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ABSTRACT
◥

Single-cell technologies have elucidated mechanisms responsible
for immune checkpoint inhibitor (ICI) response, but are not
amenable to a clinical diagnostic setting. In contrast, bulk RNA
sequencing (RNA-seq) is now routine for research and clinical
applications. Our workflow uses transcription factor (TF)–directed
coexpression networks (regulons) inferred from single-cell
RNA-seq data to deconvolute immune functional states from
bulk RNA-seq data. Regulons preserve the phenotypic variation
in CD45þ immune cells from metastatic melanoma samples
(n ¼ 19, discovery dataset) treated with ICIs, despite reducing
dimensionality by >100-fold. Four cell states, termed exhausted
T cells, monocyte lineage cells, memory T cells, and B cells were
associated with therapy response, and were characterized by dif-
ferentially active and cell state–specific regulons. Clustering of

bulk RNA-seq melanoma samples from four independent studies
(n ¼ 209, validation dataset) according to regulon-inferred scores
identified four groups with significantly different response out-
comes (P < 0.001). An intercellular link was established between
exhausted T cells and monocyte lineage cells, whereby their cell
numbers were correlated, and exhausted T cells predicted prognosis
as a function of monocyte lineage cell number. The ligand–receptor
expression analysis suggested that monocyte lineage cells drive
exhausted T cells into terminal exhaustion through programs that
regulate antigen presentation, chronic inflammation, and negative
costimulation. Together, our results demonstrate how regulon-
based characterization of cell states provide robust and functionally
informative markers that can deconvolve bulk RNA-seq data to
identify ICI responders.

Introduction
Despite the great success of immune checkpoint inhibitors (ICI),

only 12% of patients across all cancer indications are estimated to
respond to therapy (1). The tumor microenvironment (TME) plays an
important role in response outcomes to ICIs, exerting both immu-
nostimulatory and immunosuppressive effects (2). ICI therapies mit-
igate the dysfunctional effects of the TME on T cells (3). Therefore,
understanding which immune cell states are amenable to functional
revival, which cell states are refractory, and how susceptible and
resistant cell states dynamically interact, could provide new oppor-
tunities for disease management and therapeutic intervention.

Studies have analyzed the correlation between immune cell states
and ICI response. For instance, effector and partially exhausted
CD8þ T cells incite tumor control in response to ICIs (4). However,
when differentiated into a terminally exhausted state, due to con-
tinued antigen stimulation, they fail to control tumor progression
(5). Regulatory T cells (Treg) attenuate the activity of CD8þ T cells to

maintain self-tolerance. Preclinical studies have demonstrated that
CTLA-4–specific monoclonal antibodies may improve responses, at
least in part, through modulation of Treg-mediated suppression of
effector CD8þ T cells (6). Tumor-associated macrophages (TAM)
represent a spectrum of phenotypes with M1 andM2macrophages at
either end. Inhibiting the activity of M2-like TAMs and redirecting
their polarization towards the M1 phenotype can enhance response
to ICIs (7). An outstanding question from such studies is whether
the states of tumor-infiltrating immune cells, their transcriptional
landscape, and cooccurrence patterns can effectively characterize
patient response to ICIs.

Single-cell genomics at large-scale has emerged as a powerful
technology for obtaining high-resolution transcriptomic data of tumor
cellular ecosystems from primary tumor samples. However, con-
strained by prohibitive costs, single-cell RNA sequencing (scRNA-
seq) cohorts are often modestly sized, making it difficult to validate
biomarkers for predicting response to drug treatments.

Here, we leveraged the resolution offered by scRNA-seq to identify
immune cell states associated with ICI response and the larger sample
sizes of bulk RNA-seq datasets for validation. We demonstrated that a
signature of transcription factor (TF)–directed gene networks, char-
acterizing cell states associated with response, can identify patients
likely to receive clinical benefit from ICI treatment. We explored
dependencies between these cell states and established an intercellular
link between monocyte-lineage cells (MLC) and exhausted T cells that
impacts patient prognosis. Overall, these findings support the impor-
tance of considering the multifaceted nature of immune cell states
present in the TME, and not limiting treatment strategies to T cells.

Materials and Methods
Patient data from previously published cohorts

Pretreatment samples with response information available in the
form of RECIST criteria were selected from published studies (8–13).
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The overall survival and clinical response data, as originally reported,
were used. A binary definition of response was implemented to
standardize clinical response across studies: complete response (CR),
partial response (PR), or stable disease (SD) for responders, and
progressive disease (PD) for nonresponders.

scRNA-seq data preparation and regulon inference
For the discovery melanoma dataset, log-normalized tran-

scripts per million (TPM) scRNA-seq data were accessed through
NCBI’s Gene Expression Omnibus (GEO) under accession number
GSE120575 and processed as described in ref. 8. An additional
filtering step removed genes expressed in <1% of cells or with
<500 counts. A TF-directed coexpression network was inferred
from the filtered gene expression matrix of pretreatment samples
using GRNBoost2 in (https://github.com/tmoerman/arboreto)
pySCENIC. RcisTarget (v1.6.0) was then used for cis-regulatory
motif analyses on the coexpression network, removing indirect
targets from TF modules to create regulons. The resulting regulon
activity scores were calculated in the filtered gene expression
matrix using AUCell with default parameters (v1.8.0; ref. 14).

