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Abstract 

Background  Recent insights suggest that remnant cholesterol (RC) plays a role in cellular senescence, yet its specific 
contribution to frailty remains indeterminate. Through the integration of observational and mendelian randomization 
(MR) studies, this research explores the impact of elevated serum RC levels on frailty susceptibility.

Methods  A dual-method approach, combining an observational study with an MR study, was employed to investi-
gate the connection between RC and frailty. The observational study included 11,838 participants from the National 
Health and Nutrition Examination Survey. Multivariable logistic regression and propensity score matching were 
employed to control for potential confounders. The non-linear relationship was assessed using restricted cubic 
splines. To circumvent observational study limitations, a two-sample MR analysis was conducted using the inverse-
variance weighted method, leveraging genome-wide association studies (GWAS) data.

Results  After adjusting for potential confounding variables, the observational study identified a significant associa-
tion between high serum RC levels and frailty in middle-aged and older adults (odds ratio [OR] = 1.67, 95% confi-
dence interval [CI] = 1.20 to 2.33, P = 0.003), exhibiting a non-linear dose–response correlation (non-linear P = 0.011). 
This association persisted after propensity score matching (OR = 1.53, 95% CI = 1.14 to 2.06, P = 0.005). The MR study 
echoed these results, demonstrating a causal association of RC with the frailty index (β = 0.059, 95% CI = 0.033 to 0.085, 
P = 1.05E-05), consistent with the observational findings (β = 0.017, 95% CI = 0.008 to 0.026, P = 4.51E-04).

Conclusion  This study provides evidence that higher RC levels amplify frailty risk in middle-aged and older adults, 
implying that the reduction of RC levels may present a promising strategy for frailty prevention and management.
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Introduction
With advancing age, individuals tend to experience a pro-
gressive accumulation of health-related deficits, which 
eventually leads to cumulating in a state of frailty. This 
clinical condition, characterized by vulnerability, signi-
fies severe dysregulation within a biologically complex 
dynamical system inherent to the aging process [1–3]. 
Epidemiological evidence underscores the high preva-
lence of frailty among the elderly demographic. For 
instance, a comprehensive meta-analysis incorporat-
ing 57 studies revealed that frailty affects approximately 
26.8% of the aging population [4]. Given the heightened 
predisposition of this demographic to adverse clini-
cal outcomes, there is a growing emphasis on the early 
identification and modification of risk factors related to 
frailty.

In the elderly population, frailty is associated with a 
significantly increased risk for the development of car-
diovascular disease (CVD) and the occurrence of major 
adverse cardiovascular events [5, 6]. Evidence from a 
Mendelian randomization (MR) study underscores a 
bidirectional causal relationship between frailty and 
coronary heart disease (CHD) [7]. This correlation could 
stem from shared risk factors [8], especially the elevated 
serum level of cholesterol. Previous research has indi-
cated a correlation between increased serum levels of 
low-density lipoprotein cholesterol (LDL-C) and the risk 
of frailty[9]. Numerous researches in recent years have 
identified remnant cholesterol (RC) as an independent 
risk factor that contributes to the occurrence of incident 
cardiovascular events [10–12]. RC is computed as the 
difference between total cholesterol (TC) and the aggre-
gate of high-density lipoprotein cholesterol (HDL-C) 
and LDL-C, primarily representing the cholesterol con-
tent of a subset of triglyceride-rich lipoproteins (TRLs) 
[13]. One proposed mechanism suggests that hydrolyzed 
products from TRLs may expedite cellular senescence 
in a range of cells, including endothelial cells, vascular 
smooth muscle cells, macrophages, and adipose-derived 
mesenchymal stem cells (AMSC) [14]. While direct 
evidence is available for AMSC, supporting evidence 
for other cell types remains largely indirect [15]. Cel-
lular senescence at the cellular level is a crucial mecha-
nism driving frailty [16]. However, the exact mechanism 
through which RC is associated with the risk of frailty 
remains to be elucidated.

