Skip to main content
. 2023 Aug 3;23:148. doi: 10.1186/s12911-023-02248-7

Table 2.

Summary table of machine learning applied to MTX delayed elimination or Adverse reactions

Title Authors Screened Feature Sample size Algorithms AUROC
Risk prediction for delayed clearance of high-dose methotrexate in pediatric hematological malignancies by machine learning [7] Zhan M

(1) Hematocrit, risk classification, dose, SLC19A1 rs2838958, sex, dose

(2) SLC19A1 rs2838958, dose, sex

205 (1) C5.0 decision tree + SMOTE; (2) Nomogram

(1) AUROC = 0.807

(95% CI 0.724–0.889)

(2) AUROC = 0.690

(95% CI 0.594–0.787)

Predictive analysis of methotrexate elimination delay based on logistic regression model and ROC curve [13] Wang Yang SLCO1B1 T521C 82

Logistic

regression

AUROC = 0.751

(0.627–0.875)

Plasma creatinine as predictor of delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia: A Danish population-based study [15] Schmidt, D

(1) Absolute increase in 36 h Plasma Creatinine

(2) Relative increasein 36 h Plasma Creatinine

(3) Infusion plasma MTX concentration

218

Linear

regression

(1) AUROC = 0.930

(95%CI 0.910-0-960)

(2) AUROC = 0.930

(95%CI 0.910-0-960)

(3) AUROC = 0.810

(95%CI 0.750-0-860)

Risk factors for high-dose methotrexate-induced nephrotoxicity [22] Shinichiro Kawaguchi Urine pH at day 1 88 Logistic regression

0.750

(95% CI 0.573–0.927)

Predicting Hepatotoxicity Associated with Low-Dose Methotrexate Using Machine Learning [37] Hu, Qiaozhi BMI, age, number of drugs and comorbidities, doses of folic acid, antibiotic use, gender, immunosuppressive agents, Glucocorticoid use, First MTX use, Drinking, Type 2 diabetes, Chinese traditional medicine, Dose of folic acid, Infectious liver disease, history of kidney disease 782

(1) XGBoost

(2) AdaBoost

(3) CatBoost

(4) GBDT

(5) LightGBM

(6) TPOT

(7) RF

(8) ANN

(1)0.94

(2)0.69

(3)0.91

(4)0.53

(5)0.87

(6)0.78

(7)0.97

(8)0.65

Abbreviations: SMOTE, Synthetic Minority Over-Sampling Technique; RF: Random Forest; XGBoost: eXtreme gradient boosting; AdaBoost: Adaptive boosting; LightGBM: Light gradient boosting machine; AUROC: Area under the receiver operating characteristic curve; CatBoost, Categorical boosting; GBDT, Gradient Boosting Decision Tree; TPOT, Tree-based Pipeline Optimization Tool; ANN, Artificial Neural Network; BMI, Body Mass Index