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Abstract

Recalcitrant infections pose a serious challenge by prolonging antibi-
otic therapies and contributing to the spread of antibiotic resistance,
thereby threatening the successful treatment of bacterial infections.
One potential contributing factor in persistent infections is antibiotic
persistence, which involves the survival of transiently tolerant sub-
populations of bacteria. This review summarizes the current under-
standing of antibiotic persistence, including its clinical significance
and the environmental and evolutionary factors at play. Additionally,
we discuss the emerging concept of persister regrowth and potential
strategies to combat persister cells. Recent advances highlight the
multifaceted nature of persistence, which is controlled by determin-
istic and stochastic elements and shaped by genetic and environ-
mental factors. To translate in vitro findings to in vivo settings, it is
crucial to include the heterogeneity and complexity of bacterial
populations in natural environments. As researchers continue to gain
a more holistic understanding of this phenomenon and develop
effective treatments for persistent bacterial infections, the study of
antibiotic persistence is likely to become increasingly complex.
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Introduction

Bacterial species have evolved various survival strategies to deal

with a myriad of stressors that impede their growth or survival

(Hibbing et al, 2010). Among these strategies, antibiotic resistance

has been well-studied and allows bacteria to thrive in antibiotic-rich

environments. Despite widespread public awareness of antibiotic

resistance, another critical, yet often overlooked survival strategy to

antibiotics is persistence (Huemer et al, 2020). Antibiotic persistence

is characterized by the ability of a bacterial subpopulation to toler-

ate a lethal antibiotic dose, while the majority of the isogenic popu-

lation is rapidly killed, resulting in biphasic killing (Fig 1A). The

surviving persister cells can give rise to a new population after anti-

biotic treatment is ceased (Balaban et al, 2019), provided that they

have reverted to the normal, antibiotic-sensitive state and have recov-

ered from potential antibiotic-inflicted damage (Wilmaerts et al,

2019b). From a clinical perspective, persistence could possibly lead to

relapse of the infection, despite successful initial treatment of the

patient (Fig 1B). Indeed, persistence has been linked to the chronic

nature of various persistent infections (Fauvart et al, 2011). Moreover,

the tolerance of persister cells promotes the emergence of resistance,

further underpinning the importance of understanding bacterial persis-

tence (Levin-Reisman et al, 2017; Windels et al, 2019b; Bakkeren

et al, 2020; Santi et al, 2021; Sulaiman & Lam, 2021).

In the past, most research efforts have focused on investigating sto-

chastic and deterministic persister formation in vitro (Van den Bergh

et al, 2017). However, recent studies have expanded to include the

mechanisms underlying persister recovery and regrowth (Wilmaerts

et al, 2019b, 2022; Semanjski et al, 2021), the clinical context of the

host (Helaine et al, 2014; Stapels et al, 2018; Huemer et al, 2021;

Wang & Jin, 2022), and ecological and evolutionary aspects of bacte-

rial persistence (Bakkeren et al, 2020; Personnic et al, 2021; Verstraete

et al, 2022b). Therefore, there is a need for a comprehensive under-

standing of these recent findings. In this review, we summarize recent

advances on bacterial persistence and underscore its clinical rele-

vance. We also provide a concise overview of the genetic mechanisms

underlying persistence with a focus on recovery pathways. Finally, we

examine ecological and evolutionary dynamics of persistence and dis-

cuss a range of potential strategies to combat persister cells, including

the usefulness of combining antibiotics and potentiating compounds.

A persistent threat in the clinic

Persistent bacterial infections pose a significant burden to human

health worldwide due to their chronic nature and their challenging,
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long-lasting treatment (La Rosa et al, 2022). Although the term “per-

sistent infection” suggests the presence of bacterial persister cells, it

rather points toward infections that are not cleared by the host

immune system or, by extension, by antibiotic treatment due to

antibiotic survival strategies such as resistance, tolerance and per-

sistence (Fig 1A; Balaban et al, 2019). Resistance is acquired

through genetic changes and denotes the ability of the bacterial pop-

ulation to survive and reproduce in the presence of antibiotics and

is characterized by an increase in the minimum inhibitory concen-

tration (MIC) of the antibiotic. Tolerance, on the contrary, refers to

a population’s ability to survive longer exposure to antibiotics, typi-

cally due to restrictive growth either caused by genetic mutations or

environmental conditions. Tolerance therefore prolongs the mini-

mum duration for killing the population, while the MIC remains

unchanged since tolerant cells do not grow in the presence of antibi-

otics. While resistance and tolerance apply to the entire population,

persistence refers to a subpopulation that consists of phenotypic

variants with increased levels of tolerance. The formation of this

subpopulation proceeds either deterministically, stochastically or by

a combination of both. Importantly, the survival of persister cells

does not affect the population’s MIC (Brauner et al, 2016; Balaban

et al, 2019; Ronneau et al, 2021). Although a fully tolerant popula-

tion is characterized by a high survival rate upon treatment and the

persister phenotype merely applies to a small subpopulation, persis-

tence can have a clear fitness advantage over population-wide toler-

ance. While tolerance coincides with restricted growth in absence of

antibiotics, a sensitive population containing a small fraction of per-

sister cells retains colonization abilities of the host, while the per-

sister cells ensure continuation of the infection after an antibiotic

treatment (Michaux et al, 2022). For clarity, in the remainder of this

work, the term “persistence” will be used in the context of bacterial

persister cells.

The presence of antibiotic-tolerant persisters in bacterial popula-

tions can have significant implications for the success of antibiotic

therapy. These cells are able to survive antibiotic exposure and then

recover and regrow once the antibiotic pressure is released, causing

a relapse of infection (Fig 1B; Balaban et al, 2019). This threat is

amplified when persister cells are shielded from the host immune

response, mostly by residing within biofilms (Lewis, 2007; Ciofu

et al, 2022). Pathogens like Pseudomonas aeruginosa, Staphylococ-

cus aureus, uropathogenic Escherichia coli (UPEC), and some Salmo-

nella species attach to host tissues or indwelling devices, where

they have been shown to form biofilms (Steenackers et al, 2012;

Mulcahy et al, 2014; Speziale et al, 2014; Narayanan et al, 2018;

Ciofu & Tolker-Nielsen, 2019). Apart from biofilm formation, UPEC

has the ability to invade host bladder cells, thereby rendering the

bacteria once again inaccessible for the host immune defense

(Anderson et al, 2004). Mycobacterium tuberculosis and Salmonella

spp., on the contrary, directly interact with the host immune system

by reprogramming macrophages upon macrophage internalization.

