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Abstract

Objective: In the current MR-Linac online adaptive workflow, air regions on the MR images 

need to be manually delineated for abdominal targets, and then overridden by air density for 

dose calculation. Auto-delineation of these regions is desirable for speed purposes, but poses a 

challenge, since unlike CT, they don’t occupy all dark regions on the image. The purpose of this 

study is to develop an automated method to segment the air regions on MRI-guided adaptive 

radiation therapy (MRgART) of abdominal tumors.

Approach: A modified ResUNet3D deep learning (DL)-based auto air delineation model was 

trained using 102 patients’ MR images. The MR images were acquired by a dedicated in-house 

sequence named “Air-Scan”, which is designed to generate air regions that are especially dark 

and accentuated. The air volumes generated by the newly developed DL model were compared 

with the manual air contours using geometric similarity (Dice Similarity Coefficient, DSC), and 

dosimetric equivalence using Gamma index and dose-volume parameters.

Main results: The average DSC agreement between the DL generated and manual air contours 

is 99% ± 1%. The gamma index between the dose calculations with overriding the DL vs manual 

air volumes with density of 0.01 is 97% ± 2% for a local gamma calculation with a tolerance of 

2% and 2mm. The dosimetric parameters from planning target volume - PTV and organs at risk - 

OARs were all within 1% between when DL vs manual contours were overridden by air density. 

The model runs in less than five seconds on a PC with 28 Core processor and NVIDIA Quadro® 

P2000 GPU.

Significance: A DL based automated segmentation method was developed to generate air 

volumes on specialized abdominal MR images and generate results that are practically equivalent 

to the manual contouring of air volumes.
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1. Introduction

The MR-Linac treatment systems offer several advantages for daily delineation and motion 

monitoring during treatment delivery [1, 2]. Unlike computed tomography, the daily MR 

images do not inherently contain the electron density (ED) information that is necessary 

for the daily dose calculations. Several methods have been proposed to generate the ED 

information using the daily MRIs for different tumor sites [3]. Recently, we developed a 

synthetic computed tomography (CT) solution that utilizes a deformable image registration 

(DIR) to transfer the ED values from a reference CT to the daily MR image [4]. This 

approach yielded good accuracy for several sites, but not for abdomen cases where the 

randomly varying air/gas regions pose a challenge for the DIR [5]. Although the patients 

are instructed to avoid gassy foods and chewing gum, it is hard to avoid bowel gas during 

treatment. Sometimes patients are not compliant, or patients have excessive gas secondary 

to the presence of cancer itself or cancer therapies. In current practice, the air volumes 

are manually delineated, and their relative ED is overridden with a constant (e.g., 0.01 per 

ICRU report)[6] before the onset of plan adaptation [7]. It is desirable to automate the 

delineation of air volumes on the MR images to improve speed, consistency, and potentially 

to allow for more frequent plan adaptation schemes. Air volumes can also change during the 

treatment, an automated air segmentation method would be necessary for potential real-time 

plan adaptation schemes to account for those changes. Unlike CT, air and several other 

tissue types of the body or artefacts yield similar low signal intensity on MRI, making 

auto-delineation of air on the MRI challenging, since a simple global thresholding cannot be 

used.

We previously reported an auto-air delineation method using the DIR between the daily and 

a reference MR images with delineated GI structures [8]. This method provided air volumes 

that resulted in dose accuracy practically equivalent to the manual contours. However, there 

were two drawbacks in the method; (1) it requires the delineation of the air containing GI 

volumes on a reference image, which must be acquired for each patient separately, and (2) 

the DIR operation is time consuming (~25 seconds) which can be significant for online 

adaptation.

In this work, we report on a new and improved method that can quickly auto-segment air 

volumes on MRI based on deep learning (DL) without reference contours. We trained a DL 

model using an abdominal MRI dataset of 102 patients with manually delineated air regions. 

The training dataset is based on MRIs of a special sequence, called air scan — specifically 

designed in our clinic to better visualize air volumes. The obtained model was evaluated for 

the air scans using ten new patients and compared with manually delineated air contours.

2. Methods and Materials

2.1. Nomenclature

The following nomenclatures (abbreviations) are used throughout this manuscript:

DL-air: the air volume auto-segmented by the newly developed deep learning models.
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DL-dose: the dose calculation generated with the DL-air overridden by rED of 0.01.

Manual-air: the air volumes manually delineated.

Manual-dose: the dose distribution generated by overriding the Manual-air with rED of 0.01.

Repeat-dose: the same as Manual-dose, except that the dose calculation was repeated to 

assess the statistical difference due to the Monte Carlo algorithm.

No-air-dose: the dose calculation created without overriding rED in the air volumes.