The basal cell carcinoma dataset was accessed from GEO under
the accession number GSE123814 (9). The raw unique molecular
identifier counts (UMI) were log-normalized, and genes expressed
in <1% of cells or with <500 counts were removed. Processed single-
cell data for the external melanoma dataset was obtained from GEO
under the accession number GSE72056, and no further processing
steps were applied (15). The regulons identified in the discovery
melanoma dataset were scored in both datasets using AUCell with
default parameters.

Cell clustering
For the discovery melanoma dataset, clustering was performed

independently on the gene expression and regulon activity feature
space using the Seurat package (Version 4.0; ref. 16). The gene
expression and regulon activity values were scaled using the “Scale-
Data” function (16). Clusters were identified using shared nearest
neighbor (SNN)–based clustering, with the first 15 principal compo-
nents, k ¼ 20 (defines k for k-nearest neighbor algorithm) and
resolution ¼ 0.3 as inputs. The same principal components were
used to generate uniform manifold approximation and projection
(UMAP) projections. All remaining parameters were set to default
values. The cell annotations were retained (8). Once isolated from the
complete dataset, MLCs were clustered using the same protocol but
with resolution ¼ 0.055.

T-distributed stochastic neighbor embedding (T-SNE) was imple-
mented using the Rtsne package (version 0.16) under default para-
meters on the regulon feature space of the external melanoma dataset.
The cell phenotype annotations were retained (15).

Identifying and analyzing differentially abundant cell states
Differentially abundant (DA) cell states between responders and

nonresponders were identified using the DAseq algorithm (17). The
regulon UMAP projection generated from Seurat was provided as
input to DAseq. DAseq uses a k-nearest neighbor algorithm to define
the local neighborhood of a cell, from which its differential abundance
score is calculated. The range of k values started at 50 and ended at
500, with a step of 50. A permutation test was performed with the
“getDAcells” function in DAseq (as described in 17) to determine a
threshold for identifying DA cells. All other DAseq parameters were
set to default values.

Differentially expressed genes (DEG) were identified [Bonferroni-
corrected q-value ≤0.05 and log2(fold-change) > 0] for cell phenotypes

predominating a cell state based on their inclusion or exclusion in that
cell state. Gene set enrichment analysis (GSEA) was performed using
hallmark gene sets retrieved from gsea-msigdb.org (18). The cell
phenotypes included monocytes/macrophages, B cells, memory T
cells, exhausted CD8 T cells, exhausted heat shock CD8 T cells, and
lymphocytes exhausted/cell cycle (16).

Characterizing cell states of response and regulon pruning
Differentially active regulons betweenDA cell states were calculated

using theWilcoxon test through Seurat (16). To quantify the cell-state
specificity of a regulon, an entropy-based strategy (Jensen–Shannon
divergence) was adapted, as described previously (19). Regulons with
the highest cell state–specific and differential activity scores were
selected as essential regulators.

Regulon modules were identified on the basis of the connection
specificity index (CSI; ref. 20), which is a context-dependent measure
for identifying specific associating partners. The CSI calculation was
used as described previously (19).

To reduce regulon complexity whilst maintaining a cell type–
specific effect, regulon target genes were pruned if not upregulated
in the predominant immune cell phenotype of its associated cell state.
Marker genes for immune cell phenotypes were determined according
to Sade–Feldman and colleagues (8).

Validation datasets: bulk RNA-seq
Bulk RNA-seq data from melanoma biopsies were obtained from

the following studies: (i) a skin cutaneous melanoma cohort from The
Cancer Genome Atlas (TCGA; ref. 21); (ii) Van Allen and colleagues,
an advanced melanoma anti–CTLA-4 treated cohort (10); (iii) Hugo
and colleagues, an advancedmelanoma anti–PD-1 treated cohort (12);
(iv) Riaz and colleagues, an advanced melanoma anti–PD-1 treated
cohort (11); and (v) Gide and colleagues, an advancedmelanoma anti–
PD-1 or combined ICI-treated cohort (13). The combination of ICI
studies was chosen because the distribution of treatments received
modeled the scRNA-seq discovery cohort (Supplementary Tables S1
and S2).

