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Abstract

Cells can crawl, self-heal, and tune their stiffness due to their remarkably dynamic cytoskeleton. 

As such, reconstituting networks of cytoskeletal biopolymers may lead to a host of active 

and adaptable materials. However, engineering such materials with precisely tuned properties 

requires measuring how the dynamics depend on the network composition and synthesis methods. 

Quantifying such dynamics is challenged by variations across the time, space, and formulation 

space of composite networks. The protocol here describes how the Fourier analysis technique, 

differential dynamic microscopy (DDM), can quantify the dynamics of biopolymer networks 

and is particularly well suited for studies of cytoskeleton networks. DDM works on time 

sequences of images acquired using a range of microscopy modalities, including laser-scanning 

confocal, widefield fluorescence, and brightfield imaging. From such image sequences, one can 

extract characteristic decorrelation times of density fluctuations across a span of wave vectors. 

A user-friendly, open-source Python package to perform DDM analysis is also developed. 

With this package, one can measure the dynamics of labeled cytoskeleton components or of 

embedded tracer particles, as demonstrated here with data of intermediate filament (vimentin) 

networks and active actin-microtubule networks. Users with no prior programming or image 

processing experience will be able to perform DDM using this software package and associated 

documentation.

Introduction

The cytoskeleton is a network of protein filaments that spans across the cytoplasm of 

eukaryotic cells, connecting the cell surface to the nucleus. It has unique material properties, 

providing mechanical protection against large and repeated mechanical loads, yet also 
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driving dynamic cell shape changes1. Reconstituted cytoskeleton networks can give rise to 

a range of interesting dynamic behaviors, from the caging of embedded particles to ballistic 

motion driven by molecular motors2,3,4,5,6,7,8,9,10,11. Methods to analyze the dynamics of 

such networks include tracking the motion of embedded tracer microspheres6,7,12,13,14, 

image analysis to track the size of protein-dense clusters over time8, dynamic light 

scattering15, particle image velocimetry4,16,17,18,19, computing the power spectral density 

of images over time19, and kymograph analysis20. As more studies on reconstituted 

cytoskeleton networks are conducted, whether to understand cellular mechanics or active 

matter, robust, unbiased, and reproducible methods for characterizing the dynamics are 

increasingly necessary. Differential dynamic microscopy (DDM)21,22, a relatively new 

technique that has been used to study cytoskeleton dynamics, is one such technique that 

efficiently quantifies dynamics with few user-defined parameters. With the software package 

described here, researchers with little experience in programming or image analysis will be 

able to leverage DDM for their own work.

DDM is an image analysis technique to extract a sample’s dynamics. Like particle tracking 

or particle image velocimetry, DDM requires a time series of images (often thousands 

of images), typically recorded with a microscope. Unlike particle tracking, individual 

features or tracer beads do not need to be localized (or even be localizable) in the image. 

Unlike both particle tracking and particle image velocimetry, one recovers the ensemble 

dynamics with DDM with relatively few user-specified parameters. With DDM, images 

are analyzed in Fourier space to determine the decay time of density fluctuations over a 

range of wavenumbers, q, where q = 2πu, and u is the magnitude of the spatial frequencies, 

u = ux
2 + uy

2. One obtains scattering-like information but with real-space images acquired on 

a microscope21,22,23. Therefore, one can take advantage of the various contrast-generating 

methods of microscopy, such as widefield fluorescence22,24, confocal fluorescence25, 

polarized26, dark-field27, or light-sheet fluorescence28 microscopies. Furthermore, images 

used for DDM analysis may be used for particle tracking or particle image velocimetry to 

provide complementary information.

This combination of features from dynamic light scattering and optical microscopy makes 

DDM a powerful and versatile technique. Since its first description by Cerbino and Trappe 

in 200821, where DDM was demonstrated to measure the diffusion of 73 nm colloidal 

particles, DDM has been used to measure flowing colloids29, colloidal aggregation30,31, 

the viscoelasticity of nematic liquid crystals26, the dynamics of colloidal gels32, coarsening 

foams33, nanoparticles in confined environments34,35,36,37, bacterial motility38,39,40,41, the 

diffusion of weakly scattering protein clusters42, capillary waves at fluid interfaces43, and 

other systems. Those looking for a more complete listing of publications employing DDM 

can refer to thorough review papers on the subject22,23,44,45.

DDM has also been used to investigate the dynamics of biological networks. Drechsler 

et al. used DDM to measure the dynamics of actin in living Drosophila oocytes46. 

Burla et al. quantified the dynamics of tracer particles in networks of hyaluronan and 

hyaluronan-collagen composites47. Several uses of DDM to study the dynamics of tracer 

particles in reconstituted cytoskeleton networks9,10, the transport of DNA molecules in 

such networks48,49, and the dynamics of active reconstituted networks have also been 
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documented11,50,51. An advantage of DDM in measuring the dynamics in such systems 

is that individual particles or molecules do not need to be localized and tracked. So, for 

example, the dynamics of DNA molecules in crowded environments can be measured 

with DDM despite the difficulty in tracking such small and non-spherical molecules. 

Furthermore, with fluorescence microscopy, one can use multi-color labeling to selectively 

measure the dynamics of individual constituents in a complex composite.

To perform DDM, a sequence of images is taken over time, I(x, y, t). For a given lag time, Δt, 
all (or a subset of) pairs of images separated by that lag time are found. The squared Fourier 

transform of the difference of each pair,

ΔI(x, y, Δt) = I(x, y, t + Δt) − I(x, y, t)

is computed and averaged together. This quantity, ΔI qx, qy, Δt 2
t
, is radially averaged, 

provided that the dynamics are isotropic. This yields the DDM matrix (also referred to as 

the image structure function), D(q, Δt) = ΔI q, Δt 2
t
. This process is shown graphically in 

Figure 1. To determine the sample’s dynamics from this DDM matrix, the DDM matrix is 

assumed to take the form

D(q, Δt) = A(q)[1 − f(q, Δt)] + B(q)

where A is the amplitude, which depends on the details of the microscope and the structure 

of the sample, B is the background, which depends on the noise in the images, and 

f(q, Δt) is the intermediate scattering function (ISF), which contains information about the 

dynamics21,22. In simple cases,

f(q, Δt) = exp( − (Δt/τ(q)))

where τ is a characteristic decay or decorrelation time. Such an ISF has been used in several 

studies employing DDM on ergodic systems like dilute colloidal suspensions21,24,27,37,40,52. 

