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Spatiotemporal regulation of Rho GTPase signaling 
during endothelial barrier remodeling
Jeffrey MA van der Krogt1, Ivanka JE van der Meulen1 and  
Jaap D van Buul2,3

The vasculature is characterized by a thin cell layer that comprises 
the inner wall of all blood vessels, the continuous endothelium. 
Endothelial cells can also be found in the eye’s cornea. And even 
though cornea and vascular endothelial (VE) cells differ from each 
other in structure, they both function as barriers and express 
similar junctional proteins such as the adherens junction VE- 
cadherin and tight-junction member claudin-5. How these barriers 
are controlled to maintain the barrier and thereby its integrity is of 
major interest in the development of potential therapeutic targets. 
An important target of endothelial barrier remodeling is the actin 
cytoskeleton, which is centrally coordinated by Rho GTPases that 
are in turn regulated by Rho-regulatory proteins. In this review, we 
give a brief overview of how Rho-regulatory proteins themselves 
are spatiotemporally regulated during the process of endothelial 
barrier remodeling. Additionally, we propose a roadmap for the 
comprehensive dissection of the Rho GTPase signaling network in 
its entirety.
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Introduction
The endothelium lines the luminal side of blood vessels 
where it controls the passage of molecules and immune 
cells into tissues [1]. It consists of a single layer of 

squamous cells that are connected by endothelial cell–
cell junctions to form a selective barrier [2]. Permeability 
of this endothelial barrier is centrally coordinated by the 
actin cytoskeleton in such a way that reinforcement of 
the actin cytoskeleton makes the barrier more restrictive 
and disruption of the actin cytoskeleton increases barrier 
permeability [3]. protein from Rho family (Rho) guano
sine triphosphat-ases (GTPases) are small molecules 
that govern modifications to the actin cytoskeleton and 
hence govern endothelial barrier integrity [4,5].

With the use of experimental tools such as mutant ana
lyses and GTPase activity pulldown assays, the basic 
principles of Rho GTPase signaling have been well es
tablished. With respect to the endothelium, this led to the 
general understanding that the Rho GTPases Rac1 and 
Cdc42 make the endothelial barrier more restrictive 
through the formation of lamellipodia and filopodia, re
spectively, whereas RhoA increases barrier permeability 
by forming contraction-related stress fibers [6,7]. Many 
lines of evidence however revealed a more complicated 
picture of Rho GTPase signaling. Instead of having a 
fixed purpose, Rho GTPases appeared to generate a 
downstream signaling cascade depending on the sum of 
protein–protein and protein–lipid interactions [8]. 
Owing to extensive research on the regulation of Rho 
GTPase signaling, we now know that Rho GTPase sig
naling is highly localized and consists of a complex net
work shaped by Rho GTPase-regulatory proteins (further 
referred to as Rho regulators) [9]. Yet, our understanding 
of how exactly these Rho regulators spatiotemporally or
chestrate Rho GTPase signaling is still limited.

Dysregulation of Rho GTPase signaling has been linked 
to a variety of diseases that involve endothelial barrier 
dysfunction, among which are vascular pathology [10]
and cancer metastasis [11]. Therefore, creating a better 
picture of Rho regulator dynamics during endothelial 
barrier remodeling might provide new leads for ther
apeutic opportunities. Owing to the dynamic interplay 
between Rho GTPases and Rho regulators, this process 
demands a comprehensive analytical strategy [12]. In 
this review, we create an overview of the features that 
shape Rho regulator dynamics during endothelial barrier 
remodeling and discuss a comprehensive analytical ap
proach that might facilitate in elucidating the entire Rho 
GTPase signaling network.
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The actin cytoskeleton governs endothelial 
barrier permeability 
Actin makes up roughly 10% of the total protein in en
dothelial cells [13]. Based on cellular demand, actin 
exists either in a monomeric globular form or a polymeric 
filamentous form (filamentous actin (F-actin)) [14,15]. In 
its polymerized form, F-actin contributes to the forma
tion of three distinct but interrelated structure compo
nents of the actin cytoskeleton (Figure 1). First, located 
immediately cytosolic to the endothelial plasma mem
brane is the membrane skeleton [16]. This structure 
determines plasma membrane shape and facilitates 
membrane extensibility. Its molecular basis consists of 
spectrin, which cross-links with F-actin and other 
binding proteins to form a network that structurally 
supports the plasma membrane [17]. Second, just 