For Hugo and colleagues and Riaz and colleagues, raw FASTQ files
were obtained from the Sequence Read Archive (SRP067938,
SRP094781; refs. 11, 12). The RASflow pipeline was used for trimming,
alignment, and feature counting, as described previously (22). For
TCGA cohort, Gide and colleagues and Van Allen and colleagues, raw
FASTQ files were preprocessed as described previously (23), and the
counts were accessed at (https://zenodo.org/record/4661265, https://
www.cbioportal.org/study?id¼skcm_tcga). Gene counts were nor-
malized using the standard DEseq2 protocol (24).

Regulon scoring, batch effect correction, and patient clustering
The pruned regulon gene sets were scored independently in each

validation dataset using Single SampleGSEA (ssGSEA; ref.25).Median
centering and scalingwere performed on each dataset, whichwere then
combined. Hierarchical clustering of patients based on their regulon
scores was performed using the Pheatmap R package. Average linkage
clustering was applied with a correlation distance metric. Associations
between cluster assignment and patient response or survival outcome
(deceased/living) were assessed using the chi-squared test. For con-
tinuous variables, associations with cluster assignment were deter-
mined using the Kruskal–Wallis test or ANOVA.

Modelling intercellular communication
The R package nichenetr (NicheNet; v1.0.0) was used to infer cell

communication between the MLC and exhausted T-cell states (26).
The MLCs were defined as “sender” cells, and exhausted T cells were
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considered as the “receiver” population. Genes with mean expression
>2 log2(TPM) in either cell type were retained, and those expressed in
exhausted T cells were used as “background genes.” The “gene set of
interest” required by nichenetrwas defined as the RUNX3 andPRDM1
regulons. The top five ligands were selected according to their regu-
latory potential score.

Trajectory inference
Cytotoxic lymphocytes, exhausted CD8 T cells, exhausted heat

shock CD8 T cells, lymphocytes exhausted/cell cycle, and memory
T cells were included in trajectory inference. The first and second
principal components of the gene expression matrix containing these
cell phenotypes were used in a Gaussian mixture model to identify
pseudo-time–dependent cell clusters (Mclust package; ref. 27).

Slingshot was used to fit a minimum spanning tree (MST) to these
clusters and determine the approximate trajectory (28). Memory T
cells were set as the starting cluster. This piecewise linear trajectory
was smoothed using simultaneous principal curves to obtain the final
trajectories and pseudo-time values. Associations between pseudo-time
and individual gene expression levels were described by fitting negative
binomial general additive models via the tradeSeq package (29).

Defining MLC subclusters and doublet detection
scRNA-seq data of genes elevated in blood and immune cells

compared with other cell types was downloaded from The Human
Protein Atlas (http://www.proteinatlas.org/; ref. 30). The “FindAll-
Markers” function in Seurat identified DEGs [P value ≤0.01 and
log2(fold-change) > 0.25] between the MLC subclusters. Immune cells
from The Human Protein Atlas were ordered according to their mean
expression of the DEGs. Doublet detection was implemented on the
full melanoma discovery dataset (n ¼ 16,291) using the Chord
algorithm (31). The doublet rate was set to 0.08, overkill was enabled,
and the remaining parameters were set to default.

Statistical analysis
Survival curves

Kaplan–Meier curves were generated using the Survival R package
(Version 3.2–13) and compared using the log-rank test.

Cox regression model
The regulon activities of RUNX3, PRDM1, and MAFB were scored

in the Van Allen dataset using ssGSEA (10). Patients were split into
high- and low-MLC cohorts according to the mean (þ1 SD) MAFB
regulon score. A Cox regressionmodel was used to estimate theHRs of
deaths associated with a patient’s mean activity of RUNX3 and
PRDM1 while accounting for their membership in either the high or
low MLC cohorts.

Regression models
The top 5 regulatory potential scoring MLC ligands according to

nichenetr, and a CIBERSORT “Absolute Score,” were used as explan-
atory variables in a multiple linear regression modelling the mean
activity of RUNX3 and PRDM1 in the Van Allen dataset (10). The
MLC ligands were scored using ssGSEA (25), and the “Absolute Score”
was determined at CIBERSORTx (stanford.edu), using the LM22
Source GEP (32). For the anti–CTLA-4 treatment group, a multiple
logistic regression with ssGSEA inferred regulon scores as the pre-
dictors and treatment response as the dependent variable was used.

Data availability
All data relevant to the study are included in the article and its

supplementary data files, or upon request from the corresponding

author. The public datasets used and/or analyzed during this study are
available in the GEO or Zenodo databases (https://www.ncbi.nlm.nih.
gov/geo/; https://zenodo.org/record/4661265).