The specific intracellular conditions inside the macrophage subse-

quently trigger the bacteria to enter the persister state (Gengenba-

cher & Kaufmann, 2012; Helaine et al, 2014; Stapels et al, 2018).

Research on pathogens isolated from patients with relapsing infec-

tions supports the notion that bacterial persistence plays a role in

the chronic nature of these infections. For example, high-persistence

(Hip) mutants were identified in clinical isolates of P. aeruginosa,

UPEC, and M. tuberculosis derived from patients that underwent

repeated antibiotic treatment and experienced infection relapse

(Mulcahy et al, 2010; Schumacher et al, 2015; Torrey et al, 2016;

Bartell et al, 2020). In addition, S. aureus clinical isolates from per-

sistent infections showed increased persister levels compared with

laboratory strains (Huemer et al, 2021), and invasive nontyphoidal

Salmonella clinical isolates that have undergone multiple rounds of
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Figure 1. Distinguishing between resistance, tolerance, and persistence and the possible clinical implication of persistence.

(A) Antibiotic-resistant cells are characterized by their ability to grow during antibiotic treatment (blue). This is in contrast to antibiotic tolerance (pink) and persistence

(green). In case of antibiotic tolerance, the decreased population-wide sensitivity results in slower killing, which implies that prolonged antibiotic treatment is required

to eradicate the population (pink). Antibiotic persistence is a survival strategy where only a small subpopulation is highly tolerant to the antibiotic. This results in char-

acteristic biphasic killing, where the majority of sensitive cells are rapidly killed and the subpopulation of persister cells survives. However, note that killing of persister

cells can still happen at a slow rate (green). (B) A patient suffering from, for example, a urinary tract infection receives antibiotic treatment. The pathogen load in the

urinary tract rapidly decreases, resulting in a seemingly successful treatment. However, once the antibiotic treatment is ceased, surviving persister cells can again

increase the pathogen load, resulting in a chronic infection.
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treatment retain the characteristics of persistence rather than evolv-

ing toward tolerance (Hill et al, 2021). Lastly, another important

threat that comes with the presence of persister cells is their ability

to facilitate the emergence and spread of resistance (Levin-Reisman

et al, 2017; Windels et al, 2019c; Bakkeren et al, 2020; Santi

et al, 2021; Sulaiman & Lam, 2021). To fully comprehend antibiotic

persistence and its implications for clinical settings, it is essential to

consider environmental and evolutionary factors.

Surviving environmental adversity

Persistence is a phenotype that is heavily influenced by environ-

mental conditions. Bacteria can form persisters in response to vari-

ous stressors, such as low oxygen levels, nutrient scarcity, heat,

acidity, and exposure to toxic compounds, including antibiotics

(Fig 2A; Boon & Dick, 2012; Gutierrez et al, 2017; Wang et al, 2017;

Kubistova et al, 2018; Paranjape & Shashidhar, 2019; Van den Bergh

et al, 2022). These so-called induced or triggered persisters have

been extensively studied in the laboratory and are predominantly

present during stationary phase, when bacteria enter a low meta-

bolic state to survive in a nutrient-limited environment (Verstraeten

et al, 2015; Brown, 2019). In contrast, persisters during exponential

growth or following dilution in fresh medium are relatively few

(Keren et al, 2004; Gutierrez et al, 2017; Salcedo-Sora & Kell, 2020).

This latter type of persisters is referred to as spontaneous persisters

and are formed stochastically during steady-state exponential

growth when cells are most uniform (Fig 2A; Keren et al, 2004;

Kussell et al, 2005; Balaban et al, 2019).

The ability of bacteria to persist is not only triggered by abiotic

environmental challenges but also through communication with

other bacteria (Vega et al, 2012; Personnic et al, 2023). Quorum

sensing offers a means for bacteria to communicate with each other

using signal molecules, enabling them to induce virulence factors

and coordinate behavior, examples of which are swarming or bio-

film formation. In Legionella pneumophila, quorum sensing is a

major regulator of phenotypic heterogeneity and the Legionella quo-

rum sensing system controls the ratio between growing and

nongrowing—antibiotic-tolerant—states (Personnic et al, 2021).

Similarly, Streptococcus mutans and P. aeruginosa exhibit aug-

mented antibiotic persistence attributed to the secretion of signaling

molecules (Möker et al, 2010; Leung & L�evesque, 2012). Moreover,

these signaling molecules may also trigger persistence in other spe-

cies besides their own (Leung & L�evesque, 2012). These findings

suggest that quorum sensing-mediated persistence may represent a

collective social behavior that enables dense bacterial populations

to survive hostile environments. This behavior may play a role in

the formation of persisters in biofilms, which are dense microbial

communities that are notoriously difficult to treat with antibiotics,

with persister levels up to 1,000-fold higher than planktonic cells in

exponential growth phase (Spoering & Lewis, 2001; Lewis, 2005).

However, heterogenous environmental conditions, such as gradients

in nutrient or oxygen availability leading to localized growth arrest,

could also induce persistence within biofilms (Borriello et al, 2004;

Nguyen et al, 2011; Flemming et al, 2016).

During bacterial infections, host immune cells employ various

strategies to generate hostile conditions for pathogens. Examples

include the production of reactive oxygen species (ROS), the seques-

tration of essential nutrients, or the release of inflammatory media-

tors and antimicrobial peptides (Foster, 1999; Fang, 2011; Becker &

Skaar, 2014; Murdoch & Skaar, 2022). However, while these host

immune-mediated stress conditions are effective in controlling
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Figure 2. Formation and heterogeneity of antibiotic persisters.

(A) Two categories of persister cells are depicted: spontaneous and triggered persistence. Spontaneous persisters arise stochastically due to cellular noise, whereas

triggered persisters form in response to environmental stressors, such as abiotic stress, macrophage- or biofilm-associated stresses. Abbreviations: ROS, reactive

oxygen species; QS, Quorum sensing molecules. (B) and (C) present the models that explain how both types of persisters arise heterogeneously in a population.

(B) Spontaneous persisters arise from random variation in persister protein expression, coupled with feedback loops, resulting in bistable phenotypic differentiation.