The aim of this study was to examine the potential 
association between RC and frailty through two dis-
tinct, yet complementary approaches. The initial phase 
of the investigation involved an observational study using 
data from the National Health and Nutrition Examina-
tion Survey (NHANES) to assess the association. How-
ever, acknowledging the limitations of observational 

studies, primarily the prevalence of confounding factors 
and potential for reverse causality, a MR study was also 
employed. In the MR study, genetic variants that influ-
ence serum remnant cholesterol levels were utilized as 
instrumental variables, simulating the conditions of a 
randomized experiment. This technique leverages the 
natural random distribution of genetic variants during 
gamete formation and conception, thereby effectively 
mitigating confounding elements and the risk of reverse 
causality. Such an approach provides a more robust evi-
dence base supporting any potential causal link between 
RC and frailty [17].

Materials and methods
Study population for the observational epidemiological 
study
The present observational study leveraged data across 
eight NHANES cycles spanning from 2003–2004 through 
2017–2018. The NHANES is a nationally representative 
survey dedicated to assessing the health and nutritional 
condition of both adult and pediatric populations in the 
United States [18]. The inclusion criteria for this study 
specified non-institutionalized individuals aged 40 years 
and above who had undergone lipid profiling. Subjects 
with triglyceride levels equal to or exceeding 400 mg/dl 
were excluded from the study. Protocols #98–12, #2005–
06, #2011–17, and #2018–01 were granted approval by 
the Institutional Review Board of the National Center for 
Health Statistics (NCHS) [19].

Measurement of variables in the observational 
epidemiological study
For this observational epidemiological study, the pri-
mary exposure variables comprised of RC, RC-to-TC 
ratio, and TC-to-LDL-C ratio. RC was deduced by sub-
tracting HDL-C and LDL-C from TC. As LDL-C direct 
measurements were not provided by NHANES, its levels 
for the primary analyses were calculated using the Mar-
tin-Hopkins equation [20]. A preceding study [21] dem-
onstrated that the Martin-Hopkins equation provides 
more accurate estimations of LDL-C (for triglyceride lev-
els of < 400 mg/dl) compared to the Friedewald [22] and 
Sampson equations [23]. For comparison, LDL-C values 
were also computed using the Friedewald and Sampson 
equations.

Frailty status, defined by the frailty index (FI), was iden-
tified as the primary outcome measure. FI was deter-
mined using 49 accessible items, based on the deficit 
accumulation approach proposed by Rockwood et  al. 
(Supplementary Table 1) [24]. FI was computed by divid-
ing the sum of deficits by the total number of items, 
yielding a score between 0 and 1. Participants possess-
ing an FI greater than 0.21 were classified as frail [25, 
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26]. Concurrently, the Fried frailty phenotype (FP) was 
assessed according to a formerly published method [27]; 
meeting at least three criteria was deemed indicative of 
frailty [3].

The study accounted for various covariates, includ-
ing sociodemographic attributes, socioeconomic status, 
lifestyle behaviors, frailty-associated risk factors, clini-
cal comorbidities, and current medications. The soci-
odemographic variables included age, gender, ethnicity, 
education level, and marital status. Household income as 
a percentage of the federal poverty level (FPL) was uti-
lized to gauge the socioeconomic status, categorized as 
poor (≤ 100% FPL), near poor (101–200% FPL), or non-
poor (> 200% FPL). The healthy eating index—2015 (HEI-
2015) was employed to evaluate dietary behaviors, which 
assesses adherence to the 2015–2020 Dietary Guidelines 
for Americans. The smoking status was segmented into 
three categories: never, former, or current. “Never smok-
ers” were those who smoked fewer than 100 cigarettes 
throughout their lifetime. “Current smokers” referred to 
those who consumed more than 100 cigarettes in their 
lifetime and were still active smokers. “Former smok-
ers” were those who ceased smoking after consuming 
more than 100 cigarettes. The study also included frailty-
related risk factors such as body mass index (BMI), sys-
tolic blood pressure (SBP), diastolic blood pressure 
(DBP), and estimated glomerular filtration rate (eGFR), 
which was computed using creatinine-based eGFR 
(eGFRCr) via the CKD-EPI (CKD Epidemiology Col-
laboration) equations [28]. Self-reported histories of car-
diovascular disease (CVD) and Type 2 diabetes mellitus 
(T2DM) were counted as clinical comorbidities. CVD 
was defined as self-reported instances of CHD, conges-
tive heart failure (HF), heart attacks, strokes, or angina. 
The study also accounted for covariates, which included 
information on the current usage of specific medications, 
such as statins, anti-diabetic drugs, and anti-hypertensive 
drugs.