beneath the membrane skeleton lies the cortical actin 
ring. This dense ring interacts strongly with cell–cell 
junctions and cell-matrix adhesion complexes to gen
erate firm cell adhesions [18]. Third, whereas the 
membrane skeleton and the cortical actin ring are posi
tioned directly central to the plasma membrane, stress 
fibers extend throughout the cell cytoplasm. These fi
bers consist of actomyosin bundles that, upon barrier- 
disruptive stimuli, contract and so contribute to the 
formation of endothelial gaps [3,19]. 

To safeguard a reliable endothelial barrier stability, the 
cortical actin ring cooperates closely with two types of 
cellular adhesions, namely cell–cell junctions and cell- 
matrix adhesion complexes (Figure 2) [20]. Endothelial 
cell–cell junctions commonly comprise a combination of 

Nomenclature  

BAR Bin-Amphiphysm-Rversus 
CSK C-terminal Src-kinase 
Dbl diffuse B-cell lymphoma 
DOCK dedicator of cytokinesis 
EndMT endothelial-to-mesenchymal transition 
F-actin filamentous actin 

FA focal adhesion 
FRET fluorescence resonance energy transfer 
GAP GTPase-activating protein 
GDI guanine nucleotide dissociation inhibitor 
GEF guanine nucleotide exchange factor 
JAM junctional adhesion molecules 
VE vascular endothelial 
ZO zona occludens   

Figure 1  
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Schematic overview showing the different layers of the actin cytoskeleton in endothelial cells, in relation to cell–cell junctions and cell-matrix adhesion 
complexes. Created with Biorender.com. 
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adherens and tight junctions. Adherens junctions are 
formed by the homotypic binding between transmem
brane vascular endothelial (VE)-cadherin proteins from 
two neighboring cells [21]. Upon barrier-protective sti
muli, the linker proteins plakoglobin, p120, α-catenin, 
and ß-catenin facilitate the connection between VE- 
cadherin and the cortical actin ring to increase cell–cell 
junction stability [22] (Figure 2, left panel, upper junc
tion). Tight junctions arise from homotypic or hetero
typic binding between the adhesion molecules claudin  
[23], occludin [24], and junctional adhesion molecules. 
Upon barrier-protective stimuli, the linker proteins zona 
occludens 1/2/3 and cingulin enhance the connection 
between tight junctions and the cortical actin ring, re
sulting in a more restrictive endothelial barrier [25] 
(Figure 2, left panel, lower junctions). Endothelial cell- 
matrix adhesion complexes are formed by the binding of 
transmembrane integrin receptors with the extracellular 
matrix. Within endothelial cells, the interaction between 
F-actin and the actin-binding proteins vinculin, talin, α- 
actinin, zyxin, tensin, and filamin leads to the formation 
of cytoplasmic focal adhesion (FA) plaques [26]. Upon 
barrier-disruptive stimuli, these FA plaques reorganize 
in the direction of sites where stress fibers via integrins 
anchor to the extracellular matrix, where they contribute 
to the formation of endothelial gaps [27] (Figure 2, right 
panel). 

