2016.33 This dataset was divided into a training set (for model parameter
tuning), a validation set (for hyperparameter tuning), and a test set (for quantifying model performance) in a ratio of
approximately 7:1:2. Inputs to the models included patient characteristics, health conditions, preoperative vital signs
and laboratory values, and intraoperative vital signs and medications. The resulting model predicted postoperative
death with excellent accuracy (area under the receiver operating characteristic curve of 0.91, 95% confidence interval

REVISED Amendments from Version 1

This revised version was edited in response to the reviewer comments. Additional methods information has been added
describing the training and validation of the machine learning predictions. In addition, we have added clarification that
patients on preoperative dialysis, undergoing dialysis access procedures, or with baseline creatinine > 4.0 mg/dl will be
excluded from acute kidney injury analyses. We have also added some sensitivity analyses and secondary outcomes
suggested by the reviewer.

Any further responses from the reviewers can be found at the end of the article
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0.90-0.92).34,35 A separate model predicted AKI with good accuracy (area under the receiver operating characteristic
curve of 0.82, 95% confidence interval 0.81-0.84).36

In addition, the investigators have recently conducted a series of focus groups and user interviews with anesthesiology
clinicians (unpublished data) to learn about their workflows and information needs when working in the intraoperative
telemedicine unit at Barnes-Jewish Hospital. Based on these insights, the investigators have designed a display interface
that shows ML predictions for postoperative death and AKI in real-time during surgery.

Objective
To determine whether anesthesiology clinicians in a telemedicine setting can predict postoperative death and AKI more
accurately with ML assistance than without ML assistance. The hypothesis is that clinician predictions will be more
accurate with ML assistance than without ML assistance.

Overall study design
The Perioperative Outcome Risk Assessment with Computer Learning Enhancement (Periop ORACLE) study will be a
sub-study nested within the ongoing TECTONICS trial (NCT03923699). TECTONICS is a single-center randomized
clinical trial assessing the impact of an anesthesiology control tower (ACT) on postoperative 30-day mortality, delirium,
respiratory failure, and acute kidney injury.37 As part of the TECTONICS trial, clinicians in the ACT perform medical
record case reviews during the early part of surgery and document how likely they feel each patient is to experience
postoperative death andAKI. In PeriopORACLE, these case reviewswill be randomized to be performedwith or without
access to ML predictions.

Methods: Participants, interventions, and outcomes
Study setting
The studywill be conducted at Barnes-Jewish Hospital, a 1,252-bed university-affiliated tertiary care facility in St. Louis,
MO. About 19,000 inpatient surgeries are performed in the hospital’s 58 operating rooms each year.

Eligibility criteria
The participants will include all patients enrolled in the TECTONICS trial during the 12-month sub-study period for
whom the ACT clinicians conduct a case review. The inclusion criteria for TECTONICS include (1) surgery in the main
operating suite at Barnes-Jewish Hospital, (2) surgery during hours of ACT operation (weekdays 7:00am-4:00pm), and
(3) age ≥ 18. Exclusion criteria include procedures performed without anesthesiology services.

Recruitment
Participants are currently enrolled in TECTONICS via a waiver of consent. The investigators have obtained a waiver of
informed consent to include these patients in Periop ORACLE as well.

Interventions – Machine learning algorithms
The machine learning models used in this study were originally trained and validated on a retrospective cohort of
approximately 110,000 adult patients who underwent surgery with general anesthesia at Barnes-Jewish Hospital between
2012 and 2016. Input features included demographic characteristics, comorbid conditions, preoperative vital signs,
surgical service, functional capacity as documented during the preoperative assessment, and most recent values of
selected laboratory tests. A random forest model was implemented in scikit-learn. In the holdout validation cohort of
21,171 patients, the incidence of postoperative death was 2.2% and the model predicted this outcome with receiver
operating characteristic area under curve (AUC) of 0.939 and precision-recall AUC of 0.161. The incidence of
postoperative AKI was 6.1% and the model predicted this outcome with receiver operating characteristic AUC of
0.799 and precision-recall AUC of 0.275.