However, other forms of the ISF can be used to model various types of dynamics. For 

example, one may use a cumulant expansion to model the ISF for polydisperse samples as

f(q, Δt) = exp( − (Δt/τ(q))) 1 + μΔt2/2

where μ is a measure of the polydispersity42,53; if density fluctuations decay by two separate 

modes one may use an ISF like

f(q, Δt) = αexp − Δt/τ1(q) + (1 − α)exp − Δt/τ2(q)

26, 54, 55, 56, 57;

Verwei et al. Page 3

J Vis Exp. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



other ISFs can be used for swimming micro-organisms or other active 

particles38,39,40,41,58,59.

Here, the use of a DDM analysis software package developed in Python, PyDDM, is 

described. This software package builds on the work done by our research labs and 

other published studies over the last several years. Primary motivators for creating this 

software package include the need for (1) keeping track of and storing metadata and 

parameters used in the analysis; (2) thorough documentation with detailed examples of 

analysis from start to finish; and (3) an easy way to employ different (or create new) 

mathematical models for fitting the data (e.g., adding ISF models, such as ones recently 

developed for active filaments60, would be straightforward). Other software packages for 

DDM analysis also exist, though not all are well documented and written in an open-

source programming language. For example, there is C++ code with computing on GPUs 

(https://github.com/peterlu/ConDDM)25, C++ code that uses Fourier transforms in time 

to speed up calculations (https://github.com/giovanni-cerchiari/diffmicro)61, MATLAB and 

Python versions (https://github.com/MathieuLeocmach/DDM)40, MATLAB code (https://

sites.engineering.ucsb.edu/~helgeson/ddm.html)27, and MATLAB code with uncertainty 

quantification (https://github.com/UncertaintyQuantification/DDM-UQ)62. As this PyDDM 

package is well documented and provides a lot of flexibility in how the DDM matrix is 

calculated and analyzed, it can hopefully be useful to researchers looking to implement 

DDM regardless of their background in programming or image analysis.

The protocol shows how this software package can be used to quantify the dynamics of 

in vitro reconstituted cytoskeleton networks. This is done by using two distinct sets of 

imaging data: (1) images of submicron tracer particles embedded in a vimentin network 

taken with brightfield microscopy and (2) images of fluorescently labeled actin and 

microtubule filaments in an entangled composite network with myosin-driven activity taken 

with laser-scanning confocal microscopy. The analyses of these two datasets highlight 

notable strengths of DDM, including its ability to analyze images taken with a variety 

of imaging modalities (e.g., brightfield or confocal fluorescence), to extract dynamics from 

either embedded tracers or from labeled filaments, and to quantify a variety of dynamics 

(e.g., subdiffusive and constrained or ballistic).

Protocol

NOTE: A Jupyter Notebook file containing the code to go along with each step in the 

following protocol can be found on the following GitHub repository, https://github.com/

rmcgorty/PyDDM/tree/main/Examples. A PDF of that file is included in Supplementary File 

1. Additionally, a walkthrough of the code and documentation of each function and class can 

be found on the website, https://rmcgorty.github.io/PyDDM/.

1. Software installation

1. To follow along with the example DDM analysis files, install Jupyter Notebook 

for running the code. Install other required common Python packages, including 

NumPy and Matplotlib as well. These packages all come bundled with the 

Anaconda distribution (see https://www.anaconda.com/products/individual).
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2. Install the Python package xarray63. This package is necessary for organizing 

and storing metadata and analysis parameters. If using the Anaconda distribution, 

install xarray (along with its recommended dependencies) using the command:

conda install -c conda-forge xarray dask netCDF4 bottleneck

3. Install the PyYAML package using the command:

conda install -c anaconda yaml

This package is necessary for reading metadata about the images to analyze and 

the parameters set by the user for analysis and fitting.

4. Install the PyDDM package, by downloading from the GitHub repository or 

using the git command:

git clone https://github.com/rmcgorty/PyDDM.git

2. Planning the imaging sessions

1. Choose the optimal available imaging modality and optical settings. As 

mentioned, DDM can be used with a number of microscopy methods.

2. To assist in planning the appropriate objective lens and image size to use, 

determine the range of wavenumbers, q, that will be probed based on the pixel 

size and total image size. Confirm that the choice of magnification and field of 

view are optimal for the experiment, based on these calculations. For the images 

analyzed here, a 60× 1.4 NA objective and an image size of 256 × 256 pixels 

with a pixel size of 0.83 μm were used for the active actin-microtubule composite 

network. For the images of beads embedded in a vimentin network, a 100× 1.4 

NA objective and an image size of 512 × 512 pixels with a pixel size of 0.13 μm 

were used.

NOTE: The minimum q is set by 2π/NΔx, where the image size (assumed to be 

square) is N × N pixels with a pixel size of Δx. The maximum q is the minimum 

of π/Δx and 2πNA/λ, where NA is the imaging objective’s numerical aperture, 

and λ is the wavelength of light (for brightfield imaging, one can replace NA 

with NAobjective + NAcondenser /2 .

3. Next, consider the range of timescales to investigate. Typically, DDM analysis is 

done on sequences of at least 1000 frames.

1. To determine the appropriate frame rate, consider the expected time it 

will take for features in the sample to move a distance on the order of 

the minimum resolvable length scale (corresponding to the maximum 

q).

2. In considering the upper limit of the range of timescales probed, 

recognize that, typically, the power spectrum of hundreds of image 

differences of a given lag time Δt are averaged together to provide 

sufficient statistics to reduce noise. Hence, acquire image sequences 

longer than the maximum timescale probed.
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NOTE: If an expected diffusion coefficient, D, or velocity, v, is 

known, then one can estimate expected characteristic decay times using 

τ = 1/Dq2 or τ = 1/vq along with the range of q, which was determined 

based on the field of view and pixel size. The range of expected τ values 

over the accessible q-range can help guide the choice of frame rate and 

the number of frames to acquire.