Structural Rho GTPase domains manage Rho 
regulator specificity 
The Rho family of GTPases in humans consists of 20 
members that can be divided into eight subfamilies [28]. 
Among these, RhoA, Rac1, and Cdc42 have been most 

extensively studied. With respect to their mode of acti
vation, Rho GTPases can be considered either classical 
or atypical. Classical Rho GTPases alternate between an 
active and inactive state based on whether a guanosine 
triphosphate (GTP) or guanosine diphosphate (GDP) is 
bound respectively. This process is formally known as 
GTP–GDP cycling and takes place under the control of 
Rho regulators, which include guanine nucleotide ex
change factors (GEFs), GTPase-activating proteins 
(GAPs), and guanine nucleotide dissociation inhibitors 
(GDIs) (Figure 3) [29]. 

Rho GEFs activate Rho GTPases by exchanging GDP 
for GTP [30]. The human genome contains over 80 
Rho GEFs that can be subdivided into two families, 
namely the diffuse B-cell lymphoma (Dbl) family and 
the dedicator of cytokinesis (DOCK) family. Members 
of the Dbl family carry a Dbl homology domain, which 
is oftentimes accompanied by a pleckstrin homology 
domain [31]. The purpose of the Dbl homology domain 
is to activate Rho GTPases by catalyzing GDP release. 
The role of the pleckstrin homology domain is less well 
defined, but research has shown this domain to fulfill 
Rho GEF-specific tasks [30]. Whereas in some Rho 
GEFs, the pleckstrin homology domain contributes to 
the interaction with Rho GTPases, in others, this do
main seems to play a role in autoinhibition [31]. 
Members of the Rho GEF DOCK family interact with 
Rho GTPases solely through their DOCK homology 
domain [32]. In contrast to Rho GEFs, Rho GAPs in
activate Rho GTPases by enhancing GTP hydrolysis. 
In total, sixty-six mammalian Rho GAPs have been 
identified [33]. Since, Rho GAPs can act as scaffold 

Figure 2  
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Schematic overview of the direct association between the actin cytoskeleton and adhesion compounds in VE cells, with on the left panel cell–cell 
junctions and on the right panel a cell-matrix adhesion complex. Created with Biorender.com.   
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molecules, they enable crosstalk between Rho 
GTPases and other signaling pathways. Rho GDIs, of 
which three are described in literature, can interfere 
with signaling events mediated by Rho GTPases. They 
do this either by inhibiting GDP dissociation from Rho 
GTPases, inhibiting GTP hydrolysis, or stimulating the 
release of Rho GTPase from cell membranes into the 
cytosol [34]. 

Fundamental to Rho regulator specificity lies the struc
tural core of Rho GTPases, as this determines both the 
conformation of its binding sites and its subcellular lo
calization. Rho GTPases contain a G domain, a short 
Rho insert region, and a C-terminal hypervariable re
gion. The G domain is where Rho regulators interact to 
adjust the activity status of Rho GTPases. 

This domain is characterized by five conserved sequence 
motifs (G1–G5), of which G- domain motifs G2 and G3 

resemble the switch-I and switch-II regions, respectively  
[35]. Consequent to the binding of a Rho regulator, 
these Rho GTPase switch regions sense whether a GTP 
or GDP is bound and change their conformation, ac
cordingly, providing a platform for further interaction 
with upstream regulators and downstream effector pro
teins. The Rho insert region is located between G-do
main motifs G4 and G5. Based on the structural 
conformation of this region, specific Rho GEFs bind and 
catalyze the release of GDP [36]. The C-terminus con
tains a consensus sequence known as the a C-terminal 
tetrapeptide sequence generally described as having an 
invariant cysteine (C), two aliphatic amino acids (a1 and 
a2) and one of several amino acids in the terminal po
sition (X) (CAAX) box and a hypervariable region. The 
CAAX box carries a lipid anchor that allows the binding 
of a Rho GTPase to cellular membranes [37]. In a similar 
way, the hypervariable region is primarily positively 
charged and thus also engaged with negatively charged 

Figure 3  
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Simplified schematic overview of GTP–GDP cycling. Created with Biorender.com.   
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phospholipids of cellular membranes. At the plasma 
membrane, this hypervariable region manages the in
sertion of lipid anchors into the hydrophobic module of 
Rho GDIs, resulting in cell membrane release [38]. An 
overview of how common interactions between Rho 
GTPases and Rho regulators drive endothelial barrier 
remodeling in (patho)physiological conditions is pro
vided by Beckers et al. (2010) [39]. 