In February 2022, the models were retrained using a newer cohort of 84,455 patients who underwent surgery with
general anesthesia at Barnes-Jewish Hospital between 2018 and 2020. This time period was after the hospital had
transitioned from its previous electronic health record systems (including MetaVision as its anesthesia information
management system) to Epic (Epic, Verona, WI). Input features were the same as the previous models, with the addition
of the planned surgical procedure text field. A regularized logistic regression was used to predict the outcome from the
words in the planned surgical procedure text field. This was used to initialize a gradient boosted decision tree, which was
trained using the remaining features. Hyperparameters were selected by 10-fold cross validation. Models were imple-
mented in XGBoost. In the holdout validation cohort of 16,891 patients, the incidence of postoperative death was 1.9%
and the model predicted this outcome with receiver operating characteristic AUC of 0.91 and precision-recall AUC of
0.27. The incidence of postoperative AKI was 13.3% and the model predicted this outcome with receiver operating
characteristic AUC of 0.90 and precision-recall AUC of 0.66.
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A password-protected web application on a secure server has been created for delivery of machine learning algorithm
outputs to clinicians. The design of this web application was informed by input obtained by users (clinicians from the
ACT) in focus group sessions. For each patient, the machine learning predictions are presented in the form of predicted
probabilities of each outcome (e.g., 4.5% chance of AKI). In addition, a list of features contributingmost to the prediction
is shown, along with Shapley values. During the focus group meetings, most users said they would find it overwhelming
to see confidence intervals around the predicted probabilities. A fact sheet about each model is available on demand,
including the receiver operating characteristic curve, precision-recall curve, and calibration curve.

Interventions – Implementation and workflow
Clinicians in the ACT currently conduct case reviews by viewing the patient’s records in AlertWatch (AlertWatch, Ann
Arbor, MI) and Epic. AlertWatch is an FDA-approved patient monitoring system designed for use in the operating room.
Clinicians in the ACT use a customized version of AlertWatch that has been adapted for use in a telemedicine setting.38

Epic is the electronic health record system utilized at Barnes-Jewish Hospital. For patients included in Periop ORACLE,
each case review will be randomized in a 1:1 fashion to be completed with or without ML assistance. If the case review is
randomized toML assistance, the clinicianwill access themachine learningweb application (see previous section) during
the case review. Study staff will be immediately available in the ACT during all case reviews to assist with accessing the
display interface if needed to improve adherence to the protocol. If the case review is not randomized to ML assistance,
the clinician will not access this web application. This choice of comparator mimics current practice more closely than
using an active comparator. After viewing the patient’s data, the clinician will complete a case review from inAlertWatch
(as described in the data collection section later in this document).

Outcomes
The co-primary outcomeswill be clinician accuracy in predicting postoperative death and clinician accuracy in predicting
postoperative AKI. Clinician predictions will be retrieved from the case review forms completed in AlertWatch.
Observed death and observed AKI will be retrieved from Epic. Death will be defined as 30-day in-hospital mortality.
AKI will be defined as a creatinine increase ≥0.3 mg/dl above baseline within 48 hours or an increase to ≥1.5 times
baseline within seven days, consistent with the kidney disease: improving global outcomes definition.39 If no preoper-
ative creatinine is available, then the upper limit of the laboratory’s reference range (1.2 mg/dl) will be used as the
baseline.

Secondary outcomes will include AKI stage 2 or greater (creatinine increase to ≥2 times baseline within seven days) and
AKI stage 3 (creatinine increase to ≥3 times baseline within seven days, an increase to ≥4.0 mg/dl, or initiation of renal
replacement therapy).

Participant timeline
No direct interactions between study staff and the participants are planned, and no anesthetic interventions will be
prohibited based on participation in this trial. The initial medical record review and clinician predictions will occur during
the participants’ surgery. Additional data retrieval to obtain observed death and AKI will occur at least 30 days after
surgery (and may occur in bulk 30 days after the final participant’s surgery).

Sample size
The sample size calculation is based on the assumption that ML-assisted clinicians would predict each outcome with
receiver operating curve area under curve (AUC) similar to the published AUC of the ML algorithms.34,36 Incidences of
death and AKI were also taken from these previous publications. A simulation population of 100,000 patients was
generated. ML-assisted and -unassisted clinician predictions were simulated with beta distributions whose parameters
were adjusted to achieve the specified AUC. For each sample size tested, 1,000 random samples were drawn and the
difference in AUC between the assisted and unassisted clinician predictions was determined.40 Power at each sample size
was defined as the fraction of samples for which the two sets of predictions had significantly different AUC at α = 0.025.
The minimum clinically meaningful difference (MCMD) in AUC was defined as 0.07.

As shown in Figure 1, a sample size of 4,500 will provide 80% power to detect a difference in AUC from 0.91 to 0.84
(theMCMD) for death and 95% power to detect a difference from 0.91 to 0.81. This sample size will give >99% power to
detect a difference in AUC from 0.82 to 0.75 (the MCMD) for AKI (Figure 2).