Results
Regulon inference and cell states of response

The presence or absence of certain immune cells in the TME
influences response to ICIs (2). Identifying and characterizing these
immune cells can provide avenues for understanding and predicting
response to ICIs. We analyzed scRNA-seq data derived from tumor-
resident immune cells of metastatic melanoma patient samples
(n ¼ 19) collected prior to ICI treatment (8).

scRNA-seq data are inherently noisy due to sparse and shallow
sequencing with missing values, which can compromise the clear,
robust, and reproducible distinction of different cell types. To
circumvent this problem, we inferred TF-directed gene networks
(hereafter referred to as regulons) using the SCENIC workflow (14).
Regulons act as a buffer against noisy expression fluctuations
at the individual gene level, remaining stable despite numerous
resampling and multiple sample batches (33). A regulon is denoted
by the upstream TF, contains its direct downstream gene targets,
and reflects the activity of the TF in a cell.

The cells were clustered using either gene expression or regulon
activity. A comparison of both approaches revealed that informa-
tion was not sacrificed for the dimensionality reduction introduced
by regulons: expression variability remained between immune cell
phenotypes (Fig. 1A).

Leveraging the DAseq method (17), four distinct pretreatment
cell states were identified as DA between responders and nonre-
sponders (Fig. 1B). RECIST criteria were used to define response,
with SD, CR, and PR representing responders, PD representing
nonresponders. Each cell state was annotated according to its
predominant immune cell phenotype (Fig. 1C). Cell state 1 (CS1),
termed exhausted T cells, was associated with nonresponders
and contained three distinct exhaustion phenotypes: exhausted
CD8 T cells, exhausted heat shock CD8 T cells, and lymphocytes
exhausted/cell cycle. Annotated as MLCs, cell state 2 (CS2) con-
tained predominately monocytes/macrophages and was associated
with nonresponders. Cell state 3 (CS3) was abundant in responders
and consisted of memory T cells. B cells made up cell state 4 (CS4),
which was also associated with responders. The proportion of cell
states in patient samples was analyzed to ensure multiple patients
contributed to its association with response. Each cell state con-
tained cells from the majority of patients (Fig. 1D).

Certain cell states are primarily constituted by one cell phenotype,
but no cell phenotype is fully present in any given cell state (Supple-
mentary Table S3). Hence, cells within a phenotype differ depending
on their inclusion in a cell state. Cells included in cell states of response
(B cells and memory T cells) had increased IFN-gamma (IFNG) and
TNF alpha (TNFA) pathway activity compared with their excluded
counterparts. If the cell state was linked to nonresponse (monocytes
and exhausted T cells), included cells downregulated these pathways
(Fig. 1E). IFNG is pivotal to ICI response and marks a point of
divergence between cell states and the phenotypes from which they
were derived.

Regulons defining cell states of response
During immune cell differentiation from multipotent hematopoi-

etic stem cells, lineage-restricted TFs are induced, which in turn
establish the identity of a specific cell type (34). We posit that regulons
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Figure 1.

Analysis of scRNA-seq data from samples taken from 19 patients with melanoma before ICI therapy (GSE120575; ref. 8). A, Dimensionality reduction, clustering and
UMAP projection of tumor-resident immune cells. Left, Clustering according to gene expression profiles. Right, Clustering according to regulon activity profiles.
B, UMAP embeddings of pretreatment cells, annotated on the basis of DAseq identified cell states (left), and their association with response (right). C, Distribution
of immune cell phenotypes in the four DAseq identified cell states. D, The proportion of the DAseq identified cell states in each patient sample. E, The normalized
enrichment scores (NES) of IFNG and TNFA pathways according to DEGs between cells from a cell phenotype (x-axis labels) that are either included or excluded
from their associated DAseq cell state. Scores were calculated using GSEA.
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Figure 2.

The regulons that define cell states of response. A, The rank of regulons in their associated cell state based on regulon specificity score (RSS). The numbers in
parenthesis denote the number of genes in the regulon before pruning.B,Relative activity level of each regulon across each of theDAseq-identified cell states.C, The
rank of regulons in nonimmune cells froman external basal cell carcinoma ICI dataset based on rss (GSE123814; ref. 9).D,RSS for each regulon pre- andpostfiltering of
target genes according to gene markers of their associated cell type. E, Identified regulon modules based on regulon CSI matrix, along with the representative TFs.
The color scale bar denotes the CSI score. F, Relative activity (scaled) of the pruned regulons in single cell expression profiles of malignant and nonmalignant cell
types from an external metastatic melanoma dataset (GSE72056; ref. 15). CAF, cancer-associated fibroblasts; macro, macrophages; endo, endothelial cells; NK,
natural killer.
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can characterize the transcriptional state of immune cells, providing a
robust and functionally informative marker for deconvolving the
TME. To identify regulons capable of characterizing the DAseq-
identified cell states, we employed two metrics: differential regulon
activity using aWilcoxon test; and regulon specificity according to the
Jensen–Shannon divergence (35). A differentially active regulon for a
particular cell state has a statistically significant increase in median
activity compared with all other cell states. Regulon specificity mea-
sures how distinct the distribution of regulon scores is for a specific cell
state. Regulons scoring highly for both metrics in a cell state were
selected.