Cell architecture and post-translational 
modifications underlie Rho regulator 
dynamics 
A general concept that is believed to underlie the spa
tiotemporal regulation of Rho GTPases relies on the 
reaction-diffusion system [9]. This system involves 
successive cycles of (1) local Rho GTPase activation by a 
Rho GEF, (2) diffusion from a Rho GEF-occupied zone 
toward a Rho GAP-occupied zone, (3) local inactivation 
by a Rho GAP, and (4) membrane extraction by a Rho 
GDI. Seeing that, within this concept, Rho regulators 
particularly act upon Rho GTPases that reside in 
proximity, the spatiotemporal regulation of Rho 
GTPases is highly determined by the distribution pat
tern of Rho regulators. An important question is there
fore how Rho regulators themselves are spatiotemporally 
orchestrated. 

Distribution of endothelial cell components guides Rho 
regulator flux 
One feature that contributes to the intracellular dy
namics of Rho regulators during endothelial barrier re
modeling is the spatial distribution of cellular 
components, including lipid structures, FAs, and com
ponents of the actin cytoskeleton [9]. First, Rho reg
ulators are known to interact with lipid structures 
(Figure 4a). This interaction is arranged through the 
combined attribution of their Dbl homology region do
main with either the pleckstrin homology domain or the 
Bin–Amphiphysin–Rvs (BAR) domain [30,40]. Since 
these Rho regulator domains differ in their affinity for 
phospholipids, adjustments in the subcellular lipid dis
tribution directly affect the localization of specific Rho 
regulators. Indeed, during wound closure, activity zones 
of RhoA and Cdc42 appeared to portray distinct lipid 
distribution patterns [41]. Considering receptor tyrosine 
kinases can adjust the lipid composition of the plasma 
membrane through the activation of phospholipase C-γ 
and phosphatidylinositol-3 kinase, they are interesting 
targets for controlling subcellular dynamics of Rho reg
ulators [42]. Second, Rho regulator dynamics depend on 
the distribution of FAs (Figure 4b). For example, upon 
the direct interaction of the Rho GEF ß-Pix with the 
Rho effector protein p21-activating kinase, cytosolic ß- 
Pix relocates toward FAs residing at the endothelial cell 

Figure 4  
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Schematic overview of the regulation of Rho regulator dynamics by endothelial cell components, illustrating regulation by (a) lipid structures, (b) focal 
adhesions, (c) components of the actin cytoskeleton, and (d) plasma membrane geometry. Created with Biorender.com. 
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plasma membrane [43]. Once at the plasma membrane, 
ß-Pix is phosphorylated by FA kinase, which increases 
its affinity for Rac1. This leads to the recruitment of 
Rac1 to the plasma membrane where it is activated by ß- 
Pix to promote endothelial cell barrier reinforcement  
[44]. Similarly, upon barrier-protective stimuli, the Rac1 
GEFs DOCK180 [45] and Tiam1 [46] specifically bind 
FA components at the endothelial cell plasma mem
brane and locally activate Rac1 to reinforce the en
dothelial barrier. Third, the subcellular localization of 
actin cytoskeleton components influences Rho regulator 
dynamics. These components may carry Rho regulators 
that are being released upon depolymerization of the 
actin cytoskeleton (Figure 4c). One example includes F- 
actin, which ties and inactivates the Rac1-specific GAP 
filamin A (FLNa)-binding RhoGTPase-activating pro
tein (FilGAP). Upon barrier-disruptive stimuli, F-actin is 
depolymerized, which causes the release of FilGAP. 
FilGAP subsequently translocates to the plasma mem
brane where it inhibits Rac1 to facilitate endothelial 
barrier disruption [47]. 