To allow for 15%missing data, we will enroll 5,300 cases. Currently, about 20 case reviews are performed in the ACT on
a typical day. We should therefore be able to complete enrollment over a period of 12 months.
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Methods: Assignment of interventions
Allocation
Each participant case review will be randomized in a 1:1 fashion to be completed with or without ML assistance.
Randomization will be stratified by intervention/control status of the parent trial because clinicians may be biased to
perform case reviews more carefully in the TECTONICS intervention group than in the TECTONICS control group
(Figure 3). The allocation sequence will be generated by computer-generated random numbers within the AlertWatch
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Figure 1. Simulation results from power calculation for death. Power achieved in simulations of various sample
sizes and effect sizes for postoperative death. Blue line is minimum clinically meaningful difference.
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software. The allocation will be automatically displayed on the case review form when the clinician opens it. The study
staff will not have access to the allocation sequence before the case review.

Blinding
By necessity, the clinician completing the case review and the other study staff in theACTwill not be blinded to treatment
allocation. Study personnel who retrieve observed postoperative complications from the electronic health record will be
blinded.

Methods: Data collection, management, and analysis
Data collection
Clinician predictions will be collected via an existing case review form in AlertWatch that contains two sections
(Figure 4). In the first section, the clinician documents how likely the patient is to experience postoperative death within
30 days, postoperative AKI within seven days, and a few other complications. The clinician selects their choice from a
five-point ordered categorical scale (very low risk, low risk, average risk, high risk, and very high risk). In the second
section (which is part of the parent TECTONICS trial but not used for this sub-study), the clinician selects treatment
recommendations (e.g., blood pressure goals, medications to administer or avoid). An additional question asks the
clinician to confirmwhether they reviewed theMLdisplay interface prior to documenting their predictions in section one.
Finally, clinicians are asked whether the ML predictions on the display interface agree with their previous opinion and
whether the display interface caused the clinician to change their opinion.

Observed death and observedAKIwill be retrieved fromEpic via a query of the Clarity database. Observed outcomeswill
be retrieved for all randomized participants, including those with protocol deviations.

Data management
The clinical applications used in this project (AlertWatch and Epic) can only be accessed over the secure institutional
internet network or using virtual private network, and user authentication is required for access. Computations for theML
models will occur on institutional servers that meet the standards of the Health Insurance Portability and Accountability
Act. The ML display interface is also hosted on an institutional server, can only be accessed over the secure institutional
internet network or using virtual private network, and requires user authentication for access. For data analysis, the
amount of protected health information retrieved will be limited to the minimum amount necessary to achieve the aims of
the study. All study data will be stored on institutional servers, and access will be limited to study personnel.

Statistical methods
To compare the accuracy of clinician predictions with and without ML assistance, the investigators will construct logistic
regressions for death and for AKI. Separate models will be constructed for the ML-assisted and -unassisted groups. The
only inputs will be dummy variables encoding the clinician predictions (Table 1). The regression coefficients will be
restricted to positive values, thus modeling a monotonic increasing relationship between the clinician predictions and the

Enroll in TECTONICS

TECTONICS Intervention

• Perform case review and 
predict outcomes

• Review physiologic alerts
• Contact operating room 

as needed

TECTONICS Control

• Perform case review and 
predict outcomes

• Review physiologic alerts
• Do not contact operating 

room

AI assistance for 
case reviews

No AI assistance 
for case reviews

AI assistance for 
case reviews

No AI assistance 
for case reviews

Figure 3. Flow chart showing treatment allocation. Periop ORACLE participants will be randomizated to ML
assistance or no ML assistance, stratified by intervention or control status of the parent TECTONICS trial.

Page 7 of 22

F1000Research 2022, 11:653 Last updated: 02 AUG 2023



Figure 4. Case review form in AlertWatch. The first two sections contain fields for documentation of clinician
predictions of postoperative complications, and the Periop ORACLE randomization allocation is disclosed in the
header of the second section. The treatment recommendations documented in the third section are utilized for the
parent TECTONICS trial but not for this sub-study. The amount of time the clinician in the ACT spends completing
each case review will be retrieved from the Epic audit log.

Table 1. Dummy variable encoding for clinician predicted risk of postoperative death.