(C) Triggered persisters, on the contrary, represent a subset of cells with the highest level of antibiotic tolerance within a population with varying levels of susceptibility

arising from developmental noise in various tolerance mechanisms. The proportion of persisters depends on both the (1) mean (l) and (2) variance (r) of this distribu-

tion as well as the (3) specific antibiotic conditions and duration. Perturbing the mean, such as through environmental triggers or genetic mutations, can increase the

fraction of cells surviving antibiotic exposure. Increasing the variance of this distribution, through environmental heterogeneity or genetic changes in buffering or

potentiating genes, can also increase the fraction of survivors.
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infections, they may unintentionally induce persister formation,

which can negatively affect drug efficacy (Helaine et al, 2014; Liu

et al, 2016; Beam et al, 2021). For example, macrophages induce

persistence in phagocytosed S. aureus through the production of

reactive oxygen and nitrogen species and by creating acid stress

within the phagosome (Rowe et al, 2020; Beam et al, 2021; Huemer

et al, 2021; Ronneau et al, 2023). In this case, persistence is likely

induced through general stress responses (Peyrusson et al, 2020;

Ranganathan et al, 2020). Other bacterial species, such as Salmo-

nella enterica and M. tuberculosis, similarly display increased

tolerance to antibiotics following internalization by macrophages

(Helaine et al, 2014; Liu et al, 2016). Another mechanism by which

the host immune system may induce bacterial persistence is through

its use of antimicrobial host defense peptides, which represent an

important antimicrobial component of the innate immune system

(Mookherjee et al, 2020). However, sublethal doses of certain anti-

microbial peptides prime bacterial cells and increase their tolerance

and persistence (Rodr�ıguez-Rojas et al, 2021; Sand�ın et al, 2022). In

conclusion, pathogens face fluctuating and unfavorable conditions

during infection, partly due to the host’s immune response, which

can paradoxically promote pathogen persistence. To combat persis-

tent infections, it is crucial to consider the interplay between patho-

genic bacteria, the host immune response, and the heterogeneous

infection environment.

Heterogeneity and bacterial persistence

It is important to note that, even in cases of triggered persistence,

antibiotic persistence is subject to cell-to-cell differences since per

definition only a subset of the population exhibits antibiotic toler-

ance. The question then arises as to how this heterogeneity in anti-

biotic survivability in genetically uniform populations emerges. In

natural environments such as in the gut or the soil, or during an

infection, microbial populations are exposed to significant environ-

mental heterogeneity (Nguyen et al, 2021; Sokol et al, 2022). Such

heterogeneity within the same spatial niche is likely to result in

drastic differentiation of physiological states, potentially resulting in

variations in antibiotic susceptibility that may explain recalcitrant

infections in some situations. Although microfluctuations or subtle

environmental gradients cannot be fully precluded, well-mixed labo-

ratory cultures generally display limited temporal and spatial

variability (Junkins et al, 2022). However, even under these homog-

enous conditions, persister subpopulations can still emerge,

highlighting the stochastic nature of antibiotic persistence.

In the absence of environmental or genetic variation, phenotypic

heterogeneity can be attributed to stochastic cellular noise (Elowitz

et al, 2002). The latter refers to random fluctuations in gene expres-

sion and biochemical processes within individual cells (Ackermann,

2015). This noise arises from various sources such as the inherent

randomness of chemical reactions, stochastic partitioning during

cell division, or cell cycle and age differences (Elowitz et al,

2002; Raser & O’Shea, 2005; Avery, 2006; Huh & Paulsson, 2011).

Spontaneous persisters are believed to arise purely from stochastic

fluctuations in gene expression via “persister” proteins that induce

persister formation when expression stochastically reaches a specific

threshold level (Fig 2B; Rotem et al, 2010; Dewachter et al, 2019).

For instance, the expression of the toxin HipA can cause bistability

of different states, allowing the bacterial cell to exist in either a sus-

ceptible or a persistent state (Balaban et al, 2004).

Like many biological phenomena, triggered persistence is the

product of multiple parallel and interdependent processes, which

are subject to their own mechanistic idiosyncrasies and triggers.

Perturbing any of these processes (e.g., growth homeostasis, stress

response, or membrane transport) can dramatically affect antibiotic

susceptibility and persistence (Wilmaerts et al, 2019b). Moreover,

it has been shown that these processes exhibit significant stochas-

tic variation, leading to cell-to-cell heterogeneity (Raser & O’Shea,

2005; Ghosh et al, 2011; Kiviet et al, 2014; Amato & Brynildsen,

2015; Shan et al, 2017). To that end, it is likely that triggered per-

sisters do not reflect a uniform subpopulation and may be formed

through various parallel mechanisms and in response to different

conditions (Fig 2C). Generally speaking, in case of antibiotic per-

sistence, it is assumed that tolerance heterogeneity results in a dis-

tribution with two distinct phenotypic states consisting of a

majority of susceptible cells and a minority of persister cells that

arise via bistable switching. However, the probability distribution

of individual cells’ antibiotic susceptibility exhibits a monomodal

Gaussian distribution (Scheler et al, 2020). Persistence may simi-

larly represent a continuous quantitative trait rather than a binary

persister–nonpersister state, which would be in line with it being a

complex polygenic trait. This idea is related to the concept of “dor-

mancy depth” (Pu et al, 2019; Bollen et al, 2021; Dewachter

et al, 2021), which measures the extent of a cell’s persistence

through dormancy and is closely linked to its lag time. Dormancy

refers to a reduced metabolic state that allows organisms to sur-

vive unfavorable conditions such as nutrient limitation, and

although it can contribute to persistence, persister cells are not

necessarily dormant and may use other mechanisms to survive

antibiotics. Increasing dormancy depth within a population can

be achieved by prolonging the stationary phase, leading to an

increase in persisters and longer regrowth times (Pu et al, 2019),

with viable but nonculturable cells representing the most extreme

phenotype in that spectrum (Bollen et al, 2021; Dewachter et al,

2021). This concept could be extended beyond just persistence via

dormancy toward triggered persistence and tolerance in general. In

this manner, dormancy depth, along with other processes related

to persistence including environmental factors, contribute to the

overall phenotypic variation of a multifactorial phenotypic trait,

for example, antibiotic survivability. Perturbations to this com-

pound trait can arise from a variety of mechanisms including

mutation, cellular noise, environmental fluctuations, and pheno-

typic plasticity, resulting in a shift in the mean or variance of this

trait (Fig 2C). The persistence level of a population and the sur-

vival of individual cells then depends on the position of this distri-

bution relative to a threshold determined by the experimental

conditions in which the persistence level is measured. During anti-

biotic treatment, as the most susceptible cells are rapidly elimi-

nated, the killing rate slows down, and only more tolerant cells

remain. Depending on the experimental conditions and the thresh-

old employed, this may result in a complete flattening of the kill-

ing curve. This perspective provides a useful unifying framework

for understanding persistence and cell-to-cell tolerance heterogene-

ity and underscores the heterogeneous nature of persistence, not

only between persisters and nonpersisters but also between indi-

vidual persister cells.
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Defense mechanisms of persister cells against antibiotics