3. Sample preparation and image acquisition

NOTE: For details of the sample preparation and imaging settings used for the data 

presented in the representative results section, see previous publications from the 

authors11,51,64 and Supplementary File 2.

1. Based on the consideration of the time and length scales to probe, acquire image 

sequences of, ideally, over 1000 frames.

NOTE: The code will analyze square images or square regions of interest within 

the image, so adjust the frame size accordingly.

2. Save image sequences as a three-dimensional greyscale TIFF stack. 

Alternatively, the format used by Nikon Instruments systems, ND2 format, can 

be read by the installed package. If images are saved in some different format, 

use ImageJ or another imaging processing program to convert the images to a 

TIFF stack.

NOTE: If using ND2 files, the package nd2reader from https://github.com/Open-

Science-Tools/nd2reader must be installed.

4. Parameter setup

1. Make a copy of the parameter file example_parameter_file.yml provided in the 

PyDDM code repository under the examples folder. Open this YAML file with a 

text editor like NotePad++ or the text editor in JupyterLab. See Supplementary 

File 2 for an example YAML parameters file used in the analysis of data 

presented in the representative results section.

2. In the copied YAML file, provide the data directory and file name corresponding 

to the image sequence to be analyzed. Under the metadata section, provide the 

pixel size and frame rate.

3. Under the Analysis_parameters section, provide details for how the DDM matrix 

should be calculated. Some parameters here are optional.

1. At a minimum, provide values for the parameters number_lag_times 

and last_lag_time. These correspond to the number of different lag 

times for which to calculate the DDM matrix and the longest lag 

time (in frames) to use, respectively. For the data of tracer beads in 

vimentin networks used here, the parameters number_lag_times and 

last_lag_time were 60 and 1000, respectively. The code will compute 

the DDM matrix for lag times from 1 frame (or some other minimum 
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lag time if the optional parameter first_lag_time is specified) to the 

last_lag_time with logarithmic spacing.

NOTE: If M frames were acquired, one could calculate the DDM 

matrix for a lag time as large as M-1. However, with poor statistics 

at such a large lag time, the data is likely to be noisy. The longest lag 

time for which to calculate the DDM matrix will depend on the details 

of the data, but we suggest trying around one-third of the total image 

series duration.

4. Provide details for how the DDM matrix or the intermediate scattering function 

(ISF) should be fit in the Fitting_parameters section. Give the name of the model 

under the model parameter. Provide the initial guess, lower bound, and upper 

bound for each of the fitting parameters in the chosen model.

NOTE: To display a list of the possible fitting models, run the function 

print_fitting_models. The models can also be found in the online documentation 

on the PyDDM website.

5. Calculating the DDM matrix

1. Initialize an instance of the DDM_Analysis class. To do so, provide the metadata 

and analysis parameters discussed above by passing the filename, with the full 

file path included, of the YAML file to DDM_Analysis. Alternatively, pass the 

metadata and parameters as a Python dictionary data structure.

2. Run the function calculate_DDM_matrix to calculate the DDM matrix. This 

calculation may take several minutes or longer depending on the frame size and 

the number of lag times. See Figure 2 for typical run times.

3. Inspect the returned data, which will be in a data structure from the xarray 

package known as a Dataset. This data structure is stored under the attribute 

ddm_dataset.

NOTE: Not only the DDM matrix but also associated variables and metadata 

will be stored in this data structure. It will also be saved to disk in a Network 

Common Data Form (netCDF) format.

4. Inspect the plots and figures, which will be generated and displayed. These 

figures are also saved as a PDF file in the data directory.

1. See that one of the generated plots shows the ensemble-averaged 

squared modulus of the Fourier-transformed images, |I(q, t)|2
t
 as a 

function of q. By default, the code uses this to estimate the background 

parameter B. Estimate the background from |I(q, t)|2
t
 by assuming that, 

in the limit of large q, it will approach B/2, where B is the background.

2. If |I(q, t)|2
t
 is not reaching a plateau at large q, then use another 

method for estimating B. To accomplish this, set the parameter 
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background_method in either the YAML file or as an optional keyword 

argument to the function calculate_DDM_matrix. More details about 

the methods for estimating B are presented in the representative results 

section.

6. Fitting the DDM matrix or the ISF

1. Initialize an instance of the DDM_Fit class. To do so, pass to DDM_Fit the 

filename of the YAML file containing the image metadata and parameters for 

fitting.

2. Decide which model for the DDM matrix or the ISF to use for fitting the data. 

List the available models by executing the function print_fitting_models. Specify 

the model to be used in the YAML parameter file or by using the function 

reload_fit_model_by_name.

3. Set the initial guesses and bounds for each parameter in the chosen model in the 

provided YAML parameter file. To change the initial guess for any parameter, 

use the function set_parameter_initial_guess. Set bounds for the parameters with 

the function set_parameter_bounds. For example, as seen in Supplementary File 

2, for the data of tracer beads in the vimentin network, the initial guess for the 

decay time was 1 s and the bounds on that parameter were 0.01 s and 2000 s.

4. Execute the fit with the function fit. Assign a variable to the output of this 

function to easily access the results.

NOTE: This function can take many optional arguments. See the code 

documentation and provided examples for a list of such arguments and when 

to consider setting them to non-default values.

7. Interpreting the fit results

1. Generate plots for inspecting the fits and the q-dependence of the fit parameters 

with the function fit_report.

NOTE: This function will generate a series of plots, which will also be saved 

as a PDF. Optional arguments to this function can be used to modify the plots 

produced.

2. Among the generated plots will be a figure with 2 × 2 subplots showing the 

DDM matrix or ISF (depending on the chosen fitting model) at four q-values 

(specified as an optional argument to fit_report), along with the calculated 

DDM matrix or ISF using the model and best fit parameters. To plot the 

DDM matrix or ISF along with the best fit in an interactive way, use the 

class Browse_DDM_Fits as shown in the provided examples when the Jupyter 

Notebook environment is used.

3. From the plot of the characteristic decay time τ vs. the wavenumber q, determine 

whether the dynamics follow diffusive, subdiffusive, ballistic, or some other type 
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of motion. This can be done by looking for the power law relationship between τ
and q.