Clinician prediction Var1 Var2 Var3 Var4

Very low 0 0 0 0

Low 1 0 0 0

Average 1 1 0 0

High 1 1 1 0

Very high 1 1 1 1
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true incidence of death and AKI. The AUC of the model constructed from ML-assisted cases will be compared to the
AUC of the model constructed from ML-unassisted cases,40 using the Holm method to ensure the family-wise error rate
remains less than a two-sided α= 0.05 across the two co-primary outcomes—accuracy of death prediction and accuracy of
AKI prediction. The null hypothesis is that the AUCs will be equal.

The primary analysis will follow an intention-to-treat principle, and all case reviewswill be included in the group towhich
they were randomized. Patients on dialysis preoperatively, undergoing dialysis access procedures, or with baseline
creatinine > 4.0 mg/dl will be excluded from the AKI analysis but included in the death analysis. In a secondary per-
protocol analysis, case reviewswill be grouped according towhether the clinician reported viewing theMLdisplay or not.
Exploratory analyses stratified by sex and race will evaluate for biases learned during training.41 If either clinician
predictions or observed outcomes are missing for a given case, then the case will be excluded from the analysis. No
interim analyses are planned. To determine whether different levels of clinician engagement in the TECTONICS
intervention group versus the TECTONICS control group impact the findings, sensitivity analyses will be conducted
stratified by TECTONICS intervention status. To examine the effects of dataset shift and model retraining, the
prospective performance of the models will be reported for each month of the study, and sensitivity analyses will be
conducted in the subgroups who had surgery before and after the February 2022 retraining event.

To examine human-computer agreement, the proportion of cases for which the clinician reported being surprised by the
ML prediction will be determined. Among those cases for which the clinician was surprised, the proportion for which the
clinician self-reported agreeing or disagreeing with the ML prediction will be determined.

To examine the potential impact of inaccurate ML predictions, we will conduct the following sensitivity analysis. First,
the predicted probabilities output by theML algorithms will be converted to dichotomous predictions by using the cutoff
value that maximizes the Youden index. Second, the cases will be categorized as having correct or incorrect ML
dichotomized predictions. Finally, the primary analysis will be repeated in the subgroup with correct ML predictions and
in the subgroup with incorrect ML predictions.

To estimate the effect of the ML predictions on case review efficiency, chart review duration (approximated using the
time the Epic chart was open, retrieved from the audit log) will be compared between case reviews performed with ML
assistance and those performed without ML assistance, using either an unpaired T test or Wilcoxon rank sum test as
appropriate.

Ethics and dissemination
Ethical statement
This study has been approved by the Human Research Protection Office atWashington University in St. Louis (approval
#202108022) on August 26, 2021. Any protocol amendments will be approved by the study steering committee and
communicated with the institutional review board. This study presents patients with minimal risks, other than a small risk
for a breach of confidentiality if protected health information were to become unintentionally available to individuals
outside the study team. To protect against this risk, all electronic data will be kept in an encrypted, password-protected
environment accessible only to the research team (see Data Management section). Because the risks are minimal, no
dedicated safety monitoring committee is planned for Periop ORACLE. However, the parent TECTONICS trial does
have a safety monitoring committee. The institutional review board has granted a waiver of informed consent to enroll
patients in this study.

Study results will be presented at national or international scientific meetings and published in a peer-reviewed
publication. Individuals who meet the International Committee of Medical Journal Editors authorship guidelines
(https://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.
html) will be included as authors on any publications resulting from this work. To comply with data sharing recommen-
dations, de-identified individual participant data underlying the study results will be made available to researchers who
provide a methodologically sound proposal for utilizing that data.

Strengths, limitations, and alternative strategies
This project has multiple strengths. First, this protocol has been prepared in accordance with Standard Protocol Items:
Recommendations for Interventional Trials (SPIRIT) guidelines.42,43 Second, the sample size of predictions made by
experienced anesthesia clinicians will be large. The pragmatic design of superimposing Periop ORACLE on the
established TECTONICS trial where many case reviews are already being conducted on a daily basis makes it feasible
to achieve such a large sample size. Third, theMLmodels to be used have very goodAUC,which enhances the likelihood
that ML assistance can increase the accuracy of clinician predictions. Fourth, the ML display interface has been created
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using a human-centered design framework informed by the clinicians who work in the ACT, which maximizes the
chances that clinicians will integrate the ML display interface into their workflows and their decision-making.