In addition to the distribution of cellular components, 
endothelial cell geometry affects the spatiotemporal 
dynamics of Rho regulators (Figure 4d). For example, 
the Fes/Cdc42 interacting protein 4 (CIP4) homo
logy–BAR domain of the RhoA-specific GAP srGAP2 
proved to be preferentially engaged with convex mem
brane curvatures [48]. This raises the idea that srGAP2 
can read cell geometry and, through inhibition of RhoA, 
locally consolidates endothelial cell membrane protru
sions [49]. 

Post-translational modifications manipulate Rho 
regulator direction 
Although over 150 Rho regulators are involved in the 
process of endothelial barrier remodeling, these numbers 

alone do not account for the wide range of actions that 20 
members of the Rho GTPase family carry out during this 
process. In addition to the classical concept of 
GTP–GDP cycling, other mechanisms contribute to the 
regulation of Rho regulators to accomplish this plethora 
of actions [50]. The majority of these relate to post- 
translational modifications, including phosphorylation, 
ubiquitylation, and sumoylation. Rho GEFs are often
times regulated by phosphorylation, which usually re
sults in their activation either through conformational 
changes in the catalytic domain for GDP–GTP exchange 
or by regulating their binding to scaffold proteins that 
initiate a downstream signal. For example, the stimula
tion of integrins by an outward mechanical force proved 
to increase Extracellular signal-regulated kinase (ERK)- 
mediated phosphorylation of the RhoA-specific GEF- 
H1. Subsequently, GEF-H1 is recruited to FAs located 
near stress fibers, where it induces centripetal tension to 
counteract the outward mechanical forces on the plasma 
membrane [51]. Beside phosphorylation, Rho GEFs can 
be targeted for degradation by ubiquitylation. In re
sponse to stimulation with hepatocyte growth factor, the 
E3 ubiquitin protein ligase HUWE1 catalyzes the ubi
quitylation of Tiam1, a Rho GEF for Rac1, at sites of 
cell–cell adhesion, resulting in disassembly of cell–cell 
junctions and an increased permeability of the en
dothelial cell barrier [44,52]. Like Rho GEFs, the ac
tivity of several Rho GAPs can be regulated by 
phosphorylation, but its relation to endothelial barrier 
integrity is yet to be explored. For example, phosphor
ylation of the Rac1-specific GAP FilGAP has been 
shown to induce translocation of FilGAP from the actin 
cytoskeleton toward the cytoplasm [53]. Hypothetically, 
but not yet confirmed, cytosolic FilGAP might locally 
inactivate Rac1 to withhold this Rho GTPase from 
contributing to endothelial barrier reinforcement. 
Interestingly, the evoked response of Rho regulator 

Figure 5  
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Schematic overview of the proposed roadmap for elucidation of the Rho GTPase signaling network in its entirety, involving (1) identification of 
individual signal network components by expression analysis, (2) validation and further characterization of signal network components by quantitative 
readouts of molecular perturbation, and (3) elucidation of the entire Rho GTPase signal network by computational modeling. Created with 
Biorender.com. 
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phosphorylation on endothelial barrier integrity appears 
to be determined by the protein kinase involved. 
Namely, whereas phosphorylation of RhoGDIα by pro
tein kinase A induces a barrier-protective response [54], 
RhoGDIα phosphorylation by p21-activating kinase-1 
induces a barrier-disruptive response [55]. Future di
rections of research should therefore further investigate 
the mechanism through which protein kinases regulate 
the response of phosphorylation and how these protein 
kinases are spatiotemporally regulated. 