2.2. MR Air Scans

A special MR sequence (Cartesian 3D FLASH or 3D tFE) optimized to acquire air volumes 

in the abdomen, named Air-Scan, was used. This sequence has a partial echo with a 

minimum echo time of 1 ms to maximize the air visualization and avoid signal loss due to 

T2* decay. The Air-Scan images are acquired with a voxel size of 1.88 ✕ 1.88 ✕ 3.5 mm3 

and a T1-weighted gradient MR acquisition (TE = 1 ms, TR = 2.5 ms, and flip angle = 5°). 

This image resolution, although coarser than those of daily images used for daily planning, 

was found to be a good compromise in terms of resolution and speed. A higher spatial 

resolution increases acquisition times, which decreases the sharpness of the boundary of air 

and tissue, resulting in inaccuracies in estimation of air volumes. The scan time for this 

sequence is approximately 9 seconds. The patients are instructed to breathe normally during 

the acquisition of Air Scans. Partial Fourier and parallel imaging accelerations were used 

to minimize scanning times. Since 2020, we have used the Air-Scan to manually delineate 

air volumes in our clinical online adaptation workflow. We use the “2D brush tool” in MIM 

with an upper range lock value of 2000 to delineate the air volumes on the Air Scans for all 

patients.

2.3. ResUNet3D Air-segmentation model

A DL automated air segmentation model was developed and implemented in the Admire 

(Elekta, St Louis MO) environment. A well-established modified 3D Unet architecture was 

used to build the DL air-segmentation model, called RusUNet3D [9, 10], which is chosen 

as it is considered as a very good benchmark for general segmentation tasks. The air 

pockets’ edge/boundaries already have strong features, where the long-skip concatenation 

of multi-levels between encoder and decoder in ResUnet-style is expected to preserve and 

represent adequately.

The generation and training of network was implemented in-house by Tensorflow 1.15 

platform. The network structure was specified in Figure 1 and a traditional cross entropy 

function was adopted. The general idea of this network combines the short skip connection 

in 3D Residual block and long-skip connection between encoder and decoder. Total 100 

epochs were performed for this training. To overcome memory issues during training, 

whole patient volumes were not fed into training, but a slab of consecutive 32 slices 

(320✕320✕32) were randomly picked each time. For each epoch, every patient volume was 

sampled 16 times as the fixed size 320✕320✕32 from the whole volume, starting slice of 

which was randomly picked. All kernel sizes are 3✕3✕3, except for fully connected layers. 
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The last, i.e., fourth dimension in each block represents the number of filters/channels. To 

mitigate the potential over-fitting issue, an elastic transform was also applied on-the-fly 

for the whole volume before sampling. The Adam optimizer was used. The total training 

epoch was set to 100. The learning rate was fixed at 0.002 for the first half of the total 

number of epochs and decayed linearly for the second half. Based on our previous similar 

training experience, the training error curve and five-patient based validation error curve 

have become flat and stable in the range of 100 epochs.

To learn various representations of MR data, first a new residual block “Res-block”, was 

designed as the basic processing unit. The MR Air-Scan DICOM resolution of the input 

3D sub-volume is 1.875 ✕ 1.875 ✕ 3.5 mm3, which is the same as its physical resolution. 

Furthermore, to reduce inhomogeneity and variation, the original Air-Scan images have been 

standardized and normalized using Z-scores. To reduce potential over-fitting issues, a 3D 

elastic deformation transform was used as one type of data argumentation for each epoch 

using a total of ~102 patients to make up the training pool.

The model was trained with 102 Air-Scan sets along with Manual-air. The Air-Scans 

were acquired on Unity MR-Linac (Elekta, Stockholm, Sweden) during the routine online 

adaptive treatments of abdominal patients, from January 2019 to March 2022.

2.4. AIR-Segmentation model evaluation

Carefully generated manual air contours from 20 abdominal patients that were treated for 

their tumors in liver or pancreas were utilized as the ground truth for testing the model. 

The Table 1 summarizes the demographic information of all 122 patients used in the 

model, including gender and treatment site specifics. The testing patients’ contours were not 

included in the training dataset.

On these images, DL-air was obtained using the trained DL model in the ADMIRE Research 

software (v 3.45, Elekta). On these images, the Manual-air contours were generated using 

threshold 2,000 in MIM software. The small air contour regions with radius less than 

1 mm were filtered out. The Manual-air and DL-air were compared geometrically and 

dosimetrically. All evaluations were performed using specially designed workflows in MIM 

software (v 7.2).