The PRDM1 and RUNX3 regulons were significantly upregu-
lated and specific to the exhausted T-cell state (Fig. 2A and B;
Supplementary Fig. S1). Both TFs modulate terminal differentia-
tion of effector CD8þ T cells, with RUNX3 being required for
accessibility to PRDM1 TF motifs (36, 37). The LEF1 and FOXP1
TFs demonstrated enhanced expression in memory T-cell pheno-
types (38). Their associated regulons were highly specific and
differentially active in the memory T-cell state (Fig. 2A and B;
Supplementary Fig. S1). MAFB and PAX5 scored highly for both
metrics in the MLCs and B-cell states, respectively (Fig. 2A and B;
Supplementary Fig. S1). MAFB is an inducer of monocyte differ-
entiation (39), while PAX5 is a master regulator of B-cell devel-
opment (40). A proportion of the exhausted and memory T-cell
states (CS1 and CS3 clusters) identified by DAseq contained Tregs
(Fig. 1C). Tregs represent an important cell type in ICI response.
To quantify this cell type in future deconvolution steps, SMAD1
was identified as being specific to and differentially active in Tregs
(Fig. 2A and B). TGFb-dependent recruitment of SMAD has been
identified as a key component in the generation of Tregs by
participating in the “on-and-off” switch of FOXP3, and manipu-
lation of SMAD activity is sufficient to alter the Treg differentiation
program (41).

To distinguish immune cells and their functional states, regulons
must be cell state–specific and not coexpressed in unrelated cells
residing in the TME. An independent scRNA-seq dataset of basal cell
carcinoma samples confirmed low regulon specificity scores in tumor
cells, melanocytes, endothelial cells, and myofibroblasts, suggesting
that the presence of nonimmune cells does not impact regulon
specificity (Fig. 2C; ref. 9).

Regulons inferred using regression are context dependent and
at risk of overfitting the data. Complex regulons containing many
genes are more susceptible to this phenomenon. To counteract
this and improve generalizability, regulon sizes were reduced by
pruning genes not significantly upregulated [Bonferroni-corrected
q-value ≤0.05 and log2(fold-change) > 0.5] in the immune cell
phenotypes making up the regulons associated cell state. To

illustrate, PAX5 target genes were filtered according to genes
upregulated in B cells. The upregulated genes were determined
independently of the cell state and regulon inference, thereby
offering an orthogonal metric to mitigate spurious connections
present in a regulon. This approach reduced the complexity of each
regulon and increased the overall regulon specificity (Fig. 2D;
Supplementary Table S4).

Finally, we tested if the pruned regulons quantified an independent
signal and remained functional in an external dataset. A pairwise
similarity network of regulon activity scores was generated on the basis
of the CSI in the discovery melanoma dataset (see Materials and
Methods). The regulons clustered into distinct network modules,
suggesting no redundancy between them (Fig. 2E). Unsupervised
clustering of an independent scRNA-seq metastatic melanoma dataset
using the pruned regulons separated immune frommalignant cells and
delineated immune cell subsets (Fig. 2F). A t-SNE of these cells,
colored according to regulon activity, revealed differential regulon
activity scores in their equivalent cell states compared with malig-
nant cells (Supplementary Fig. S1). Both findings demonstrate the
capacity of regulons to characterize the TME despite changing
cellular ecosystems.

Regulon validation in bulk RNA-seq datasets
To determine if these regulons characterize response to ICIs in

melanoma, we collated four datasets with pretreatment transcriptomic
data and therapy response information (n ¼ 209; refs. 10–13). The
distribution of patients who receivedmono- or combination therapy in
the validation dataset (80% anti–PD-1 or anti–CTLA-4, 20% anti–
CTLA-4þanti–PD-1) matched the discovery scRNA-seq dataset (78%
anti–PD-1 or anti–CTLA-4, 22% anti–CTLA-4þanti–PD-1; Supple-
mentary Tables S1 and S2).

The relative activity of each regulon was scored in each dataset
independently using ssGSEA (25). Median centering and scaling of
regulon scoreswere performed to reduce batch effects between datasets
(Fig. 3A), which were then combined for hierarchical clustering.

Four clusters with significantly different response outcomes (chi-
squared test,P< 0.001)were identified (Fig. 3B andC). Themajority of
patients in clusters 1, 2, and 3 were responders (75%, 61%, and 71%,
respectively), whereas cluster 4 contained primarily nonresponders
(63%; Fig. 3B and C). Overall survival (OS) following ICI treatment
was significantly improved in clusters containing primarily responders
(Fig. 3D).