The heterogenous nature of persisters is reflected in the variety of

defense mechanisms that make them tolerant to antibiotics (Fig 3A).

These mechanisms of antibiotic defense are commonly classified as

either passive or active. Passive mechanisms primarily involve

entering a dormant or quiescent state and thereby preventing the

corrupting effects of antibiotics on vital cellular processes

(Lewis, 2010), while active mechanisms involve other strategies

such as decreasing intracellular antibiotic concentrations or actively

preventing damage (Nguyen et al, 2011; Orman & Brynildsen, 2013;

Pu et al, 2016). For a more in-depth discussion of this topic, readers

are referred to other reviews (Van den Bergh et al, 2017;

Harms, 2019; Wilmaerts et al, 2019b).

Passive defense of persister cells against antibiotics
Most antibiotics need an active target to exert their function (Eng

et al, 1991), which means that bacteria can become tolerant by

reducing cellular activity (Hu & Coates, 2012; Balaban et al, 2019).

Indeed, persister cells are often considered to be tolerant because

they reside in a dormant state characterized by reduced metabolic

activity and a reduction of global cellular processes and growth

(Balaban et al, 2004; Amato et al, 2013). Notably, the different

mechanisms involved in persistence often share genetic compo-

nents, making it difficult to define a single cause of persistence by

dormancy. One way to lower metabolic activity and increase

persistence is to deplete ATP (Fig 3B), for example, by the addition

of arsenate (Conlon et al, 2016), the reduction of the membrane

potential (Kwan et al, 2013), or the induction of the toxins TisB

(Dörr et al, 2010) or HokB (Wilmaerts et al, 2018). Furthermore, the

activity of essential cellular processes can be reduced by directly

targeting important proteins involved in DNA replication (Tripathi

et al, 2012), transcription, or translation (Fig 3B; Kwan et al, 2013).

Several toxins from type II toxin–antitoxin modules such as HipA

and TacT have been shown to specifically inhibit these processes

(Korch & Hill, 2006; Cheverton et al, 2016). However, it is important

to note that a general role of type II toxin–antitoxin modules in per-

sistence is controversial (Goormaghtigh et al, 2018; Kaldalu

et al, 2020) and that overexpression of other toxic proteins that do

not belong to toxin–antitoxin modules can also induce persistence

(V�azquez-Laslop et al, 2006). In addition to direct targeting of

important proteins, persister cells have been associated with the

presence of protein aggregates in which important proteins might be

sequestered (Fig 3B; Pu et al, 2019; Yu et al, 2019; Dewachter

et al, 2021; Goode et al, 2021). Indeed, various conditions, such as

nutrient starvation, ATP depletion, heat shock and heterologous

protein expression, not only increase persistence but also aggrega-

tion in the cells (Leszczynska et al, 2013; Mordukhova & Pan, 2014;

Pu et al, 2019; Dewachter et al, 2021; Goode et al, 2021; Peyrusson

et al, 2022). Moreover, adding osmolytes or buffering components

to the growth medium decreases both persistence and protein aggre-

gation (Leszczynska et al, 2013). Aggregates in persister cells
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Figure 3. Mechanisms of persistence defense, recovery, and regrowth.

(A) During the course of antibiotic treatment, persister cells utilize various defense mechanisms to survive the effects of antibiotics. Once the treatment ceases,

persister cells first recover from the inflicted damage before regrowing and forming a new population, where other cells can switch to the persister state. This recovery

period involves repairing DNA damage and resuming critical cellular processes, such as DNA replication, transcription, and translation. (B) Persister cells can defend

themselves from antibiotic damage by lowering their metabolism through inhibition of DNA replication, transcription, and translation. These pathways can be inhibited

by expressing pathway-specific toxins, by sequestering essential proteins of these pathways in aggregates or by depleting the ATP needed for their functioning. Addi-

tionally, persister cells might protect themselves from more antibiotic-induced damage by increasing antibiotic efflux. For their recovery, persister cells need to repair

the inflicted DNA damage. Moreover, they need to increase their metabolism to be able to regrow by restarting DNA replication, transcription and translation. To reacti-

vate these processes, persister cells need to replete their ATP levels and remove the aggregates present in the cell.
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contain many proteins that function in transcription, translation,

and energy production (Pu et al, 2019; Dewachter et al, 2021;

Huemer et al, 2021). It is therefore hypothesized that dormancy can

be induced when sufficient essential proteins are contained in

aggregates, thereby inhibiting the cell’s overall functioning and

preventing damage from antibiotics (Bollen et al, 2021; Dewachter

et al, 2021).

Although tolerance of persisters to antibiotics is often attributed

to their low metabolic state, dormancy alone is not sufficient to fully

explain persistence. For example, there is not always a correlation

between growth rate and cell survival during antibiotic treatment

(Orman & Brynildsen, 2013; Wakamoto et al, 2013). Furthermore,

some persister cells, such as intracellular persisters, still show meta-

bolic activity and synthesize specific proteins that are important for

their survival within the host cell (Orman & Brynildsen, 2013;

Manina et al, 2015; Stapels et al, 2018; Wilmaerts et al, 2018;

Peyrusson et al, 2020; Sulaiman & Lam, 2020; Semanjski et al, 2021;

Mode et al, 2022; Ronneau et al, 2023). Additionally, while dormant

persister cells are protected from some types of harm, they are not

fully shielded from DNA damage (Völzing & Brynildsen, 2015;

Wilmaerts et al, 2022). Moreover, it was shown that cells in station-

ary phase unavoidably acquire oxidative damage, the level of which

is even higher in nongrowing cells (Nyström & Gustavsson, 1998;

Desnues et al, 2003). Clearly, dormancy protects bacteria from dam-

age to some extent, but active mechanisms are also at play.