2.4.1. Geometric comparison—The geometric agreement between the DL-air and 

Manual-air contours was assessed using the Dice Similarity Coefficient (DSC), a measure of 

overlap, thus, a relative metric of agreement between the two volumes. We also calculated 

the absolute disagreement volume (cc) between the DL-air and Manual-air, which should 

better reflect the dosimetric consequences due to the air volume differences.

2.4.2. Dose calculation—For dosimetric comparison, plans that were generated during 

online optimization for the treatment of these 20 patients were utilized. The plans are step 

and shoot Intensity-modulated radiation therapy (IMRT) plans using the Monaco system 

(version 6.01, Elekta AB) using a Monte Carlo dose engine and considering the dose effect 

of the 1.5T magnetic field for 20 test cases. The Unity MR-LINAC’s 7 MV FFF photon 

beams were used for all plans. Sequencing parameters of beamlet width, minimum segment 
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area, minimum segment width, minimum MU/Segment, and maximum segments per plan 

were set as 2 mm, 2 cm2, 1 cm, 2, and 70, respectively.

A calculation grid size of 3 mm, and statistical uncertainty of 1% per calculation were used. 

It should be noted, this 1% uncertainty is only achieved in the high dose regions of the plan, 

while the lower dose regions typically have higher uncertainty numbers.

2.4.3. Dosimetric evaluation—For each patient, four dose distributions, (1) DL-dose, 

(2) Manual-dose, and (3) Repeat-dose, and (4) No-air-dose, were calculated using the beam 

parameters of the clinical plan. The dosimetric effect from the difference between the DL-air 

and Manual-air was evaluated within the D>80% IDL (iso-dose line), D>50% IDL, and 

D>30% IDL region using a 3D local gamma analysis using 3%, 3 mm, 2%, 2 mm, and 1%, 

1 mm gamma criteria.

Also, the dose volume histogram (DVH) parameters were compared between the dose 

distributions. The percentage dose deviations for DL-dose vs Manual-dose, Manual-dose 

vs Repeat-dose, and Manual-dose vs No-air-dose for the DVH parameters PTVD95, 

PTV0.03cc, PTVmean, Duodenum0.03cc, Stomach0.03cc, Small bowel0.03cc, and Colon0.03cc 

was calculated using a workflow in MIM software.

3. Results

Figure 2 presents a typical output of the air segmentation model, which clearly shows 

the comparison between the DL model segmented (green contours) and manual contour 

segmented (pink contours) on representative axial, coronal, and sagittal MR images for a 

test case. Figure 3 shows the results of the geometric comparisons. This information is also 

presented in Table 2. The mean DSC agreement is 99%, with 1% standard error, which 

indicates the DL method can accurately replicate the manual air contouring. The biggest 

absolute volume disagreement was 5.5cc, out of 70cc of air in patient #2, which as it is 

shown in the dosimetric analysis below, did not result in a large dosimetric effect.

The dosimetric gamma analysis results are presented in Figure 4 and (see Table S1 in 

supplementary materials). One can observe that the differences between DL-dose and 

Manual-dose are rather small, and they are equivalent or even less than the differences 

between Manual-dose and Repeat-dose Table S1 (see Supplementary Materials). The 

mean gamma agreement between DL-dose and manual-dose was equal or better than the 

agreement between manual-dose and repeat-dose for all comparisons. Therefore, it can be 

concluded that the differences are within the statistical uncertainty of the Monte Carlo 

calculations, and thus, the dosimetric differences due to air volume discrepancy is almost 

negligible.

A similar conclusion can be reached for the comparisons of dosimetric criteria (Figures 

5 and 6). The DL-dose/Manual-dose differences are all within the ± 1% range, while 

the No-air-dose/Manual-dose differences tend to exceed this range. In Figure 6, the range 

between 25 and 75 percentiles is plotted for each DVH point for different comparisons. The 

DL-dose/Manual-dose differences are all smaller than No-air-dose/Manual-dose differences, 

and they are mostly smaller or comparable to the Manual-dose/Repeat-dose differences. 
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The absolute value of Manual-dose/Repeat-dose differences was similar to the DL-dose/

manual-dose differences, average 0.32% vs 0.39%, p = 0.39. The mean absolute differences 

between No-air-dose and Manual-dose was 0.64%, which was significantly higher than both 

DL-dose/Manual-dose differences (p=0.0002) and Manual-dose/Repeat-dose differences (p 

= 0.00001).