NOTE: On the log-log plot of τ vs. q generated by the function fit_report, 

three lines will be shown, corresponding to power law fits over a specified 

range of q values. The solid black line corresponds to fitting τ vs. q to a power 

law, τ = 1/Kqβ, where K and β are free parameters. The dashed line in orange 

corresponds to fitting to simple diffusion, τ = 1/Dq2, where D is a diffusion 

coefficient. The dot-dashed line in blue corresponds to fitting to τ = 1/vq, where 

v is a velocity.

8. Saving the results

1. The results of the fit will be saved in a xarray dataset. Use the xarray function 

to_netcdf or Python’s built-in pickle module to save this data structure to disk. 

Use the xarray function open_dataset to load these netCDF files.

2. Use the function save_fit_results_to_excel to save the fit results, along with the 

data, to a worksheet file.

Representative Results—Here, we show examples of the analysis done with PyDDM 

from two different sets of experiments. In one set of experiments, sub-micron tracer beads 

were embedded in networks consisting of the intermediate filament protein vimentin and 

imaged using a 100x objective lens in brightfield mode at 100 frames/s (Figure 3A). 

Vimentin is expressed in mesenchymal cells and is a key determinant of the mechanical 

properties of the cytoplasm65 and the mechanical stability of the nucleus in cells performing 

confined migration66,67. So far, reconstituted vimentin networks have been studied primarily 

by macroscopic rheology64,68,69, whereas the dynamics have received comparatively little 

attention13,70,71. Additional details of these experiments can be found in Supplementary 

File 2. In the other set of experiments, active cytoskeleton networks were prepared with 

actin, microtubules, and myosin. Spectrally distinct fluorescent labels allowed the actin and 

microtubule filaments to be imaged with a two-color laser-scanning confocal microscope 

using a 60x objective lens at 2.78 frames/s (Figure 3B,C). Actin and microtubule filaments 

are both important drivers of dynamic cell shape changes, with their actions coordinated by 

mechanical and biochemical interactions72. Additional details of these experiments can be 

found in11. Individual frames from image sequences taken in these experiments are shown in 

Figure 3.

For images of tracer beads in vimentin networks, movies of 5000 frames with a size of 512 

× 512 pixels at 100 frames/s were recorded. From these, the DDM matrix was computed 

at 60 logarithmically spaced lag times between 1 and 1000 frames, or 0.01 s and 10 s. To 

estimate the background, B, the mean of the squared Fourier-transformed images, |I(q, t)|2
t
, 

was computed and set equal to (A(q) + B(q))/255, 73. An assumption was made that, over the 

largest 10% of q-values, this quantity equals B/2 and that B is independent of q. This is the 

package’s default method for estimating B, but other methods are possible by setting the 

background_method parameter to a different value.
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With the parameters A(q) and B determined from |I(q, t)|2
t
, one can extract the intermediate 

scattering function (ISF) from the DDM matrix. Example ISFs are shown in Figure 4. In 

Figure 4A, the ISF from images of 0.6 μm diameter beads embedded in a network with a 

vimentin concentration of 19 μM is shown. In Figure 4B, the ISF for the same type of beads 

in a network with a vimentin concentration of 34 μM is shown. Interestingly, in neither case 

did the ISF decay to zero. At large lag times, the ISF should approach zero for ergodic 

systems. That is, in such systems, density fluctuations should completely decorrelate over 

large lag times. The fact that the ISF here did not decay to zero could have resulted from 

inaccurate estimates of A(q) and B, which were used to find the ISF from the computed 

DDM matrix. Notably, the method employed here can overestimate B in certain scenarios62. 

However, it is more likely that the dynamics of the tracer beads are truly nonergodic as 

the beads have a comparable size to the network mesh size and may, therefore, become 

caged. Other data corroborated the finding of nonergodicity. Namely, the bead size, 0.6 μm, 

was larger than the calculated average value for the mesh sizes of 0.4 μm for the 19 μM 

concentration and 0.3 μm for the 34 μM concentration. Additionally, the results from single 

particle tracking of these tracer beads, which are shown later, also showed confined motion.

Given that the dynamics are likely nonergodic, the ISFs are fit to the form 

f(q, Δt) = [1 − C(q)]exp −(Δt/τ(q))s(q) + C(q), where C is the nonergodicity factor 32. This 

form of the ISF has been used in previous studies of non-ergodic dynamics, such as that 

of colloidal gels32,74 or tracer particles in actin-microtubule networks 10. The dotted black 

lines in Figure 4 show the fits along with the data. From these fits, one can now look at the 

q-dependence of the decay time, τ, and of the nonergodicity parameter, C.

The decay times showed a large amount of uncertainty, both at the low q and high q
extremes, as seen in Figure 5. The error bars on this plot show the standard deviation among 

four videos analyzed for the lower vimentin concentration case or five videos analyzed for 

the higher concentration. To understand the source of the large uncertainty at these extremes, 

consider both the temporal and spatial resolution. Approximate limits of the resolution are 

shown with three red dash-dotted lines. The two horizontal lines correspond to the minimum 

and maximum lag times probed. Given the frame rate of 100 frames/s and the maximum 

lag time corresponding to 1000 frames (20% of the total video duration), accuracy was lost 

when measuring dynamics occurring faster than 0.01 s or slower than 10 s. At the lower 

q-values, the fitted values for τ were greater than 10 s. Therefore, large uncertainties should 

be expected in decay times that are larger than the maximum lag time. At the higher end 

of the q-range, the decay time approached the minimum lag time of 0.01 s but remained 

above it. Rather than being limited by the temporal resolution, at these higher q values, 

the spatial resolution may be the limiting factor. Given the pixel size of 0.13 μm, the 

largest value for q was about 24 μm−1. However, the diffraction-limited resolution does not 

necessarily allow accurate measurements of the dynamics at these high spatial frequencies. 

Approximating the optical resolution as qmax = 2πNA/λ leads to an upper wavenumber limit 

of about 16 μm−1, given the objective lens’s numerical aperture, NA, of 1.4 and wavelength 

of light, λ ≈ 550 nm. This is demarked by the vertical red dash-dotted line in Figure 5. 