Beside post-translational modifications, alternative me
chanisms that manipulate Rho regulator dynamics in
clude modifications at the level of gene expression [56], 
post- transcriptional modifications [57], autoinhibition  
[58], and crosstalk with other regulatory proteins [34]. 
Moreover, Rho regulators can interact directly with Rho 
effectors without the intervention of Rho GTPases. For 
example, the Rac1/Cdc42-specific GEF adenomatous 
polyposis coli (APC)–Rho guanine nucleotide exchange 
factor 4 (ASEF) forms a functional complex with the 
Rac1/Cdc42 target IQGAP to boost the Rac1/Cdc42 re
sponse upon interaction [59]. The interplay of these 
different signaling components further complicates the 
course through which Rho regulator dynamics determine 
Rho GTPase responses, underscoring the need for 
comprehensive analytical methods to map the Rho sig
naling network in its entirety. 

Comprehensive approaches toward resolving 
Rho GTPase signaling 
Systematic perturbation strategies characterize Rho 
regulator substrate specificity 
Over the last decades, molecular perturbation strategies 
have been used to dissect the spatiotemporal regulation 
of individual Rho GTPase signaling pathways [60]. 
Within these strategies, different techniques have been 
applied to specifically abolish or generate activity of a 
single component of the Rho GTPase signaling cascade 
to assess its role during cellular processes. Direct read
outs with quantitative information on spatiotemporal 
dynamics can subsequently be obtained with the use of 
fluorescence resonance energy transfer (FRET)-based 
biosensors [61]. FRET is a nonradiative transfer of en
ergy between two fluorophores, whereby the excited- 
state fluorophore serves as the donor and transfers en
ergy to a ground-state acceptor that resides nearby 
through long-range dipole–dipole interactions [62]. With 
the use of FRET-based biosensors for RhoA, Rac1, and 
Cdc42, Müller P.M. et al. (2020) were able to analyze 
substrate specificities of 45 Rho GEFs and 50 Rho GAPs  
[63]. Among the Rho GEFs, 35 portrayed high substrate 
specificity and ten appeared to regulate multiple Rho 
GTPases, whereas this was the case for 31 and nineteen 
Rho GAPs, respectively, indicating Rho GAPs to be 

more promiscuous. In addition, with the use of the same 
standardized molecular perturbation strategy, this re
search group discovered ten previously unidentified ac
tivities of Rho regulators and revealed various 
discrepancies with the existing literature [63]. Together, 
these findings clearly highlight the potency of standar
dized molecular perturbation protocols in validating and 
further characterizing individual Rho GTPase signaling 
components. 

Computational modeling integrates Rho regulator 
dynamics into a network 
One way to integrate the dynamics of individual Rho 
GTPase signaling components, as measured by quanti
tative readouts of molecular perturbation, into a com
plete network, is by making use of computational 
modeling (Figure 5). Computational modeling combines 
the use of mathematics, physics, and computer science 
to simulate and study complex signaling networks. 
Through the adjustment of system variables, in this case, 
the activity of Rho GTPases and/or Rho regulators, 
computational modeling allows the prediction of ex
perimental outcomes. In general, computational models 
of cell component dynamics can be divided into four 
subcategories, namely spatiotemporal, temporal, me
chanochemical, and Boolean models [64]. Typically, 
spatiotemporal models utilize equations based on reac
tion-diffusion systems. With the use of a spatiotemporal 
model that incorporated autoactivation, mutual antag
onism, and biochemical conservation, Zmurchok and 
Holmes illustrated how Rho GTPase signaling alone is 
responsible for reconstructing six out of seven common 
cell morphologies [65]. This finding revealed that, even 
in the absence of any intrinsic differences between cells, 
diverse morphologies may arise from simple adjustments 
to individual Rho GTPase signaling components. 