This project also has limitations. First, data collection in a telemedicine setting rather than in the operating roommay limit
the generalizability of the findings to institutions that do not utilize intraoperative telemedicine. However, multiple
clinicians have stated during focus group interviews that their workflows for performing case reviews in the ACT closely
mimic their workflows for preparing to provide bedside anesthesiology care. Thus, the findings may be relevant in the
operating room as well. Second, this is a single-center study, so differences in patient population or practice patterns at
other institutions may limit generalizability. However, many large academic medical centers care for patient populations
similar to those seen at Barnes-Jewish Hospital. Third, some of the outcomes may be incompletely measured. While
in-hospital vital status should always be available, some patients may not have a postoperative creatinine measurement
available to distinguishwhetherAKI has occurred. However, AKI is expected to be extremely uncommon among patients
without postoperative labs, minimizing the effect of this potential bias. Fourth, AKI is defined using creatinine only and
not urine output, based on anticipated data availability. This may cause some cases of AKI to bemissed. However, during
MLmodel training, the incidence of AKI using this definition was compatible with the incidence of AKI reported in other
studies. Finally, clinicians may give theML display interface varying degrees of weight during case reviews randomized
toML assistance. Understanding this variability is of interest to the research team, which is why the case review formwill
ask the clinician how the ML display impacted their decision-making.

The expected result is that prediction accuracy for death and for AKI to be greater with ML assistance than without ML
assistance. If the null hypothesis is rejected for only one of the two co-primary outcomes, this result will still be viewed
as evidence that the ML assistance is beneficial. A possible unintended consequence would be if false negative ML
predictions lead telemedicine clinicians to pay less attention to some patients who are actually at high risk for death or
AKI.22 Even if ACT clinicians monitor these patients less intensely, these patients will still receive standard-of-care
monitoring and care by clinicians in the operating rooms. Thus, the reduction in telemedicinemonitoring should not result
in patient harm. The telemedicine clinicians supplement, but do not replace, standard care.

Conclusion
Intraoperative telemedicine has the potential to improve postoperative outcomes if interventions can be targeted to
patients most at-risk for complications, andMLmay be able to help clinicians distinguish which patients those are. Periop
ORACLE will test the hypothesis that anesthesiology clinicians in a telemedicine setting can predict postoperative
complications more accurately withML assistance than without ML assistance. By nesting this study within the ongoing
TECTONICS randomized clinical trial of intraoperative telemedicine, the investigators will efficiently assemble a large
dataset of clinician predictions that will be used to achieve the study objective. Successful completion of this study will
help define the role ofML not only for intraoperative telemedicine, but for other risk assessment tasks before, during, and
after surgery.

Data availability
No data are associated with this article.

Reporting guidelines
This protocol is presented according to the SPIRIT guidelines.

Open Science Framework: “Protocol for the Perioperative Outcome Risk Assessment with Computer Learning Enhance-
ment (Periop ORACLE) Randomized Study”. https://doi.org/10.17605/OSF.IO/GC4ES.43

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public
domain dedication).
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greater as AKI outcome (and of course mortality is more challenging to power); however you 
might consider breaking down AKI by stages as a secondary outcome (e.g. Stage 2 or greater; 
Stage 3 or greater), given their greater clinical significance (although even Stage 1 is important). 
 
3) It could be helpful to explore unintended consequences of the machine learning algorithm 
implementation. For example, workload/efficiency metrics may be useful to track: the authors may 

 
Page 15 of 22

F1000Research 2022, 11:653 Last updated: 02 AUG 2023

https://doi.org/10.5256/f1000research.134258.r143767
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9697-2212


wish to track the total amount of ‘active review time’ used by clinicians in performing preoperative 
assessments with and without aid of the machine learning algorithm. If implemented in clinical 
care, there should be a plan (perhaps covered by the DSMB of the TECTONICS trial) to understand 
unexpected outcomes (for example, increased risk of stroke or MI, at the expense of decreased 
risk of AKI). 
 
4) As the AKI and mortality prediction algorithms are imperfect, do the clinicians performing 
preoperative risk assessments have insight into the performance characteristics of the algorithm 
(for example, do they know the algorithm’s positive predictive value, negative predictive value; 
perhaps Shapley values, AUROC, AUPRC, etc.), in order to better understanding exactly how much 
they should be trusting it? It may be interesting to study the impact of the machine-learning based 
risk assessments, for the cases in which the algorithm was *wrong*… in order to understand the 
potential impact of automation bias induced by machine learning algorithms on clinical decision-
making. 
 