Indeed, the data were noisy at large values of q. Even before this approximate upper limit 
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of q, increased uncertainty in τ was seen, and this could be from overestimating qmax. Poorer 

optical resolution than predicted may be because an oil immersion lens was used to image 

beyond the coverslip into an aqueous sample or because the condenser lens was imperfectly 

aligned.

For the 0.6 μm beads embedded in the less concentrated network (19 μM vimentin), it can 

be observed from the log-log plot of the decay time vs. wavenumber that the decay time 

decreased with wavenumber in a way consistent with a power law (Figure 5). However, 

it does not seem to follow what would be expected for normal diffusive motion, where 

τ ∝ q−2. Rather, τ decreased more steeply with increasing q. This is indicative of subdiffusive 

motion, which often occurs for beads in crowded environments such as these. Fitting 

τ(q) over the range of 1.4 μm−1 to 12.3 μm−1 to a power law of the form τ = 1/Kqβ

yields the transport parameters K = 0.0953 μmβ /s and β = 2.2. For those more accustomed to 

thinking about normal diffusion vs. subdiffusion in terms of the mean squared displacement 

(MSD) of tracer particles as a function of lag time (i.e., MSD = K′Δtα), it is helpful to 

recognize that the subdiffusive scaling exponent in the MSD equation, α, is equivalent 

to α = 2/β. In other words, the value of β = 2.2 is consistent with a subdiffusive scaling 

exponent in the MSD equation of α = 0.9. One would set PyDDM to fit τ(q) over this 

range of q-values by specifying the indices of the array of q with either the parameter 

Good_q_range in the YAML file or by passing the optional argument forced_qs to the 

function generate_fit_report. The range of q from 1.4 μm−1 to 12.3 μm−1 would, for the data 

here, correspond to indices of the array of q from 15 to 130.

For the 0.6 μm beads in the more concentrated network (34 μM), the decay time showed 

little dependence on q. This is likely due to the nonergodicity of beads in a network with a 

smaller mesh size. To probe the nonergodicity in this system, the nonergodicity parameter, 

C, should be plotted as a function of q, as in Figure 6. For the 0.6 μm beads in the 19 

μM vimentin network, C ≈ 0.2 with little dependence on q (not shown). However, for the 

network with 34 μM vimentin and for a network with an even higher concentration of 49 

μM vimentin, the log of C was proportional to q2 as shown in Figure 6. This relationship 

between C and q is expected for confined motion. For beads trapped within pockets of the 

network, the MSD is expected to plateau at long enough lag times (i.e., Δr2(Δt ∞) = δ2, 

where Δr2(Δt)  is the MSD and δ2 is the maximum MSD). Since the ISF can be expressed 

in terms of the MSD as f(q, Δt) = exp −q2 Δr2(Δt) /4 , and since the nonergodic ISF goes 

to C at long lag times (i.e., f(q, Δt ∞) = C(q)), the relationship C(q) = exp −q2δ2/4  is 

obtained32,75. Therefore, one can use C(q) to find δ2, and this yielded δ2 = 0.017 μm2

and 0.0032 μm2 for the 34 and 49 μM vimentin networks, respectively (corresponding to 

δ = 0.13 μm and 0.057 μm).

One can use other methods to extract the confinement size δ from the data as well as the 

subdiffusive exponent found from examining τ(q) for beads within the 19 μM vimentin 

network. Firstly, one can use the method described by Bayles et al.76 and Edera et al.77 

to extract the MSD from the DDM matrix. Notably, this method requires no fitting of the 
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DDM matrix. One only needs to compute the DDM matrix, D(q, Δt), and |I(q, t)| t (from 

which A(q) and B can be determined). Then, to find the MSD, one uses the relationship 

Δr2(Δt) = 4/q2 ln A(q)
A(q) − D(q, Δt) + B . Note that this method to find the MSD assumes that 

the distribution of particle displacements is Gaussian, though previous work has shown that, 

in certain cases, MSDs derived from DDM do agree with MSDs from particle tracking, 

even when the displacements are non-Gaussian73. For this system, as expected78, there is 

non-Gaussianity in the distribution of large displacements, as seen in Figure S1. In the 

PyDDM package, the function extract_MSD should be executed, which returns Δr2(Δt) . 

Secondly, one can use single particle tracking to find the MSD. Though DDM can be used 

to analyze images where either the high density of particles or the limited optical resolution 

prohibits accurate particle localization, for the images of 0.6 μm beads in vimentin networks, 

we were able to localize and track beads using the trackpy software (https://github.com/

soft-matter/trackpy)79. This particle tracking software package uses the algorithms described 

by Crocker and Grier80.

The MSDs vs. lag time for 0.6 μm beads in the 19 μM vimentin network and in the 49 

μM vimentin network are shown in Figure 7. In both cases, the MSD determined from 

DDM agreed well with the MSD found through single-particle tracking (SPT). Furthermore, 

for the less concentrated network, the subdiffusive scaling exponent (α in MSD ∝ Δtα) was 

about 0.9. This is consistent with the τ(q) scaling of τ ∝ q−2.2 found by fitting the ISF to 

determine τ(q) (that is, 2/2.2 = 0.9). For the more concentrated network, the MSD plateaus 

at longer lag times. The maximum MSD found by analyzing the q-dependence of the 

nonergodicity parameter (shown in Figure 7B with the horizontal line at δ2 = 0.0032 μm2) 

was approximately the same value that the MSDs from both SPT and DDM seemed to be 

plateauing toward. There is a discrepancy between the longest lag time MSDs determined 

from DDM and SPT in Figure 7A. While this may be due to a limited number of long lag 

time trajectories, it may also be the case that further optimizing the range of q values for 

which the DDM matrix is used to estimate Δr2(Δt)  for each lag time (as done by Bayles et 

al.76 and Edera et al.77) would improve our results, and such optimization will be the focus 

of future work.

These experiments where image sequences were recorded of tracer beads embedded in 

a network of vimentin intermediate filaments allowed for independent analyses: DDM 

(using the package described here) and SPT (using trackpy). Both analyses can reveal the 

degree of subdiffusion and confinement length, allowing one to use two independent image 

analysis techniques to provide complementary metrics. There are additional quantities one 

can compare from SPT and DDM. For example, heterogeneity in the dynamics of the sample 

can reveal itself as non-Gaussianity in the distribution of particle displacements (i.e., the van 

Hove distribution) determined from SPT, as well as in an ISF determined from DDM that 

fits to a stretched exponential34,35. Figure S1 shows the van Hove distribution for the 0.6 

μm particles in vimentin networks and discusses the stretching exponent found from fitting 

the ISFs—metrics used in tandem in previous studies to demonstrate the heterogeneous 

dynamics of particles within biomimetic systems9,10,47 or other crowded environments 34. 