Regulon scores were low in cluster 4, suggesting an immune
desert phenotype in which all compartments of the tumor are sparse
for immune cells (Fig. 3B and E; ref. 42). Cluster 1 contained high
levels of productive memory T- and B-cell states, with concomitant
low values for immunosuppressive cell states (MLCs and Tregs),

Figure 3.
The regulons correlate with response in four independent bulk RNA-seq datasets (10–13). A, PCA and clustering of patients from four datasets according to their
regulon scores using ssGSEA, before (left image) and after (right image) z-score normalization. B, Hierarchical clustering of patients according to their ssGSEA
inferred regulon scores, which are represented by the color scale bar. Pearson correlation was used as the distance metric. C, The proportion of responders and
nonresponders in each cluster. The P value was calculated with a chi-squared test. D, Kaplan–Meier survival curves for each cluster, compared using a log-rank test.
E, Mean regulon scores for each cluster identified using hierarchical clustering. F, Cox regression analysis comparing the association of PRDM1 and RUNX3
mean activity and survival in patients with high and low activity scores for MLCs. Statistical significance was inferred using the log rank test. G, Patients treated
with anti-CTLA4 monotherapy. Left, The proportion of responders and nonresponders in each cluster following hierarchical clustering with regulon scores.
Right, The relative activity of the SMAD1 regulon in each identified cluster (Kruskal–Wallis test). H, The proportion of TCGA samples that experienced a
survival event (living/deceased) in each cluster identified using regulon scores (chi-squared test). I, Tumor mutational burden by nonsynonymous mutations (top,
Kruskal–Wallis) and mutation count in exome sequencing data (bottom, ANOVA) in patients from TCGA across the identified clusters. For each box plot, the central
black lines represent the median, whereas boxes extend from the first to the third quartiles. The whiskers extend to 1.5 times the interquartile range beyond the box.
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likely representing the infiltrated-inflamed phenotype (Fig. 3B
and E; ref. 42). Clusters 2 and 3 differed from cluster 1 in the
number of MLCs and exhausted T cells.

We explored the relationship between these two cell states and
found by Cox-regression analysis that the exhausted T-cell state
predicted prognosis as a function of MLCs: higher numbers of
MLCs were associated with worse survival (Fig. 3F). This may
explain why cluster 3, and to a greater extent cluster 2, exhibited
lower proportions of responders compared with cluster 1 (Fig. 3C).
It could also clarify the shorter durability of responses in these
clusters (Fig. 3D). As such, clusters 2 and 3 likely represent the
altered-immunosuppressed phenotype, with high infiltration of
MLCs coinciding with T-cell exhaustion, resulting in worse patient
outcomes (42).

The standard of care in the first-line setting is both anti–PD-1
monotherapy or combined anti–CTLA-4 and anti–PD-1 regimens
(43). However, exploration of anti–CTLA-4 agents remains warranted
given their durable dose responsiveness and potential ability to
deplete Tregs from cancers (43).We explored regulon characterization
at each treatment level, stratifying patients who received anti–PD-1,
anti–CTLA-4, or combination therapy. Clusters were enriched for
responders in the anti–PD-1 and combination therapy groups (P ¼
0.033 and P ¼ 0.025, respectively; Supplementary Fig. S2), but for
nonresponders in the anti–CTLA-4 treatment group (P ¼ 0.76;
Fig. 3G). A strong dependency existed between the Treg-cell state,
defined by SMAD1, and clusters 2 and 3, which primarily contained
nonresponders to anti–CTLA-4 (P ¼ 0.0015; Fig. 3G). Indeed, a
logistic regression model determined that SMAD1 was the most
significant predictor of anti–CTLA-4 response (coefficient ¼ �1.32;
P ¼ 0.03), suggesting that certain cell states are more receptive to
specific ICI regimens.

Tumor-infiltrating immune cellsmediate tumor progression and, in
some cases, elicit spontaneous regression (44). Therefore, regulons
characterizing ICI response may depend on identifying patients with
an underlying prognostic TME. We tested this by clustering skin
cutaneous melanoma samples (n ¼ 472) from TCGA according to
their regulon activities (21). Four clusters with a significant difference
in survival outcomes (chi-squared test, P ¼ 0.004) were identified
(Fig. 3H; Supplementary Fig. S2). Statistical significance was less than
previously reported for response outcomes, suggesting the regulon-
defined cell states influence ICI response more than prognosis. No
association existed between cluster assignment and mutation count or
TMB from synonymous mutations (Fig. 3I, n ¼ 368). This is not
surprising given the complex interaction between the developing
tumor and the host immune system.

MLCs and exhausted T cells: relationship dynamics
We investigated why PRDM1 and RUNX3 were associated with

worse prognosis when MLCs were abundant. Patients from the
scRNA-seq dataset were split into high and low cohorts according to
the proportion (median cut-off point) of cells in the exhausted T-cell
state. The high cohort had significantly more MLCs (Fig. 4A), sug-
gesting that the exhausted T-cell state may be linked to the activity of
MLCs.