5) One of the major issues confronting ML-based algorithm support in healthcare decision-making 
is dataset shift – defined as an evolving mismatch between the data upon which the algorithm is 
trained upon, versus the data the algorithm is using in real-time to make predictions (PMID 
34260843). Maintaining algorithm robustness over time remains very challenging, and decreases 
in algorithm performance can be seen whenever there are changes to practice patterns, EHR 
documentation patterns, or shifts in the patient population being studied. Although this study is 
limited by its single-center nature, it is not limited in its ability to assess temporal trends / 
algorithm de-tuning (and potential effects of algorithm re-tuning, if the authors wish to 
incorporate this into the study) over the time period studied. I would suggest assessing temporal 
trends in (i) AKI and mortality prediction algorithm performance, which if decreased may lead to a 
temporal trend in (ii) outcomes of this study.  
 
6) Whereas the study protocol appropriately follows SPIRIT guidelines, when this study is executed 
and reported, this study will most likely need to follow DECIDE-AI guidelines (PMID 35585198), 
although I could be mistaken. The study team may wish to consider that downstream study now, 
and have the trial protocol written in such a way that the downstream study will be able to best 
adhere to DECIDE-AI reporting guidelines.
 
Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Yes

Are sufficient details of the methods provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.
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Reviewer Expertise: Machine learning applied to healthcare; anesthesiology; prediction modeling; 
large observational database research; acute kidney injury prediction.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 21 Sep 2022
Bradley Fritz 

Thank you for your thoughtful review of this protocol. We have revised the protocol to 
address your concerns, and we feel these changes have made the protocol stronger. Please 
see our point-by-point response below: 
 
COMMENT 1a. How are patients with stage 4 or 5 CKD handled? Perhaps they are 
included, but it is misleading to think that AKI in such patients has anything to do 
with perioperative care, as most will develop AKI simply due to their native 
pathophysiology. 
 
Patients who are on dialysis preoperatively and patients with baseline creatinine level > 4.0 
mg/dl will be excluded from the analyses of AKI, but other patients with CKD will be 
included. We agree that AKI will be highly prevalent among patients with CKD. Although 
some (many?) cases of AKI in this population will not be preventable, other cases will be 
driven at least partly by modifiable risk factors. 
 
All patients, including those on dialysis preoperatively and those with baseline creatinine > 
4.0 mg/dl, will be included in the analyses of postoperative death. We have added a 
sentence to make this clearer: 
 
“Patients on dialysis preoperatively, undergoing dialysis access procedures, or with baseline 
creatinine > 4.0 mg/dl will be excluded from the AKI analysis but included in the death analysis.” 
(Methods/Statistical Methods) 
 
COMMENT 1b. If there is an EGFR-based cut-off for inclusion, how is EGFR computed? 
Would recommend the 2021 CKD-EPI formula which addresses racial bias. 
 
We agree that historically common EGFR equations can introduce racial bias, and we 
appreciate the reviewer’s suggestion for an alternative. As noted above, we will not use an 
EGFR-based cut-off for inclusion. 
 
COMMENT 1c. How are patients with no preoperative creatinine available handled? 
 
If no preoperative creatinine was available, then the upper limit of the laboratory’s 
reference range (1.2 mg/dl) was used as the baseline. We felt this was a reasonable 
approximation because patients with abnormal renal function before surgery would most 
likely have a creatinine value available. We have added a sentence to make this clearer: 
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“If no preoperative creatinine is available, then the upper limit of the laboratory’s reference range 
(1.2 mg/dl) will be used as the baseline.” (Methods/Outcomes) 
 
COMMENT 1d. How are patients undergoing procedures which by definition impair 
renal function handled? (e.g. renal artery embolization; nephrectomy for RCC, etc.). 
 
These patients will be included in the AKI analyses. Although it may frequently not be 
possible to prevent AKI in these situations, it may be possible to lessen its severity. 
Therefore, a clinician would want to be aware of the elevated risk in these patients. 
 
COMMENT 1e. Are dialysis access procedures (e.g. AV fistula placements) included in 
this study? 
 
Patients undergoing dialysis access procedures will be excluded from the analyses of AKI. 
However, they will be included in the analyses of postoperative death. We have added a 
sentence to make this clearer: 
 
“Patients on dialysis preoperatively, undergoing dialysis access procedures, or with baseline 
creatinine > 4.0 mg/dl will be excluded from the AKI analysis but included in the death analysis.” 
(Methods/Statistical Methods) 
 
 
COMMENT 2. I agree from both a study power / and clinical significance standpoint in 
using AKI Stage 1 or greater as AKI outcome (and of course mortality is more 
challenging to power); however you might consider breaking down AKI by stages as a 
secondary outcome (e.g. Stage 2 or greater; Stage 3 or greater), given their greater 
clinical significance (although even Stage 1 is important). 
 