4. Discussion

The results indicate that the DL model is accurate in delineating the abdominal air regions 

on the Air Scan images. The model can be run in less than five seconds and can be fully 

automated. Both geometric and dosimetric analyses indicate excellent agreement between 

DL-air and Manual-air contours. The geometric agreement between DL-air and Manual-air 

contours is excellent, with average DSC of 0.99. The dosimetric disagreements due to 

the differences in air volumes are small and are within the statistical uncertainty (±1% 

per calculation) in the dose calculations. It is important to point out that the DL-dose/

manual-dose differences reported here are due to both the statistical uncertainties in the dose 

calculations, and the dosimetric effects of the air volume differences. On the other hand, 

the manual-dose/repeat-dose differences are only due to statistical uncertainties. So, the 

fact that the DL-dose/manual-dose differences are comparable to the manual-dose/repeat-

dose differences indicates that any dose effect of the air volume differences is almost 

indistinguishable in the presence of the dosimetric differences due to statistical uncertainty. 

Also, it must be noted that the 1% statistical uncertainty used in these calculations is what 

is being used for the dose calculations in our clinic. Therefore, the dosimetric effects due to 

DL generated air volumes are well below the level of clinical significance.

Main benefit of the proposed method is in terms of speed, automation, and consistency. The 

manual delineation currently takes around 1–3 minutes of time, which can be reduced to 

less than five seconds with the proposed method. Also, automation will allow for improved 

consistency and reduction in potential human errors. Air segmentation is one of the tasks 

that constitute the MR guided online adaptive RT and improvements in each task will 

contribute to the speed of the whole process.

We had previously developed a method (named DIFF) for auto-air delineation, which was 

also a fully automatic method. However, this DL method is superior in its speed (less 

than 5 seconds vs ~25 seconds), and easier to use. The previously reported DIFF method 

necessitated delineation of air-containing combined GI volume to be delineated offline [8]. 

Although this would not be a process that needs to be performed online, it is still an 

additional burden on the clinic personnel. The current method does not require any special 

preparation either online or offline and can simply be run as part of the online process.

One concern for the current method is that the DL model was specifically developed for 

the Air-Scan MR sequence and may not be generalized to other MR sequences. Also, if the 

Air-Scan sequence is to be altered substantially in the future, a retraining of the DL model 

may be necessary. Air Scan images could possibly be improved by employing non-cartesian 

methods such as radial or propeller type k-space sampling [11] to minimize blurring from 

breathing motion, which would increase the accuracy of air volume definitions. Such 
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improvements in the imaging could be expected to also improve the accuracy of the 

proposed auto-delineation method.

This method generates the air volumes as contours that can be visually verified once overlaid 

on the daily MR images quickly during online planning. Correcting random air regions in 

the abdominal structures would be taking care of the most important dosimetric effect, as air 

density constitutes the biggest density difference from soft tissue. Although there are several 

synthetic CT methods in the development phase for the abdomen [12, 13], we are not aware 

of ones that can accurately address the air regions, as these were not specifically reported. 

Our method can be combined with other synthetic CT methods as an auxiliary correction on 

air regions or can be directly used as part of the bulk density correction scheme currently 

used in the clinic. As part of the clinical scheme, we developed the MIM workflow to 

run Admire externally and input the generated air contours inside MIM without exiting the 

current Adapt-to-shape workflows of MIM.

5. Conclusion

Current DL model that can quickly and automatically segment the air regions on abdominal 

MRI acquired 1.5T MR-LINAC was developed. The model performed well with a DSC of 

more than 95%, and dosimetric effect within the statistical uncertainty of dose calculations 

compared with those from manually segmented air volumes. This technique could help 

speed up and automate the online adaptive planning on MRL for abdominal tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The schematic illustration shows our in-house 3D ResUnet3D network method used to train 

our air segmentation model, with clear decoding and encoding structures. The short skip 

connection with red color “+” represents the addition, while the long blue connection sign 

“•” represents the concatenation. Conv: Convolution. IN: Instance Normalization. ReLU: 

Rectifier Linear Unit.
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Figure 2. 
DL-air (green contours) and Manual-air (pink contours) on representative axial, coronal, and 

sagittal images for a test case.
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Figure 3. 
(A) Difference between DL-air and Manual-air contours and their corresponding (B) DSC 

comparison.
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Figure 4. 
The gamma passing rates for DL/manual and manual/repeat comparisons for D>30%IDL.
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Figure 5. 
Percentage dose deviation in (A) DL-dose vs Manual-dose, (B) Manual-dose vs 

Repeat-dose, and (C) Manual-dose vs No-air-dose for PTVD95, PTV0.03cc, PTVmean, 

Duodenum0.03cc, Stomach0.03cc, Small bowel0.03cc, and Colon0.03cc. Dashed lines show 1% 

deviation line on dose difference % axis.
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Figure 6. 
The 25–75% percentile dose difference of PTVD95, PTV0.03cc, PTVmean, Duodenum0.03cc, 

Stomach0.03cc, Small bowel0.03cc, and Colon0.03cc for manual vs No-OR, manual vs DL, and 

manual vs Rep.
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