Boolean models are known for their low computational 
complexity and their ability to integrate many molecular 
components, which is beneficial for the simulation of 
crosstalk with other signaling pathways. For example, 
Boolean modeling created new insights into the mole
cular mechanisms involved in endothelial-to-mesench
ymal transition (EndMT). Upon drastic changes in tissue 
requirements, endothelial cells may differentiate into 
mesenchymal cells. This process inhibits the expression 
of VE-cadherin and thus leads to loss of cellular junc
tions, a scenario that is associated with the onset of 
various diseases. For example, in severe cases of Fuch’s 
dystrophy, a degenerative disease of the corneal en
dothelium, EndMT contributes to the development of 
corneal blindness [66]. Based on a Boolean model, sci
entists revealed EndMT to rely on an oxygen excess 
within the extracellular environment as well as on a lack 
of intracellular VE growth factor-A. This finding 

GTPases and the endothelial barrier function van der Krogt, van der Meulen and van Buul 7 

www.sciencedirect.com Current Opinion in Physiology 2023, 34:100676 



illustrates how computational modeling aids in the 
identification of new therapeutic opportunities for en
dothelial dysfunction. However, to date, most compu
tational models have been focusing on the better-known 
Rho GTPases RhoA, Rac1, and Cdc42. To resolve the 
regulation of Rho GTPase signaling during endothelial 
remodeling in its entirety, the remaining Rho signaling 
components need to be recognized for which a systems 
approach is demanded. 

Systems analysis identifies previously unchartered Rho 
regulators 
In 2020, Müller and colleagues acknowledged the need 
for a systems analysis to reveal how Rho regulators 
contextualize and spatiotemporally regulate Rho 
GTPase signaling [63]. With the use of affinity pur
ification and mass spectrometry, this group laid out a 
Rho GTPase signaling network consisting of 1292 in
teractions distributed over 863 proteins. Beside 20 in
teractions of Rho regulators with Rho effectors and 24 
interactions of Rho regulators with small GTPases, 66 
interactions were identified between Rho regulators 
themselves, highlighting a previously unrecognized ex
tensive interplay between Rho regulators. Further 
characterization experiments identified 34 actin-asso
ciated Rho regulators of which only 12 were mentioned 
in previous literature, and 37 FA-associated Rho reg
ulators of which 31 were not previously affiliated with 
the integrin adhesion network in the literature [67]. 
Collectively, the results of this study perfectly demon
strate how a systems-based approach might facilitate the 
identification of the remaining Rho signaling compo
nents. 

Conclusions 
Understanding how Rho GTPases orchestrate en
dothelial barrier remodeling is a long- standing chal
lenge. A central question is how in this course Rho- 
regulatory proteins are spatiotemporally regulated. Here, 
we provide an overview of the features that govern Rho 
regulator dynamics over space and time, including en
dothelial cell component distribution and post-transla
tional modifications. These features together establish 
the framework for a model in which Rho GEFs, GAPs, 
and GDIs contextualize and spatially orchestrate the 
diffusional flux of Rho GTPases. Moreover, we eval
uated comprehensive analytical approaches that may 
cooperatively map Rho regulator dynamics in the pro
cess of Rho GTPase signaling during endothelial barrier 
remodeling. 

A major challenge ahead will be to resolve Rho GTPase 
signaling in its entirety. Taking into consideration the 
most recent insights in comprehensive analytical ap
proaches, we propose a roadmap for the dissection of 
spatiotemporal Rho GTPase signaling networks, in
cluding (1) the identification of individual Rho GTPase 

signaling network components with the use of family- 
wide expression-based systems analyses [63], (2) vali
dation and further characterization of Rho GTPase sig
naling components through quantitative readouts of 
molecular perturbation experiments [60], and (3) in
tegration of individual Rho GTPase signaling compo
nent dynamics into a complete cellular network with the 
use of computational modeling [64]. 

Ultimately, as Rho signaling is additionally influenced 
by processes that take place at different physiological 
scales, future models must consider merging distinct 
cellular signaling networks into an entire physiological 
system. Employing higher-dimensional modeling (e.g., 
three-dimensional models) and multiscale modeling 
(e.g., mechanochemical models) will likely by inevitable 
to resolving the exact position of GTPase signaling 
networks in the development of endothelium-associated 
diseases. 
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