As another example, the ISF can be calculated from particle trajectories measured with SPT 
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and compared with the DDM-acquired ISFs. While the mean squared displacements and 

displacement distributions are the metrics most often pulled from SPT analysis, one can 

also compute the ISF from particle trajectories, Δ r (Δt), using ISF = exp( − i q ⋅ Δ r (Δt))
(see Figure S2). This ISF can be compared with DDM-generated ISFs and used to reveal 

dynamics not apparent in the MSD59.

While acquiring images of tracer particles within a network may allow one to use the 

complementary analysis methods of SPT and DDM, it is important to note that an advantage 

of DDM over SPT is that it does not require images of beads (or other features) that can 

be easily localized and tracked. To demonstrate this point, we next highlight the analysis 

of active networks of actin and microtubule filaments, where fluorescent labeling of actin 

and tubulin allows for the imaging of both filament types, distinguished from each other via 

different fluorophores, with a multi-color laser-scanning confocal microscope.

Images were acquired with a laser-scanning confocal microscope of actin-microtubule 

networks with activity driven by myosin (rabbit skeletal muscle myosin II; Cytoskeleton 

#MY02). Details of the experiments and results have been previously described11, and the 

representative results shown here are from the analysis of two movies provided in the 

supplemental materials (movies S1 and S4) for11. Both image sequences were recorded at 

2.78 frames/s for 1000 frames.

To analyze these images, the DDM matrix was calculated for 50 lag times ranging 

from 0.4 s to 252 s (1 frame to 700 frames). The DDM matrix was then fit to the 

model D(q, Δt) = A(q)[1 − f(q, Δt)] + B(q), with the intermediate scattering function being 

beingf(q, Δt) = exp −(Δt/τ(q))s(q) . There are, therefore, four fitting parameters: A, τ, s, and B. 

The results of these fits are shown in Figure 8. It was observed that the DDM matrix for a 

particular q-value had a plateau at low lag times, increased with lag time, and then plateaued 

(or showed signs of beginning to plateau) at large lag times. The DDM matrix for the lower 

values of q did not reach a plateau at long lag times. One should, therefore, expect poor 

accuracy in the measurement of the decay time for these low q (large length scale) dynamics.

The characteristic decay times, τ, from the fits to the DDM matrix are shown in Figure 

9. Results are presented for an active actin-microtubule composite network (similar to 

movie S111) and for an active actin network (similar to movie S411). Both networks were 

prepared with the same concentrations of actin and myosin, but the actin-only network 

was created without tubulin, as described in11. For these two types of active networks, 

the observed power law relationship was τ ∝ q−1. This scaling indicates ballistic motion 

and that the myosin-driven contraction and flow dominate over the thermal motion of the 

filaments. From τ = (vq)−1, a characteristic velocity, v, of about 10 nm/s for the active 

actin-microtubule network and 75 nm/s for the active actin network could be found. These 

values are consistent with the particle image velocimetry analysis of the same videos shown 

in11. The τ ∝ q−1 scaling did not hold at the lower q values for the active actin-microtubule 

composite network. This is likely because the true decay times for this actin-microtubule 

composite network at the lower q values are longer than the maximum lag time of the 

computed DDM matrix. The maximum lag time is indicated with the horizontal red line in 
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Figure 9, and the decay times deviated from the expected τ ∝ q−1 scaling near these longer 

times.

For this data of active networks, we chose to fit the DDM matrix, 

D(q, Δt) = A(q)[1 − f(q, Δt)] + B(q). This contrasts with what was done for the data of beads 

in the vimentin network, where A(q) and B were estimated without any fitting to isolate the 

ISF, f(q, Δt). In this case, for the active network data, A and B were left as fitting parameters 

because the methods used to estimate B did not result in good fits. The default method to 

estimate B is to compute |I(q, t)|2
t
 and to assume that, at large q, this goes to B/2. However, 

this method overestimated B for this data, which was seen in the fact that, when calculating 

the ISFs from B estimated in this way (not shown), the ISFs were greater than 1 at early lag 

times (whereas they should go from a maximum of 1 to either zero or some nonergodicity 

parameter with increasing lag time). One can select other methods for estimating B using 

the parameter background_method. One of these other methods is to estimate B to be the 

minimum of the DDM matrix at early lag times (set with background_method=1). A similar 

method was used by Bayles et al.76, though they did not assume B was constant with q. 

Another option is to estimate B to be the average value over all lag times of the DDM matrix 

at the maximum q (set with background_method=2). These different methods for estimating 

the background, as well as the results for allowing B to be a free fitting parameter, are shown 

in Figure 10. From those plots, one can see that the amplitude, A, did not reach zero at the 

largest q values probed, since |I(q, t)|2
t
 did not plateau at large q (Figure 10B), and since 

D qmax, Δt  went from a lower lag time plateau to some higher lag time plateau (i.e., at qmax, 

there was a non-zero A; Figure 10D). Therefore, neither estimating B as 2 |I(q, t)|2
t
 nor as 

D qmax, Δt Δt would be appropriate. One should inspect |I(q, t)|2
t
 vs. q and D qmax, Δt  vs. Δt

before deciding on how (or if) to estimate B.

Discussion

The software package described here uses DDM to analyze density fluctuations observed 

in images acquired using an optical microscope. Representative results from the data of 

tracer particles embedded in vimentin networks were first shown. The analysis of such data 

can be used to characterize the mesh size and stiffness of the network similarly to how 

single-particle tracking has been used in many past studies of cytoskeleton networks6,12,13. 

An advantage of using DDM over single-particle tracking is that DDM does not require 

the particles to be localized. Therefore, even in images where the particle density is too 

high or the particles too small to localize and track, DDM can still determine the dynamics. 