Data Source for mendelian randomization study
In the MR analyses, summary-level data from large-scale 
genome-wide association studies (GWAS) were utilized 
to assess the potential causal influence of RC on frailty. 
The GWAS summary data for RC was procured from the 
UK Biobank, encompassing data from 115,082 partici-
pants [29]. The quantification of remnant cholesterol was 
computed as the TC minus the sum of LDL-C and HDL-
C. The TC, LDL-C, and HDL-C values were acquired 
through high-throughput nuclear magnetic resonance 
metabolomics conducted by Nightingale Health (bio-
marker quantification version 2020) [29]. The data were 
subsequently adjusted for variables such as age, sex, fast-
ing status, and the genotyping array.

The GWAS summary data for the FI was derived from 
a meta-analysis of UK Biobank participants of Euro-
pean descent (N = 164,610) and Swedish TwinGene 
participants (N = 10,616) [30]. The UK Biobank partici-
pants were aged between 60 to 70 years, and the Swedish 
TwinGene participants ranged from 41 to 87 years. Dur-
ing the GWAS meta-analysis, covariate adjustments were 
made for age, sex, assessment center, and the genotyping 
array. The GWAS summary data for the FP was obtained 
from the study conducted by Ye et al., involving 386,565 
individuals of European ancestry from the UK Biobank 
[31]. The GWAS summary statistics are compiled in Sup-
plementary Table 2.

Selection of genetic instruments
This study entailed the selection of single nucleotide 
polymorphisms (SNPs) that exhibited a significant asso-
ciation with RC, FI, or FP (P < 5 × 10−8), and independent 
segregation (R2 < 0.001, within a 5000  kb window), with 
no evidence of linkage disequilibrium (LD). A clump-
ing algorithm employed, referencing the 1000 genomes 
panel, to identify and exclude SNPs displaying LD. Fur-
thermore, SNPs demonstrating palindrome alleles (A/T 
or G/C), which could potentially lead to strand ambigu-
ity issues, were excluded from the study. The F-statistic 
was computed using a formula outlined in prior research, 
and SNPs demonstrating an F-statistic exceeding 10 were 
deemed as strong genetic instrumental variables (IVs) for 
RC level, consistent with the Staiger-Stock rule [32, 33].

Statistical analysis of observational epidemiological study
All analyses were performed using sampling weights, 
strata, and primary sampling units to ensure the deriva-
tion of nationally representative estimates. To circum-
vent the reduction in sample size attributable to missing 
covariate data, these gaps were filled in using the miss-
Forest method within the missForest R package. Spear-
man rank correlation coefficient tests were conducted to 
analyze the correlation between LDL-C values as calcu-
lated by different formulas.