Active defense of persister cells against antibiotics
Persister cells can actively protect themselves against antibiotics by

either reducing the antibiotic concentration within the cell or by

actively preventing antibiotic damage (Wilmaerts et al, 2019b). The

former can be achieved by increasing efflux activity (Fig 3B; Pu

et al, 2016) or preventing prodrug activation (Wakamoto et al,

2013). The latter can be accomplished by activating stress responses

(Nguyen et al, 2011; Sulaiman & Lam, 2020; Semanjski et al, 2021;

Van den Bergh et al, 2022). This increase in stress responses is often

detected in intracellular persister cells as they need to survive expo-

sure to a more complex environment of multiple small niches char-

acterized by specific environmental conditions and stresses

(Demarre et al, 2019; Peyrusson et al, 2020). In addition to activat-

ing stress responses, intracellular persisters have been observed to

reduce the host’s immune response by secreting specific effector

molecules (Stapels et al, 2018). This indicates that intracellular per-

sister cells use an array of mechanisms, at least part of which have

already been observed in in vitro studies, and that they possibly

depend on a combination of these mechanisms to survive in their

challenging environment. This underscores the importance of veri-

fying in vitro results in vivo (Box 1).

Mechanisms of persister recovery and regrowth

Persisters cells need to start recovery and regrowth to be able to

recolonize the environment once antibiotics are depleted (Fig 3A).

Several environmental factors can stimulate regrowth of nongrowing

bacteria, including persisters, such as fresh nutrients (Jõers et al,

2010), quorum sensing signals from growing cells (Nichols et al,

2008; D’Onofrio et al, 2010; Jõers et al, 2019) and the removal of cer-

tain host immune factors (Beatty et al, 1993; Mohan et al, 2001).

However, the length of the lag phase between transfer of persisters to

new medium and their regrowth depends on the concentration of

the antibiotic and the duration of the treatment (Himeoka &

Mitarai, 2021), as well as on the intensity and length of the

persistence-inducing condition (Kaplan et al, 2021; Cesar et al,

2022). Conditions of gradual stress were suggested to activate spe-

cific recovery pathways that lead to fast and homogeneous

regrowth, while more acute or longer stresses induce random path-

ways that lead to slower and heterogeneous regrowth (Kaplan

et al, 2021). Different mechanisms have been described to control

the shift from persister to antibiotic-sensitive state, such as repro-

gramming of cell metabolism and damage repair (Wilmaerts

et al, 2019b). Although these two different mechanisms will be

discussed separately, a combination of both is likely necessary for

persister recovery and regrowth.

Persister recovery and regrowth requires reversion to a
growth-competent state
To recover from the action of the antibiotic and regrow, persisters

first need to transition to a growth-competent state by replenishing

their energy level and reactivating crucial cellular pathways. Indeed,

persister cells were shown to increase their ATP levels before reini-

tiating growth (Fig 3B; Huemer et al, 2021; Manuse et al, 2021).

Accordingly, nutrient-rich medium increases regrowth (Jõers

et al, 2010; Yamasaki et al, 2020), and persister cells upregulate gly-

colysis to increase ATP levels (Semanjski et al, 2021). In the case of

HokB-induced persisters, which are ATP-depleted as a result of

membrane potential dissipation and direct ATP leaking through

HokB pores (Wilmaerts et al, 2018), the HokB pores are degraded

Box 1. In need of answers

i What is the timing and causal sequence of the processes
involved in persister cell formation? To what extent are these
processes independent of each other, or do they interact and
influence each other in a coordinated manner?

ii What are the mechanisms of persistence in vivo and how do
they relate to the persister mechanisms that have already been
found in vitro?

iii In addition to repairing DNA damage, are there mechanisms in
place for persister cells to repair any protein damage caused by
antibiotics?

iv How do persister cells coordinate the switch from DNA repair to
regrowth, and which effector proteins are involved in this pro-
cess? What is the role of protein aggregates and protein synthe-
sis in regulating this switch?

v How do persister cells respond to environmental cues, and how
does this affect their recovery and proliferation? What are the
clinical implications of these interactions?

vi How do environmental factors, such as nutrient availability,
host immune response, and interspecies interactions, influence
the evolution of persistence?

vii How do the mechanisms of persister cell regrowth and prolifer-
ation differ from those of normal bacterial growth, and how can
we exploit these differences for therapeutic purposes?

viii What are the specific mechanisms underlying the efficacy of
proposed antipersister compounds, and how effective are they
in vivo in targeting persister cells? Additionally, what are the
potential side effects associated with their use and can these be
mitigated?
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and the membrane is repolarized before regrowth (Wilmaerts

et al, 2019a). Additionally, intracellular persister cells can be locked

in the persister state with low respiration and ATP levels because of

intoxication of the TCA cycle by reactive nitrogen species. These

locked persister cells can resume growth when the reactive nitrogen

species are reduced or inhibited (Ronneau et al, 2023).

In addition to ATP repletion, persister cells need to reactivate

essential macromolecular pathways such as DNA replication and

cell division before growth is initiated (Fig 3B). During persister

recovery and regrowth, the cell division genes ftsW and amiA are

upregulated (Belland et al, 2003), while genes encoding inhibitors of

cell division and DNA replication, sulA and cspD, respectively, are

degraded (Langklotz & Narberhaus, 2011; Mohiuddin et al, 2022).

Furthermore, when shifting to the growing state, persister cells

increase various anabolic pathways such as the biosynthesis of mul-

tiple amino acids, secondary metabolites, and proteins (Fig 3B;

Semanjski et al, 2021).