Thank you for this suggestion. We have added these as secondary outcomes: 
 
“Secondary outcomes will include AKI stage 2 or greater (creatinine increase to ≥ 2 times 
baseline within seven days) and AKI stage 3 (creatinine increase to ≥ 3 times baseline within 
seven days, an increase to ≥ 4.0 mg/dl, or initiation of renal replacement therapy).” 
(Methods/Outcomes) 
 
COMMENT 3. It could be helpful to explore unintended consequences of the machine 
learning algorithm implementation. For example, workload/efficiency metrics may be 
useful to track: the authors may wish to track the total amount of ‘active review time’ 
used by clinicians in performing preoperative assessments with and without aid of the 
machine learning algorithm. If implemented in clinical care, there should be a plan 
(perhaps covered by the DSMB of the TECTONICS trial) to understand unexpected 
outcomes (for example, increased risk of stroke or MI, at the expense of decreased 
risk of AKI). 
 
We agree it would be insightful to investigate the time spent reviewing each case. If the 
machine learning algorithms have an impact on active review time, then the impact could 
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plausibly be in either direction: clinicians may spend less time in the patient’s chart for ML-
assisted cases because the algorithms have expedited the risk assessment process, or they 
may spend more time because the algorithms have pointed out concerns the clinicians 
otherwise would not have noticed. We have added this to the data collection and analysis 
plans: 
 
“The amount of time the clinician in the ACT spends completing each case review will be retrieved 
from the Epic audit log.” (Methods/Data collection) 
 
“To estimate the effect of the ML predictions on case review efficiency, chart review duration 
(approximated using the time the Epic chart was open, retrieved from the audit log) will be 
compared between case reviews performed with ML assistance and those performed without ML 
assistance, using either an unpaired T test or Wilcoxon rank sum test as appropriate.” 
(Methods/Statistical methods) 
 
Information from the case reviews performed in ORACLE will only be communicated to 
bedside clinicians in the operating room if the patient is in the intervention arm of the 
parent TECTONICS trial. (All patients in ORACLE are also enrolled in TECTONICS.) The 
TECTONICS trial has a data safety monitoring committee that reviews adverse events. 
 
COMMENT 4. As the AKI and mortality prediction algorithms are imperfect, do the 
clinicians performing preoperative risk assessments have insight into the 
performance characteristics of the algorithm (for example, do they know the 
algorithm’s positive predictive value, negative predictive value; perhaps Shapley 
values, AUROC, AUPRC, etc.), in order to better understanding exactly how much they 
should be trusting it? It may be interesting to study the impact of the machine-
learning based risk assessments, for the cases in which the algorithm was *wrong*… 
in order to understand the potential impact of automation bias induced by machine 
learning algorithms on clinical decision-making. 
 
We have added a new paragraph to explain what pieces of meta-data are provided along 
with the predictions: 
 
“For each patient, the machine learning predictions are presented in the form of predicted 
probabilities of each outcome (e.g., 4.5% chance of AKI). In addition, a list of features 
contributing most to the prediction is shown, along with Shapley values. During the focus group 
meetings, most users said they would find it overwhelming to see confidence intervals around the 
predicted probabilities. A fact sheet about each model is available on demand, including the 
receiver operating characteristic curve, precision-recall curve, and calibration curve.” 
(Methods/Interventions – Machine Learning Algorithms) 
 
To address the impact of “wrong” predictions, we have added a sensitivity subgroup 
analysis: 
 
“To examine the potential impact of inaccurate ML predictions, we will conduct the following 
sensitivity analysis. First, the predicted probabilities output by the ML algorithms will be 
converted to dichotomous predictions by using the cutoff value that maximizes the Youden index. 

 
Page 19 of 22

F1000Research 2022, 11:653 Last updated: 02 AUG 2023



Second, the cases will be categorized as having correct or incorrect ML dichotomized predictions. 
Finally, the primary analysis will be repeated in the subgroup with correct ML predictions and in 
the subgroup with incorrect ML predictions.” (Methods/Statistical methods) 
 
COMMENT 5. One of the major issues confronting ML-based algorithm support in 
healthcare decision-making is dataset shift – defined as an evolving mismatch 
between the data upon which the algorithm is trained upon, versus the data the 
algorithm is using in real-time to make predictions (PMID 34260843). Maintaining 
algorithm robustness over time remains very challenging, and decreases in algorithm 
performance can be seen whenever there are changes to practice patterns, EHR 
documentation patterns, or shifts in the patient population being studied. Although 
this study is limited by its single-center nature, it is not limited in its ability to assess 
temporal trends / algorithm de-tuning (and potential effects of algorithm re-tuning, if 
the authors wish to incorporate this into the study) over the time period studied. I 
would suggest assessing temporal trends in (i) AKI and mortality prediction algorithm 
performance, which if decreased may lead to a temporal trend in (ii) outcomes of this 
study. 
 