Logistic regression analyses were employed to deter-
mine the association between RC, RC-to-TC ratio, RC-
to-LDL-C ratio, and the likelihood of frailty. Further, FI, 
treated as a continuous outcome variable, was included 
in the linear regression model for subsequent re-anal-
ysis. We utilized two different methods to correct for 
the influence of confounding factors. The presence of 
multicollinearity was verified using the generalized 
variance inflation factor (GVIF), with variables exhibit-
ing a GVIF > 10 excluded from the model. Three mod-
els were fitted in a stepwise manner. Model 1 adjusted 
for age (continuous), gender (female and male), ethnic-
ity (white, black, or other), education level (below high 
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school, or high school and above), family income (poor, 
near poor, or non-poor), and marital status (non-mar-
ried or married). Model 2 accommodated the variables 
in model 1 and also adjusted for smoking status (never, 
former, or current) and HEI-2015 (quartile). Model 3 
incorporated the variables from model 2 and further 
adjusted for BMI (continuous), SBP (continuous), DBP 
(continuous), eGFR level (≥ 90, 60 to 89, and < 60  mL/
min per 1.73 m2), CVD (no or yes), T2DM (no or yes), 
statins use (no or yes), anti-diabetic drug use (no or 
yes), and anti-hypertensive drug use (no or yes). For 
RC, model 4 was created, which included TC (continu-
ous) and LDL-C (continuous) adjustments in addition 
to the variables in model 3. Secondly, a 1:1 propensity 
score matching (PSM) method was employed to con-
trol for potential confounding variables, considering all 
variables in model 3 and sampling weights. The near-
est-neighbor matching was conducted within a caliper 
of 0.05 on the propensity score scale, using the MatchIt 
R package. Lastly, to model a potential dose–response 
relationship of RC with frailty, the restricted cubic 
splines (RCS) with three knots were applied.

The relationship between RC, the RC-to-TC ratio, 
and the RC-to-LDL-C ratio with the likelihood of frailty 
was scrutinized in various demographic subgroups. 
These were divided by age (< 60 and ≥ 60 years), gender 
(female and male), BMI (< 30 and ≥ 30  kg/m2), eGFR 
level (≥ 90, 60 to 89, and < 60  mL/min per 1.73 m2), 
presence of CVD or T2DM (no or yes), and hyperten-
sion (no or yes) in the logistic models. Hypertension 
was defined as SBP ≥ 140  mmHg, DBP ≥ 90  mmHg, or 
current utilization of anti-hypertensive medications. 
The multiplicative interaction and the determination of 
effect size variations among different population sub-
groups were assessed via likelihood ratio tests.

Complementary sensitivity analyses were conducted. 
Firstly, the association of RC with frailty was re-eval-
uated excluding heart failure, coronary heart disease, 
angina, heart attack, stroke, and T2DM from the FI. 
Subsequently, differing strategies for managing missing 
values were employed for sensitivity analysis, encom-
passing direct deletion of missing values and multiple 
imputation. Ten complete datasets were synthesized via 
multiple imputation using the mice R package. Given 
the intricate sampling design, results were consolidated 
in accordance with Rubin’s rule, utilizing the survey 
and mitools R packages in R. Finally, the results gener-
ated using the Friedewald equation and Sampson equa-
tion were juxtaposed with the principal results.

All computations were conducted using R and 
RStudio software. To correct for the three tested 
null-hypotheses, Bonferroni adjustment was applied 

(Bonferroni: 0.05/3 = 0.017). A P-value < 0.017 was con-
sidered as being statistically significant.

Mendelian randomization analysis
The causal effect of RC on the FI or FP was assessed 
employing the multiplicative random-effects inverse-
variance weighted (IVW) method, undeterred by het-
erogeneity statistics. Additional MR methods, including 
weighted median, MR-Egger, simple median, and MR 
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 
were incorporated into the data analysis process. Reverse 
direction MR was conducted to evaluate any pre-existing 
reverse-direction causal association. The MR-Steiger 
directionality test was employed to validate causality 
directionality [34]. Multivariable MR, facilitated by the 
IVW method, was utilized to estimate the direct causal 
impact of RC on the FI, incorporating adjustments for 
TC, LDL-C, BMI, CHD, HF, stroke, T2DM, SBP, and 
DBP. The execution of these methods relied on the Two-
SampleMR (version 0.5.6) [35] and MRPRESSO (version 
1.0) R packages [36].