The increase in protein biosynthesis during persister regrowth

(Semanjski et al, 2021) can be achieved in multiple ways. First, per-

sister cells increase their ribosomal content and translation by

increasing the production of ribosomal proteins and rRNA (Kim

et al, 2018a; Sulaiman & Lam, 2020; Semanjski et al, 2021). Second,

various studies suggest that persister cells reactivate inactivated

ribosomes during regrowth (Yamasaki et al, 2020; Song & Wood,

2020a; Semanjski et al, 2021). Persister cells are associated with

ribosomes that are inactivated by binding with the ribosome inhibi-

tor RaiA or by ribosome dimerization (McKay & Portnoy, 2015;

Prossliner et al, 2018; Song & Wood, 2020a). The inactivation of

these ribosomes might protect them from degradation such that they

can be rapidly reactivated during regrowth (Cho et al, 2015). More-

over, RaiA-induced ribosomes and ribosome dimers are associated

with a fast and slow regrowth of stationary-phase cells, respectively.

This suggests that cells have a fast and a slower mechanism for ribo-

some recovery after inactivation (Lang et al, 2021). Third, persister

cells harbor many translation-related proteins in aggregates

(Pu et al, 2019; Dewachter et al, 2021; Huemer et al, 2021). These

aggregates are removed before persister regrowth with the help of

chaperones DnaK and ClpB (Fig 3B; Pu et al, 2019; Cesar et al,

2022). This suggests that persister cells might use protein aggregates

as temporary storage compartments from which proteins can be

extracted and reused during regrowth, which is reminiscent of stress

granules in quiescent eukaryotic cells (Narayanaswamy et al, 2009;

Saad et al, 2017). Similarly in bacteria, FtsZ, a key cytoskeletal pro-

tein, is refolded, relocated, and reused when stationary-phase cells

restart growth upon transfer to fresh medium (Yu et al, 2019).

Finally, persister cells can increase translation by reverting the detri-

mental effects of translation-targeting toxins. Indeed, persister

recovery and regrowth were observed following toxin inhibition by

their cognate antitoxins (Pedersen et al, 2002; Korch & Hill, 2006;

Cheverton et al, 2016; Rycroft et al, 2018) or following reversion of

toxin-induced effects (Christensen et al, 2003; Cheverton et al, 2016;

Rycroft et al, 2018).

It is important to note that some of the mechanisms of recovery

and regrowth discussed above are not necessarily unique to per-

sister cells. Stationary-phase cells also have a reduced metabolism,

which requires reactivation upon transfer to fresh medium. Never-

theless, gaining more insight in these mechanisms is needed to

understand how persister cells recover and regrow.

Persister recovery and regrowth depends on cellular
damage repair
Besides reversion to a growth-competent state, persister cells need

to repair damage, inflicted either directly or indirectly by the antibi-

otic or by environmental stressors, to allow recovery and regrowth

(Fig 3B; Wilmaerts et al, 2019b).

Fluoroquinolones offer the most evident example of an antibiotic

class causing direct damage to persister cells. In E. coli, their pri-

mary target is DNA gyrase (Drlica & Zhao, 1997; Malik et al, 2006),

which plays a critical role in the relaxation of DNA during replica-

tion and transcription. Several studies have indicated that, following

fluoroquinolone treatment, persister cells suffer DNA damage and

induce the SOS response, a DNA damage-inducible DNA repair

pathway, suggesting that DNA repair is essential for recovery and

regrowth (Dörr et al, 2009; Völzing & Brynildsen, 2015; Barrett

et al, 2019; Goormaghtigh & Van Melderen, 2019). Indeed, multiple

SOS-responsive genes implicated in homologous recombination

repair, including recA, recB, ruvA, ruvB, and uvrD, have been found

to be important for persister recovery (Theodore et al, 2013; Völzing

& Brynildsen, 2015; Mok & Brynildsen, 2018; Lemma & Brynildsen,

2021; Wilmaerts et al, 2022). The dependence on homologous

recombination repair is further supported by the finding that per-

sister cells often originate from cells containing a second chromo-

some, which may serve as a homolog in recombinational repair

(Murawski & Brynildsen, 2021). While SOS induction followed by

expression of SOS-responsive DNA repair genes is crucial for suc-

cessful recovery from fluoroquinolone treatment, it is not consid-

ered a distinguishing factor for persistence (Mok & Brynildsen,

2018). Eventually, what distinguishes persister cells from nonpers-

ister cells seems to be their ability to delay growth-related processes

until DNA repair has been completed (Mok & Brynildsen, 2018).

Indeed, a few studies using cultures in exponential growth phase

point toward a mechanism of SOS-induced growth delay during flu-

oroquinolone treatment, either through increased production of the

TisB toxin or the SulA cell division inhibitor (Dörr et al, 2010; Theo-

dore et al, 2013; Edelmann & Berghoff, 2022).

Most bactericidal antibiotics also cause indirect damage to cells

through the production of ROS (Kohanski et al, 2007; Foti

et al, 2012; Dwyer et al, 2014; Van Acker & Coenye, 2017). The most

important type of DNA damage caused by ROS is the incorporation

of the mutagenic 8-oxo-guanine, formed by oxidation of the guanine

nucleotide pool. While this lesion is not necessarily lethal, failed

attempts to repair it prior to cell division may lead to cell death (Foti

et al, 2012; Gruber & Walker, 2018). Successful repair of oxidative

DNA damage may therefore be important for persister survival.

When the level of oxidative damage is high, repair of the non-

helix-distortive 8-oxo-guanine lesion is accomplished by nucleotide

excision repair (NER; Gruber & Walker, 2018; Dhawale

et al, 2021). In accordance with this, transcription-coupled NER

was shown to be important for persister survival following fluoro-

quinolone treatment, as knockout of NER genes results in impaired

persister recovery and regrowth (Wilmaerts et al, 2022).

Transcription-coupled repair requires the removal of the RNA poly-

merase from the site of the lesion, either by UvrD-mediated back-

tracking allowing rapid resumption of transcription following

repair (Epshtein et al, 2014), or by Mfd-mediated displacement,

which terminates transcription (Park et al, 2002). Accordingly,

UvrD-mediated backtracking was shown to result in a short persister
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lag phase, whereas Mfd-mediated displacement results in a longer

persister lag phase following treatment. This difference could account

for lag phase heterogeneity within the persister population and enable

persister cells to optimize the timing of DNA damage repair versus

growth resumption (Mok & Brynildsen, 2018; Wilmaerts et al, 2022).

Although the study of Wilmaerts et al (2022) focused on fluoroquino-

lone antibiotics, NER may also be implicated in persister survival fol-

lowing treatment with other classes of bactericidal antibiotics.