Using NicheNet (26), we conducted intercellular communication
analysis and identified genes whose expression inMLCswas associated
with the expression of PRDM1 and RUNX3 gene targets in the
exhausted T-cell state. HLA-A, HMGB1/2, CD86, and TNF were the
top scoring genes in MLCs and interacted with cytotoxicity-related
genes, such as PRF1, GZMA, and CCL5 (Fig. 4B). We performed
trajectory inference on memory, cytotoxic, and exhausted T cells and
modeled the expression dynamics of cytotoxicity-related genes along a
dynamic biological timeline. The expression levels ofGZMA, PRDM1,
CCL5, and VCAM1 were low at early time points, increased to a
maximum, and then declined. Exhausted T cells were the most
prominent cell type beyond the maximum expression point—when
gene expression is decreasing (Fig. 4C). These suggest that MLCs are a
causative agent in an “activation-dependent exhaustion program”
such as those reported previously (15).

The Van Allen dataset confirmed the relationship of HLA-A,
HMGB2, CD86,HMGB1, and TNF with PRDM1 and RUNX3 regulon
activity: an ssGSEA inferred score for the MLC genes was strongly
correlated with PRDM1 and RUNX3 activity (R ¼ 0.63, R ¼ 0.69,
respectively; Fig. 4D and E). Immune-related genes are expected to be
correlated if they quantify immune cells in the TME.We accounted for
this by fitting a multiple linear regression: the relationship of RUNX3
and PRDM1 activity with the MLC score was adjusted for a CIBER-
SORT inferred “Absolute Score,” which measures the total immune
component present in a tumor. The MLC score remained a significant
predictor of RUNX3 and PRDM1 activities (P < 0.001), suggesting the
relationship is not confounded by the number of immune cells in
the TME.

Resolving monocyte heterogeneity is essential for understanding
their role in ICI response. We clustered the MLC state at a finer
granularity, identifying two distinct subclusters (denoted as 0 and
1; Fig. 4E). The top-scoring MLC effector genes identified previ-
ously by NicheNet were upregulated in subcluster 0, suggesting
greater interactions with the exhausted T-cell state (Fig. 4F).
Indeed, patients in the high exhausted T-cell cohort had signifi-
cantly higher proportions of subcluster 0 compared to subcluster 1
(Fig. 4G). Both subclusters retained the association between MLCs

Figure 4.
The relationship between MLCs and exhausted T cells. A, The percentage of MLCs in patients with either high or low proportions of the exhausted T-cell state,
compared using a Wilcoxon test. B, NicheNet inferred interactions between genes expressed in MLCs and the PRDM1 and RUNX3 regulons in exhausted
T cells. C, The average expression pattern of MLC target genes identified by NicheNet across a pseudo-time trajectory in memory (Mem), cytotoxic (Cyto),
and exhausted (Ex) T cells. The line represents the genes average expression with respect to pseudo-time, as inferred by a generative additive model. The
cells are annotated as Memory, Exhausted, or Cyto T cells, and whether they were identified by DAseq. D, Pearson correlation between the top five MLC
ligands from NicheNet, scored in the Van Allen dataset using ssGSEA, and the activity of RUNX3 and PRDM1. E, UMAP plot of MLC state after subclustering.
The cells are colored by identified clusters. F, The expression level (log TPM) of the top MLC ligands from NicheNet in the MLC subclusters (two-sided
Wilcoxon). G, The percentage of cells from the MLC subclusters in patients with either high or low proportions of the exhausted T-cell state (two-sided
Wilcoxon). The central black line represents the median; boxes extend from the first to the third quartiles; whiskers extend to 1.5 times the interquartile range
beyond the box. H, The proportion of total cells from MLC subclusters in nonresponder patients. I, The expression levels of DEGs [Bonferroni-corrected q-
value ≤0.05 and log2 (fold-change) > 0.25] between MLC subclusters in cell phenotypes from the protein atlas. The cell types are in increasing order based on
the mean expression values of the DEGs.
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and nonresponders (Fig. 4H). However, the DEGs between sub-
clusters (Supplementary Fig. S2) demonstrated elevated expression
in markedly different cell types from the human protein atlas
(http://www.proteinatlas.org/; ref. 30). Genes upregulated in subclus-
ter 0 were highly expressed in prototypical monocyte populations,
whereas upregulated genes in subcluster 1 were highly expressed in
B-cell populations (Fig. 4I). B-cell marker expression in subcluster 1
was not an artifact of doublet formation between monocytes and B
cells (Supplementary Fig. S2). In fact, CD79a activation on myeloid
derived suppressor cells (MDSC) has demonstrated immunosup-
pressive properties in metastatic melanoma (45), andmay explain the
relationship between subcluster 1 and nonresponders.