Three strategies were implemented to test for poten-
tial pleiotropy. First, the intercept test from MR-Egger 
regression served as the principal method to identify 
directional pleiotropy. The PhenoScanner web tool was 
utilized next, aiming to identify SNPs linked to poten-
tial confounders; such SNPs were then extracted from 
the IVs before re-analysis of the primary results [37]. 
The MR-PRESSO test was subsequently employed to 
identify and rectify horizontal pleiotropy through the 
MRPRESSO (version 1.0) R package [36]. Heterogene-
ity was quantified using the Cochran’s Q Statistic and I2 
value, supported by visual assessment via funnel plot. 
After removing SNPs resulting in the heterogeneity, the 
main results were re-analyzed. After SNPs contributing 
to heterogeneity were removed, the primary results were 
revisited. The MRlap (version 0.0.3.0) R package was used 
to account for and rectify potential bias induced by sam-
ple overlap [38].

Results
Observational epidemiological analysis for association 
of RC with frailty
The study incorporated a total of 11,838 participants as 
delineated in Fig. 1. Given the sampling design, this rep-
resents a potential sampling of 58.32 million. A summary 
of the population characteristics is presented in Table 1. 
The participants’ average age was 59 (standard deviation 
[SD] 11.90), with 52.43% (6,059) being female. The aver-
age FI was 0.160 with a standard deviation of 0.002, and 
24.88% of participants were categorized as frail according 
to the FI. Frail participants, in comparison to non-frail 
participants, were found to be older, with a higher BMI, 
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higher SBP, lower DBP, lower eGFR, lower HEI-2015, 
and had a higher prevalence of CVD or T2DM. Correla-
tion tests using Spearman method identified a significant 
positive correlation between LDL-C as determined by 
the Martin-Hopkins equation and the Friedewald equa-
tion (Spearman correlation = 0.988, P < 2.2E-16), as well 
as the Sampson equation (Spearman correlation = 0.998, 
P < 2.2E-16), as depicted in Supplementary Fig. 1.

Upon adjusting for potential confounders, the study 
found a positive correlation between elevated serum 
RC levels and frailty as determined by FI (Fig.  2). In 
particular, the adjusted odds ratio (OR) of frailty for 
RC (calculated by the Martin-Hopkins equation) was 
determined as 1.67 (95% CI = 1.20 to 2.33, P = 0.003). A 
1 mmol/L increase in serum levels of RC was associated 
with a 0.017 unit increase in continuous FI (β = 0.017 
per 1  mmol/L increase in RC levels, 95% CI = 0.008 to 
0.026, P = 4.51E-04). No multicollinearity was detected 
among the independent variables in model 3, as con-
firmed by the GVIF values (Supplementary Table 3). The 
relationship remained statistically significant after fur-
ther adjusting for total cholesterol and LDL-C (model 4; 
Fig. 2). PSM achieved a satisfactory balance between the 
covariates in non-frail and frail groups (Supplementary 

Table  4), and RC maintained a significant correlation 
with the likelihood of frailty (OR = 1.53 per 1  mmol/L 
increase in RC levels, 95% CI = 1.14 to 2.06, P = 0.005). 
Nevertheless, there was no notable correlation detected 
between higher serum levels of RC and frailty as defined 
by FP (OR = 1.32 per 1 mmol/L increase in RC levels, 95% 
CI = 0.87 to 2.01, P = 0.192), as shown in Supplementary 
Table  5. Additionally, our study revealed a positive cor-
relation between elevated levels of the RC-to-TC ratio, 
the RC-to-LDL-C ratio, and frailty as defined by both FI 
(Fig. 2) and FP (Supplementary Table 5).

Figure  3 depicts the use of restricted cubic splines to 
illustrate the dose–response association between serum 
RC levels and the likelihood of frailty. The findings 
indicate that the dose–response relationship of serum 
RC levels (non-linear P = 0.011) and the RC-to-LDL-
C ratio (non-linear P = 6.00E-04) with frailty displayed 
non-linearity. Conversely, the relationship between the 
RC-to-TC ratio and the likelihood of frailty was linear 
(non-linear P = 0.620). Two-segment piecewise regres-
sion models with inflection point of the curve were fitted 
to quantify the effect of RC above and below the inflec-
tion point. Importantly, the likelihood of frailty remained 
relatively constant until approximately 0.55  mmol/L of 

Fig. 1  Flowchart of Participant Inclusion and Exclusion
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Table 1  Population characteristics across frailty status