Indeed, transcriptomics, proteomics, and transposon insertion

sequencing have revealed a role for the oxidative stress response and

the SOS response, including NER, during b-lactam treatment of high-

persistence hipA-induced and cyaA-mutant cells (Keren et al, 2004;

Molina-Quiroz et al, 2018; Sulaiman & Lam, 2020; Semanjski

et al, 2021). However, a comprehensive study clearly linking NER of

oxidative DNA damage by ROS in persister survival following treat-

ment with b-lactam antibiotics is currently lacking.

Evolution of antibiotic persistence

All bacterial species investigated to date exhibit some level of persis-

tence, illustrative of its universal nature. Even fungal pathogens

have been observed to show persistence in response to antimicro-

bials (LaFleur et al, 2006; Bojsen et al, 2017). The adaptive advan-

tage of persistence in the context of antibiotic treatment for

infections is readily apparent. By investing in a diversity of pheno-

types that increase their chances of long-term survival in an unpre-

dictably changing environment, bacteria are able to hedge their bets

against the possibility of encountering lethal concentrations of anti-

biotics (Kussell & Leibler, 2005; Grimbergen et al, 2015). However,

the evolutionary benefits of persistence in natural environments are

less straightforward as bacteria typically do not encounter such high

concentrations of antibiotics in their natural ecosystems (Stepanyan

et al, 2015). The level of persistence is determined by both genetic

and environmental factors (Bakkeren et al, 2020; Verstraete

et al, 2022b). Adaptive laboratory evolution has shown that antibi-

otic persistence is a highly evolvable trait and populations can rap-

idly evolve an increased persister fraction in response to periodic

exposure to high antibiotic concentrations (Van den Bergh

et al, 2016; Levin-Reisman et al, 2019; Windels et al, 2021). Given

that persistence results in a reproductive advantage upon antibiotic

exposure and is evolvable, it is tempting to look for an adaptive—

evolutionary—explanation of antibiotic persistence. However, the

mere existence of utility or function does not imply adaptation

(Gould & Lewontin, 1979). As such, persistence is not necessarily

an adaptation to the current environment of bacteria, but could

also represent a byproduct of other adaptive—or nonadaptive—

pressures that occurred in the past, that is, induction of dormancy

in response to hostile environments, or a byproduct of cell-to-cell

variability resulting from inherent errors in biological processes

(Johnson & Levin, 2013; Levin et al, 2014). This nonadaptive view

on persistence does not preclude it from being co-opted to increase

survival in a different context (Gould & Vrba, 1982). For instance,

selection may act directly on increasing persistence during adaptive

laboratory evolution of persistence or within a host undergoing anti-

biotic treatment. However, also here, increased antibiotic persis-

tence may have been the result of indirect or bystander selection for

survival to hostile environments, provided by the immune system,

rather than direct selection toward increased antibiotic tolerance

(Bakkeren et al, 2020).

Despite the speculative nature of the evolutionary origin of per-

sistence, the ability of persisters to survive antibiotics makes them a

potential reservoir of genetic diversity that can be utilized when the

environment changes, enabling the population to adapt quickly to

new conditions (Windels et al, 2019b, 2020). In particular, the evo-

lution of increased persistence or tolerance enables populations to

evolve resistance more rapidly (Levin-Reisman et al, 2017). This is

especially significant in conditions with high antibiotic concentra-

tions, where enhanced tolerance allows the survival of resistance-

conferring mutants beyond the mutation prevention concentration.

This is facilitated through multiple mechanisms, including the

increase in effective population size during antibiotic exposure,

which enhances the mutation supply and increases the likelihood of

acquiring resistance-conferring mutations (Levin & Rozen, 2006;

Levin-Reisman et al, 2017), or through synergistic epistasis between

tolerance and resistance mutations (Levin-Reisman et al, 2019). In

addition, it has been found that persisters exhibit increased muta-

tion rates, which further boost the mutational supply, enabling

faster adaptation (Windels et al, 2019c). Persisters could also serve

as a refuge for costly resistance-conferring plasmids, which can be

transferred to other bacteria through horizontal gene transfer if con-

ditions permit (Bakkeren et al, 2019). For a more comprehensive

discussion on the evolution of persistence and its link to resistance,

we encourage the reader to consult other reviews (Bakkeren

et al, 2020; Verstraete et al, 2022b). Understanding how persistence

evolves and affects the evolution of antibiotic resistance may ulti-

mate allow us to develop new strategies to combat antibiotic persis-

tence and limit resistance. Evolutionary research can aid in the

development of such strategies by identifying the mechanisms and

factors that promote their evolution and the interaction between

persistence and resistance evolution.

Approaches for combating antibiotic persistence

As persister cells can complicate treatment and current antibiotics

have proven insufficient to completely eradicate them, there is an

ongoing effort to develop new antipersister strategies. While com-

binatorial antibiotic therapy is a promising approach (Fig 4; Keren

et al, 2004; Aedo et al, 2019; Windels et al, 2019a), its efficacy

likely varies depending on the species or strain of bacteria

(Brochado et al, 2018), highlighting the importance of reliable

identification and sensitivity profiling. However, even with optimal

treatment, complete eradication of all persister cells may not be

achievable due to their multiantibiotic tolerance. Therefore, there

is a need for new antimicrobial compounds that can target cellular

processes that are not protected in persisters (Fig 4). For example,

compounds that affect cell viability by crosslinking DNA (Kwan

et al, 2015), degrading proteins nonspecifically (Conlon et al,

2013) or disrupting the cell membrane (Hurdle et al, 2011;

Defraine et al, 2018; Kim et al, 2018b; Hamad et al, 2022) or cell

wall (Briers et al, 2014) can be considered. However, such antibi-

otics are often nonspecific and may therefore pose a risk of cyto-

toxic side effects. This highlights the need for further research and

discovery of antimicrobial compounds that specifically target per-

sisters and not host cells.
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Another option to decrease the number of persisters is the use of

nonantibiotic potentiating compounds as adjuvants to existing anti-

biotics, which can improve the efficacy of the antibiotics against a

population of both sensitive and persister cells (Fig 4). One possibil-

ity to increase the killing of both sensitive and persister cells is to

increase the intracellular antibiotic concentration. Antibody–antibi-

otic conjugates, where an antipathogen antibody is linked to an anti-

biotic, increase the specificity of their delivery, while minimizing

potential toxic side effects (Lehar et al, 2015; Zhou et al, 2016;