Where single-particle tracking would be advantageous is when inspecting particle-to-particle 

variability. With DDM, one finds the ensemble averaged dynamics whereas, with single-

particle tracking, one may compute both a single particle’s MSD and the ensemble-averaged 

MSD. However, DDM can be used to investigate heterogeneous dynamics by analyzing 

multiple regions of interest within a large field of view.
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Next, representative results from data of fluorescently labeled filaments in an active network 

composed of two differently labeled cytoskeletal filament types were shown11. With this 

data, the ballistic motion was characterized without needing any localizable features within 

the image. Since DDM extracts the ensemble averaged dynamics with few user inputs, 

it makes comparing image series acquired with different conditions straightforward (e.g., 

comparing samples with different ratios of actin to microtubules or samples with different 

concentrations of myosin, as done in50). Additionally, using fluorescent imaging, we can 

investigate the dynamics of different components of a network using multicolor labeling. 

This was done in11,50, where the dynamics of actin and of microtubules were separately 

analyzed in an active actin-microtubule composite network using multicolor imaging. In the 

representative results section here, just the results from the microtubule channel were shown, 

but in previous work, we compared the dynamics of the microtubule and actin filaments11.

We note that these representative results showcase either passive subdiffusion or active 

ballistic motion. Importantly, DDM can be used to analyze systems where there is a 

crossover in the type of dynamics at intermediate time or length scales. As examples, 

Kurzthaler et al. used DDM with a system of active Janus colloids to explore active directed 

motion at short time scales and randomization of the orientation at longer time scales59; 

Giavazzi et al. used DDM with a coarsening foam and found a crossover in the dynamics 

corresponding to the length scale of a bubble33; and Cho et al. used DDM with colloidal gels 

and found three distinguishable regimes at different length scales spanning from the fractal 

clusters to the whole network32.

The data included in the representative results section were acquired with brightfield 

microscopy and laser-scanning confocal microscopy. However, as previously noted, DDM 

can be used with many imaging modalities. With any imaging modality, users should 

consider optical settings such as the degree of optical sectioning or the depth of field. A high 

degree of optical sectioning may reduce signal from out-of-focus objects, but one will not be 

able to accurately measure dynamics over timescales greater than the timescale for objects 

to move out of the depth of field25,28. A more thorough discussion of how the q-dependent 

depth of field affects DDM analysis can be found in22. For brightfield imaging, users may 

also need to consider the sample thickness. While for weakly scattering samples, thicker 

samples may provide more signal42, turbid samples may require modifying the analysis to 

account for multiple scattering81. Finally, for imaging methods that are not linear space 

invariant (that is, where the intensity recorded by the camera of an object depends on where 

that object is in the x-y sample plane), one may need to account for the linear space variance, 

as demonstrated with dark-field DDM27.

For those getting started with DDM, we wish to emphasize the importance of considering 

the spatial and temporal resolution. When inspecting the determined decay times as a 

function of wavenumber, it is important to mark the limits of one’s resolution (i.e., the 

maximum and minimum lag times and the maximum wavenumber, as done in Figure 5). 

One should think carefully about these limits prior to collecting data so that the optimal 

objective lens, image size, frame rate, and movie duration can be selected. The other 

important consideration is how to estimate the background parameter B. Multiple methods 

for estimating the background have been used in the literature, and the effects of over- or 
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underestimating B have been described in prior publications62,77. As shown in Figure 10, 

PyDDM allows users to implement different methods for estimating B, and we suggest new 

users try these methods and evaluate which are appropriate to use.

A strength of this package is its thorough documentation and walkthroughs featuring 

example data, the storage and organization of metadata to keep track of how analyses 

were performed, and the flexibility in how to analyze the DDM matrix (various fitting 

models, multiple methods for estimating the background parameter B, the ability to find 

the MSD). However, there are multiple aspects to this code that could be improved. 

Currently, the code has not been optimized for fast computation speed. Methods for 

speeding up the computation have been reported61,62, and these will be implemented in 

future releases. Additionally, we plan to implement recently reported methods to better 

estimate uncertainties and to employ simulations for guiding users to the appropriate ISF 

model62. For other improvements, we hope users will contact us with suggestions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of DDM analysis.
From the time series of images, the Fourier transform of image differences is computed to 

calculate the DDM matrix. The DDM matrix can be fit to a model to determine the time 

scale of density fluctuations across a range of q values.
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Figure 2: Computation time for calculating the DDM matrix.

In (A) and (B) the time for calculating the DDM matrix, D(q, Δt) = |ΔI(q, Δt)|2
t
, is shown. 

The data used in all cases is a movie of 5000 frames with an image size of 512 × 512 pixels. 

The DDM matrix was calculated for 30 lag times, logarithmically spaced between 1 frame 

(0.01 s) and 1000 frames (10 s). The code was run on an Intel i7–10700 2.90 GHz desktop 

computer with 32 GB RAM. In (A), the effect of varying how many image differences are 

used in computing the DDM matrix for each lag time is shown. For this, the images are 

binned to result in an image size of 256 × 256. For each lag time Δt, images separated by 

that Δt are subtracted and the resulting matrix is Fourier transformed. For a given Δt, all 

pairs of images separated by that Δt can be used (shown in blue), only non-overlapping 

image pairs can be used (e.g., frames 1 and 10, 10 and 19, etc.; shown in brown), or 300 

image pairs or fewer can be used for each Δt. In (B), the effect of changing the image size 

on the computation time is shown. The images were binned either by grouping 2 × 2, 4 × 4, 

or 8 × 8 pixels, resulting in image sizes of 256 × 256, 128 × 128, or 64 × 64, respectively. 