Characteristics Total
(N = 17,052)

Non-Frailty
(N = 13,233)

Frailty
(N = 3819)

P-value

Age, years 59 (11.90) 57 (11.46) 63 (12.38) 2.05E-30

Gender 1.16E-18

  Female 6059 (52.43%) 3973 (49.31%) 2086 (61.84%)

  Male 5779 (47.57%) 4282 (50.69%) 1497 (38.16%)

Ethnicity 2.63E-13

  White 5545 (73.78%) 3869 (75.30%) 1676 (69.17%)

  Black 2389 (9.60%) 1520 (8.18%) 869 (13.90%)

  Other 3904 (16.62%) 2866 (16.52%) 1038 (16.93%)

Education level 2.66E-22

  Below High School 3397 (17.66%) 2043 (14.39%) 1354 (27.54%)

  High School and above 8441 (82.34%) 6212 (85.61%) 2229 (72.46%)

Marital status 2.49E-18

  Non-Married 5056 (37.01%) 3143 (33.09%) 1913 (48.86%)

  Married 6782 (62.99%) 5112 (66.91%) 1670 (51.14%)

Family income 8.30E-50

  Poor 2012 (10.47%) 1108 (7.55%) 904 (19.27%)

  Near poor 3375 (19.96%) 2048 (16.06%) 1327 (31.75%)

  Non-poor 6451 (69.57%) 5099 (76.39%) 1352 (48.98%)

Smoking status 2.33E-15

  Never 5980 (50.35%) 4392 (53.18%) 1588 (41.78%)

  Former 3703 (31.48%) 2495 (30.78%) 1208 (33.61%)

  Current 2155 (18.17%) 1368 (16.04%) 787 (24.61%)

BMI, kg/m2 29 (6.64) 29 (6.05) 31 (7.86) 1.81E-21

SBP, mmHg 126 (18.40) 125 (17.69) 129 (20.06) 1.41E-15

DBP, mmHg 70 (11.69) 71 (11.18) 68 (12.88) 7.33E-16

HEI-2015 1.07E-12

  Quartile 1 2960 (26.04%) 1929 (24.80%) 1031 (29.78%)

  Quartile 2 2959 (24.67%) 1961 (23.65%) 998 (27.75%)

  Quartile 3 2959 (24.49%) 2108 (24.36%) 851 (24.89%)

  Quartile 4 2960 (24.80%) 2257 (27.20%) 703 (17.58%)

eGFR, ml/min per 1.73 m2 4.68E-46

  ≥ 90 5104 (43.56%) 3895 (45.87%) 1209 (36.60%)

  60 to 89 5106 (45.58%) 3633 (47.14%) 1473 (40.90%)

  < 60 1628 (10.85%) 727 (7.00%) 901 (22.50%)