Mariathasan & Tan, 2017). Moreover, an increased intracellular

antibiotic concentration can be achieved by increasing the uptake of

the antibiotic with compounds that cause direct membrane permea-

bilization such as colistin (Cui et al, 2016; Chung & Ko, 2019) or

substances that activate mechanosensitive ion channels (Jiafeng

et al, 2015; Chen et al, 2019; Lv et al, 2022). Additionally, efflux

pump inhibitors can also increase intracellular antibiotic concentra-

tions (Adams et al, 2011; Pu et al, 2016). The effectiveness of an

antibiotic therapy on a population of bacteria may also be improved

by decreasing the number of antibiotic-tolerant persister cells. One

strategy to lower persister levels is by preventing their formation

with quorum sensing inhibitors (Starkey et al, 2014; Allegretta

et al, 2017), antioxidants (Rowe et al, 2020) or by inhibiting toxin–

antitoxin systems using toxin inhibitors (Li et al, 2016). However, a

notable downside of using antioxidants is that this could result in

concomitantly lower beneficial ROS-mediated mechanisms of the

immune system (Dumas & Knaus, 2021), leading to increased infec-

tions and longer infection durations. Preventing active persistence

mechanisms by decreasing active stress responses such as the SOS

response using RecA inhibitors (Alam et al, 2016; Yamamoto

et al, 2022), the general stress response using mesalamine (Dahl

et al, 2017) or the stringent response by limiting ppGpp production

(Nguyen et al, 2011; Dutta et al, 2019) has also been associated with

lower persister levels and an improved treatment in animal infection

models. Another strategy to decrease the number of persisters in a

population is by resensitizing them to antibiotics by inducing their

regrowth. Persister regrowth can be stimulated by administering sig-

naling molecules like indoles (Song & Wood, 2020b), although the

effects are strain and antibiotic specific (Sun et al, 2020). Moreover,

many carbon sources are known to restart the metabolism and

thereby either increase the PMF and the uptake of the antibiotic in

Persister cell 

+

1. Direct targeting

Susceptible cell
2. Potentiation

+

3. Prevent evolution

Resistant cellIncreased persister level

Novel antibiotics

Existing antibiotics

Potentiating compound

Figure 4. Strategies to combat persistence.

(1) Direct targeting of persister cells using single-drug therapy with novel antibiotics or combinatorial therapy with existing antibiotics. (2) Combining existing antibi-

otics with a potentiating compound to enhance the efficacy of the antibiotic against the whole population, including both persister and nonpersister cells. Potentiating

compounds can inhibit persister formation, trigger persister recovery and regrowth, and increase antibiotic uptake or decrease antibiotic efflux. (3) Preventing evolution

of increased levels of persisters, which may also limit the evolution and spread of resistance via persistence.
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the cell (Allison et al, 2011; Kitzenberg et al, 2022) or induce per-

sister regrowth (Allison et al, 2011; Vilch�eze et al, 2017).

Another strategy, parallel to the ones mentioned earlier, could be

to restrict or reverse the evolution of antibiotic persistence (Fig 4).

Combination therapy or antibiotic cycling has been suggested as

potential approaches to prevent the evolution of resistance against

commonly used antibiotics (Michel et al, 2008; Baym et al, 2016).

These strategies rely on negative evolutionary interactions between

antibiotics, known as collateral resistance, where a mutation that

confers resistance to one drug concomitantly decreases resistance to

another. Conversely, resistance to one drug leading to resistance to

another is referred to as cross-resistance. However, it is typically

observed that the evolution of increased persistence to a specific

drug is accompanied by increased persistence to other drugs, includ-

ing those of other classes, thus limiting the potential use of mixing

or cycling antibiotic (Michiels et al, 2016; Van den Bergh et al, 2016;

L�az�ar et al, 2022). Nonetheless, the patterns of cross-persistence

and collateral persistence interactions remain poorly understood

and further research may identify promising antibiotic combina-

tions. Additional methods, such as blocking evolvability factors,

may also be promising to prevent persistence evolution. For

instance, targeting mutagenesis-promoting factors, such as Mfd, the

mycobacterial mutasome or SOS response regulators, could be a

potential approach to prevent the evolution of persistence (Ragheb

et al, 2019; Merrikh & Kohli, 2020). By reducing the number of per-

sisters or limiting high-persistence evolution, the proposed strategies

can not only combat antibiotic persistence and their role in persis-

tent infections but may also slow down the evolution of antibiotic

resistance. This could prolong the effectiveness of existing antibi-

otics and help to preserve the usefulness of these critical drugs in

the future, which is particularly important given the decreasing rate

of discovery of novel antibiotics.

Concluding remarks

Bacterial pathogens are notorious for their remarkable adaptability

in hostile environments, including their ability to persist in the pres-

ence of otherwise lethal doses of antibiotics. In this review, we have

outlined recent advances in our understanding of antibiotic persis-

tence. Current research focused on persister formation, recovery,

and regrowth has reinforced the notion that persistence is a complex

multifaceted and adaptive phenomenon that is significantly influ-

enced by environmental cues. This highlights the importance of con-

sidering the ecological context in which bacteria exist, including

intra- and interspecies communication and interactions with the

immune system. Acknowledging this wider ecological framework is

essential for a better understanding of antibiotic persistence as an

emergent property of the microbial community in its natural envi-

ronment, rather than solely determined by the characteristics of

individual bacterial cells. This will require researchers moving

beyond conventional methods that rely on homogeneous isogenic

cultures and instead develop techniques that can capture the hetero-

geneity and complexity of bacterial populations in vivo. However,

there exists a relative paucity of antibiotic persistence research

beyond well-mixed laboratory conditions. Therefore, it is critical to

contextualize basic research findings in in vivo mammalian models

or clinical settings (Box 1). Recent research conducted with murine

models appears to hold great potential for translating in vitro find-

ings (Newson et al, 2022; preprint: Verstraete et al, 2022a). Addi-

tionally, several promising strategies have been proposed to combat

antibiotic persistence, but their efficacy is yet to be validated. As a

first step toward this validation, further development and utilization

of murine models may prove to be valuable. In conclusion, further

research is necessary to obtain a more holistic understanding of bac-

terial persistence and its implications in clinical settings, potentially

leading to the development of effective therapies for persistent bac-

terial infections.
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