Discussion
Building on prior single-cell transcriptomic efforts to understand

the relationship between the TME and ICI response (2, 8), we
comprehensively analyzed the immune compartment in patients with
metastatic melanoma prior to ICI treatment. Unlike previous
approaches, and in response to the inherent noise of scRNA-seq data,
we used regulons for the characterization of cellular states. Our results
showed that regulons constitute robust guides of cellular identity and
have comparable performance with gene expression data in delineat-
ing immune cell phenotypes. Importantly, as the scoring of regulons
can overcome batch and technical effects (14), our approach is more
effective for validating findings from single-cell analyses in a bulk
RNA-seq context.

Four distinct immune cell states were enriched in either responder
or nonresponder tumor samples. As these cell states were not con-
strained to any predefined clusters by DAseq, they were not previous-
ly identified by Sade-Feldman and colleagues (8). The exhausted
CD8þ T-cell state was enriched in nonresponders and was defined
by RUNX3 and PRDM1, both of which demonstrated increased
chromatin accessibility and expression in terminally exhausted
cells (37). Terminally exhausted cells are the progeny of polyfunc-
tional “progenitor exhausted” cells and are considered unresponsive
to ICIs (4, 5).

MDSCs present a major obstacle to ICI efficacy, but their under-
lying heterogeneity remains only partially understood (42). Our study
identified an MLC state that induces terminal exhaustion in CD8þ

T cells through two distinct subpopulations. One subpopulation, repre-
sentingmonocytes, upregulates ligands involved in antigen presentation
(HLA-A), chronic inflammation (TNF), and negative costimulation
(HMGB1, which is a TIM3 ligand), whereas the second subpopulation
has elevated expression of B-cell markers (CD79a). Stimulation of
MDSCs through CD79a enhances their suppressive effect on T-cell
proliferation, stimulates their migration, and induces protumorigenic
cytokine secretion (45). This explains their association with T-cell
exhaustion and ICI resistance and prompts their exploration in addi-
tional datasets. The decline in the expression of cytotoxic (GZMA and
VCAM1) and activation (CCL5) genes that interact withMLC ligands in
the exhausted CD8þ T-cell state is preceded by a maximum expression
value, suggesting that these cells may be stimulated until they become
desensitized to the costimulatory pathway signal. In the context of ICI
response, exhausted CD8þ T cells were associated with worse outcomes
if high MLC levels were present, suggesting that exhausted T cells and
ICI resistance is inextricably linked to MLCs.

Two cell states were associated with response to ICIs: B cells and
memory T cells, the latter of which were defined by the LEF1 and
FOXP1 regulons; LEF1 and FOXP1 are TFs linked to early differen-
tiated memory T cells. By mapping the organizational structure of

CD8þmemory T cells, a memory-cell state characterized by LEF1 and
FOXP1 was identified (46). This cell state potentially facilitates an
immunotherapy response through its self-renewal capabilities and
propensity for activation and effector differentiation (46). Although
the memory-cell state identified here may not be transcriptionally
identical, which is a potential consequence of different cellular eco-
systems used for identifying the cell state (normal physiology vs.
melanoma), previous studies have reported the importance of early
differentiated, stem cell–like memory cells for response to ICIs (4).

Reports on the impact of B cells on ICI response were initially
inconsistent. It is now apparent that B cells can either bolster or negate
ICIs, depending on their phenotype (47). In response to autologous
melanoma secretomes, B cells differentiate into a plasmablast-like
B-cell population with upregulation of PAX5. In concordance with our
PAX5-defined B-cell state, the frequency of plasmablast-like B cells
predicted response and survival to ICI via increasing PD-1þ T-cell
activation (48). We hypothesize that PAX5 regulates a differentiation
program in B cells exposed to melanoma stimuli that drives tumor
clearance in response to an ICI.

Studies have reported greater reproducibility and insights into
cellular heterogeneity from regulatory networks compared with gene
expression–based approaches (14, 49). Networks also add functional
context from gene interactions, facilitating the biological interpreta-
tion of findings. We did not benchmark our approach against gene
expression–based methods; however, future work should systemati-
cally compare gene markers with network approaches for character-
izing cellular states, deconvoluting bulk RNA-seq, and translating
findings between omics platforms. Our study focused on pretreatment
metastatic melanoma, and it remains to be seen whether the regulons
function similarly in other cancers. Given the complexity of the TME,
we propose implementing this method in a context-dependent
manner.

Identifying highly resolved cellular states has numerous potential
clinical benefits: administering ICI therapy based on the distribution
of responsive cell states in the TME; and reprogramming resistant cells
into productive cellular states. The development of cell modification
strategies is an active research area, particularly in macrophages (50),
and it requires a deeper understanding of the complex interplay
between cellular states within the tumor-immune ecosystem. Our
approach offers a valuable tool to accelerate therapy development in
this field.
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