This is an important point that we had considered but failed to mention in the previous 
version of the protocol. At the time the study was initiated, we were utilizing models that 
had been trained on a retrospective cohort of patients who had surgery at Barnes-Jewish 
Hospital between 2012 and 2016. Approximately six months after study initiation, we 
retrained the models using patients who had surgery between 2018 and 2020. We have 
added two new paragraphs to the methods section to explain this clearly: 
 
“The machine learning models used in this study were originally trained and validated on a 
retrospective cohort of approximately 110,000 adult patients who underwent surgery with 
general anesthesia at Barnes-Jewish Hospital between 2012 and 2016. Input features included 
demographic characteristics, comorbid conditions, preoperative vital signs, surgical service, 
functional capacity as documented during the preoperative assessment, and most recent values 
of selected laboratory tests. A random forest model was implemented in scikit-learn. In the 
holdout validation cohort of 21,171 patients, the incidence of postoperative death was 2.2% and 
the model predicted this outcome with receiver operating characteristic area under curve (AUC) of 
0.939 and precision-recall AUC of 0.161. The incidence of postoperative AKI was 6.1% and the 
model predicted this outcome with receiver operating characteristic AUC of 0.799 and precision-
recall AUC of 0.275. 
 
In February 2022, the models were retrained using a newer cohort of 84,455 patients who 
underwent surgery with general anesthesia at Barnes-Jewish Hospital between 2018 and 2020. 
This time period was after the hospital had transitioned from its previous electronic health record 
systems (including MetaVision as its anesthesia information management system) to Epic (Epic, 
Verona, WI). Input features were the same as the previous models, with the addition of the 
planned surgical procedure text field. A regularized logistic regression was used to predict the 
outcome from the words in the planned surgical procedure text field. This was used to initialize a 
gradient boosted decision tree, which was trained using the remaining features. 
Hyperparameters were selected by 10-fold cross validation. Models were implemented in 
XGBoost. In the holdout validation cohort of 16,891 patients, the incidence of postoperative death 
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was 1.9% and the model predicted this outcome with receiver operating characteristic AUC of 
0.91 and precision-recall AUC of 0.27. The incidence of postoperative AKI was 13.3% and the 
model predicted this outcome with receiver operating characteristic AUC of 0.90 and precision-
recall AUC of 0.66.” (Methods/Interventions – Machine Learning Algorithms) 
 
To examine the effects of dataset shift on model performance and trends over time, we will 
report the prospective performance (i.e., AUC) of each model for each month of the study. 
To examine the effects of model retraining, we will also conduct subgroup analyses 
repeating the primary analyses in the subgroups who had surgery before and after the 
retraining event. We have added these steps to the statistical methods: 
 
“To examine the effects of dataset shift and model retraining, the prospective performance of the 
models will be reported for each month of the study, and sensitivity analyses will be conducted in 
the subgroups who had surgery before and after the February 2022 retraining event.” 
(Methods/Statistical methods) 
 
COMMENT 6. Whereas the study protocol appropriately follows SPIRIT guidelines, 
when this study is executed and reported, this study will most likely need to follow 
DECIDE-AI guidelines (PMID 35585198), although I could be mistaken. The study team 
may wish to consider that downstream study now, and have the trial protocol written 
in such a way that the downstream study will be able to best adhere to DECIDE-AI 
reporting guidelines. 
 
Thank you for this suggestion—we agree the study results will be reported according to 
DECIDE-AI guidelines. To make it easier for the results manuscript to adhere to DECIDE-AI 
guidelines, we have expanded the methods section of this protocol to add details that are 
required by the DECIDE-AI guidelines. In particular, we have broken up the Intervention 
subsection into two new sections describing the AI system (checklist item 4) and describing 
the implementation (checklist item 5), which are mentioned in our responses to your earlier 
comments. In addition, we have added statistical methods that will allow us to report on 
human-computer agreement (checklist item 12): 
 
“To examine human-computer agreement, the proportion of cases for which the clinician 
reported being surprised by the ML prediction will be determined. Among those cases for which 
the clinician was surprised, the proportion for which the clinician self-reported agreeing or 
disagreeing with the ML prediction will be determined.” (Methods/Statistical methods)  

Competing Interests: No competing interests were disclosed.
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