For each, about 300 image pairs are used in computing the DDM matrix for each Δt. (C) 

From the DDM matrix, the intermediate scattering function (ISF) can be extracted. This is 

shown for the three cases in (A). The blue data points (with no offset) correspond to the 

ISF when the maximum number of image pairs are used for each Δt; the brown data points 

Verwei et al. Page 21

J Vis Exp. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(with an offset of 0.1) correspond to the ISF when non-overlapping image pairs are used 

for each Δt; and the pink data points (with an offset of 0.2) correspond to the ISF when 

at most 300 image pairs are used for each Δt. The ISF found using non-overlapping image 

pairs shows noisiness at long Δt. For that case, few image pairs are used at long Δt (e.g., for 

Δt of 1000 frames, only 4 image pairs are used). (D) By fitting the ISF to an exponential 

function, the characteristic decay time, τ, for each wavenumber, q, is determined. In pink, 

results are shown after binning the original images by 2 × 2, resulting in an image size of 

256 × 256. In gray, results are shown after binning by 8 × 8, resulting in an image size of 

64 × 64. By binning the data, information about the dynamics at higher wavenumbers is lost, 

but calculating the DDM matrix for the 64 × 64 images is about 16x faster than for the 256 × 

256 images.
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Figure 3: Images from the time series analyzed.
(A) Brightfield image of 0.6 μm beads in a vimentin network. (B,C) Image of the (B) 

microtubules and (C) actin in an active actin-microtubule composite taken with a 60x 

objective on a laser-scanning confocal microscope, using 561 nm excitation light for the 

microtubule imaging and 488 nm excitation light for the actin imaging.

Verwei et al. Page 23

J Vis Exp. Author manuscript; available in PMC 2023 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Intermediate scattering functions at several wavenumbers for vimentin networks.
The ISF is plotted as a function of lag time for q values from about 1 to 9 μm−1. (A) The 

ISF from images of 0.6 μm beads in a vimentin network with vimentin concentration of 

19 μM. (B) The ISF from images of 0.6 μm beads in a vimentin network with vimentin 

concentration of 34 μM. The long lag time plateau of the ISF at a value well above zero 

indicates nonergodicity.
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Figure 5: Decay time vs. wavenumber for vimentin networks.
From fits to the ISF, the decay time τ is determined for a range of q values. For clarity, we 

are not showing the value of τ for every q, but just a logarithmically spaced set. In blue 

(tan) is the data from images of 0.6 μm beads within vimentin networks with a vimentin 

concentration of 19 μM (34 μM). The error bars represent the standard deviations in τ across 

multiple movies (four movies for the data with the 19 μM network [blue] and five movies 

for the data with the 34 μM network [tan]). Red dash-dotted lines mark estimated bounds for 

our temporal and spatial resolution, as described in the results. The solid black line shows 

τ ∝ q−2 scaling, which would indicate diffusive motion. Neither data set follows this scaling. 

Rather, beads in the 19 μM network show subdiffusive motion (τ ∝ q−β with β > 2), and 

beads in the 34 μM network show confined or caged motion.
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Figure 6: Nonergodicity parameter vs. wavenumber for vimentin networks.
From fits to the ISF, the nonergodicity parameter C is determined for a range of q values. 

In tan (red) is the data from images of 0.6 μm beads within vimentin networks with a 

vimentin concentration of 34 μM (49 μM). The error bars represent the standard deviations 

in τ across multiple movies (five movies for the data with the 34 μM network [tan] and four 

movies for the data with the 49 μM network [red]). The y-axis has logarithmic scaling. One 

observes a q-dependence of C that follows C(q) = exp −q2δ2/4 , which allows for extracting 

the maximum mean squared displacement, δ2. Fits to C(q) = exp −q2δ2/4  are shown with the 

solid lines.
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Figure 7: Mean squared displacement vs. lag time for vimentin networks.
The MSD was determined using two methods. First, the MSD was computed from the DDM 

matrix (shown with solid symbols). Next, the MSD was determined by using single-particle 

tracking (SPT) to find particle trajectories (open symbols). Error bars are determined in the 

same way as described in the previous two figure legends. (A) MSDs for 0.6 μm beads in 

the 19 μM vimentin network indicate subdiffusive motion, with good agreement between 

the two methods of finding the MSD. (B) MSDs for 0.6 μm beads in the 49 μM vimentin 

network indicate caged motion, with good agreement between the two methods of finding 

the MSD and with the maximum MSD found from the nonergodicity parameter.
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Figure 8: DDM matrix vs. lag time for an active actin-microtubule composite network.
The DDM matrix for several values of q is plotted as a function of lag time from a movie of 

a composite network composed of 2.9 μM actin monomers, 2.9 μM tubulin dimers, and 0.24 

μM myosin. These data show the analysis of just the microtubule channel of a multicolor 

time series of images.
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Figure 9: Decay time vs. wavenumber for active actin-microtubule networks.
From fitting the DDM matrix, the decay time, τ, as a function of wavenumber, q, is 

found. Plotted is τ vs q for images of an active actin-microtubule network (analyzing just 

the microtubule channel) in brown and for images of an active actin network in green. 

Both networks have the same concentrations of actin and myosin (2.9 μM and 0.24 μM, 

respectively); the actin-microtubule composite has 2.9 μM of tubulin dimers. The decay 

times for the active actin network are much smaller than the decay times for the active 

actin-microtubule network, which indicates faster motion of the active actin network. In both 

cases, the dynamics are ballistic as the data follows a τ ∝ q−1 trend. Inset: the plot of the 

ISFs vs. the lag time scaled by the wavenumber (Δt × q) shows a collapse of the ISFs over a 

range of q values. This also indicates ballistic motion. The ISFs shown in this inset are from 

the active actin network.
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Figure 10: Background vs. wavenumber for active actin-microtubule networks.
From fitting the DDM matrix, one can find the background, B, as a function of wavenumber, 

q. Shown is B vs. q for images of an active actin-microtubule network (analyzing just the 

microtubule channel) determined from these fits with the purple symbols. The three solid 

lines in (A) show estimates of the background found without any fitting. The top, darkest 

line in (A) shows the estimated background using 2 I qmax, t 2 , which may be appropriate 

if |I(q, t)|2
t
 plateaus to a constant value at large q. From (B), note that |I(q, t)|2

t
 has yet to 

reach a constant value at the largest q probed. Therefore, using this method overestimates 

the background. The bottom line in (A) shows the estimated background using Dmin(q, Δt).. If 
the DDM matrix shows a low lag time plateau as shown in (C) with the red line, then this 

method may be appropriate for estimating the background. The middle, lightest line in (A) 

shows the estimated background from D qmax, Δt Δt. This method may be appropriate if, at 

qmax, the amplitude, A, has reached zero. From (D), it is seen that the amplitude is non-zero 

and, therefore, this method overestimates the background.
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