Type 2 DM 2188 (13.96%) 883 (8.15%) 1305 (31.49%) 8.66E-49

CVD 2100 (14.75%) 692 (7.81%) 1408 (35.69%) 1.57E-52

Statins use 3296 (26.63%) 1830 (21.86%) 1466 (41.01%) 4.36E-26

Anti-diabetic drug use 2012 (13.20%) 837 (8.11%) 1175 (28.56%) 1.62E-43

Anti-hypertensive drug use 1122 (8.49%) 680 (7.45%) 442 (11.62%) 2.61E-08

TG, mg/dl 109 (76, 158) 105 (74, 153) 121 (86, 175) 1.54E-15

TC, mg/dl 197.94 (41.36) 200.41 (39.95) 190.49 (44.51) 8.45E-16

HDL-C, mg/dl 55.64 (17.05) 56.41 (16.85) 53.33 (17.43) 2.84E-10

LDL-C, mg/dl

  Martin-Hopkins 118.97 (35.72) 121.10 (34.57) 112.54 (38.28) 9.28E-16

  Friedewald 117.17 (36.32) 119.70 (35.11) 109.53 (38.77) 3.83E-19

  Sampson 119.71 (36.29) 122.14 (35.17) 112.38 (38.57) 5.84E-18

RC, mg/dl

  Martin-Hopkins 23.33 (8.92) 22.90 (8.69) 24.62 (9.47) 2.45E-10

  Friedewald 25.13 (13.51) 24.30 (13.08) 27.63 (14.45) 1.54E-15



Page 7 of 12Hu et al. Lipids in Health and Disease          (2023) 22:115 	

RC (OR = 1.47 per 1 mmol/L increase in RC levels, 95% 
CI = 0.40 to 5.43, P = 0.564) before observing a swift 
increase (OR = 2.83 per 1 mmol/L increase in RC levels, 
95% CI = 1.54 to 5.20, P = 0.001; Supplementary Table 6). 
Conversely, the likelihood of frailty amplified until 

around 0.25 (OR = 1.38 per 1 mmol/L increase in RC lev-
els, 95% CI = 1.17 to 1.63, P = 2.91E-04), after which the 
increase plateaued (OR = 1.06 per 1 mmol/L increase in 
RC levels, 95% CI = 0.90 to 1.25, P = 0.468), as displayed 
in Supplementary Table 6.

Table 1  (continued)

Characteristics Total
(N = 17,052)

Non-Frailty
(N = 13,233)

Frailty
(N = 3819)

P-value

  Sampson 22.59 (11.79) 21.86 (11.45) 24.78 (12.49) 3.90E-17

RC to TC Ratio, %
  Martin-Hopkins 11.15 (8.86, 14.31) 10.71 (8.61, 13.74) 12.47 (9.92, 15.51) 1.91E-28

  Friedewald 11.21 (7.93, 16.17) 10.63 (7.62, 15.36) 13.27 (9.44, 18.39) 4.44E-28

  Sampson 10.30 (7.39, 14.56) 9.74 (7.04, 13.83) 12.13 (8.75, 16.38) 2.45E-29

RC to LDL-C Ratio, %
  Martin-Hopkins 18.78 (14.95, 24.31) 17.95 (14.40, 23.27) 21.32 (16.93, 27.39) 1.49E-33

  Friedewald 18.81 (13.15, 28.14) 17.65 (12.50, 26.35) 22.74 (16.06, 33.69) 3.35E-33

  Sampson 17.15 (12.16, 24.86) 15.99 (11.51, 23.47) 20.70 (14.80, 29.47) 5.77E-34

Notes: Percentages, Mean value, and Standard deviation were weighted and accounted for the complex sampling design. Sample size was unweighted. BMI Body 
mass index RC Remnant cholesterol, TC Total cholesterol, LDL-C Low-density lipoprotein cholesterol, HEI-2015 Healthy Eating Index-2015, CVD Cardiovascular disease, 
DM Diabetes mellitus, eGFR Estimated glomerular filtration rate, SBP Systolic blood pressure, DBP Diastolic blood pressure

Fig. 2  Forest Plot for Association of RC, RC-to-TC ratio, and RC-to-LDL-C ratio with the Frailty. The value of LDL-C was calculated using 
the Martin-Hopkins equation. Model 1 adjusted for age (continuous), gender (female and male), ethnicity (white, black, or other), education level 
(below high school, or high school and above), family income (poor, near poor, or non-poor), and marital status (non-married or married). Model 
2 adjusted for the variables in model 1 plus smoking status (never, former, and current) and HEI-2015 (quartile). Model 3 adjusted for the variables 
in model 2 plus BMI (continuous), SBP (continuous), DBP (continuous), eGFR level (≥ 90, 60 to 89, and < 60 ml/min per 1.73 m2), CVD (no or yes), DM 
(no or yes), statins use (no or yes), anti-Diabetic drug use (no or yes), and anti-Hypertensive drug use (no or yes). Model 4 adjusted for the variables 
in model 3 plus TC (continuous) and LDL-C (continuous). OR, odds ratio; CI, confidence interval; RC, remnant cholesterol; TC, total cholesterol; LDL-C, 
low-density lipoprotein cholesterol
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Subgroups and sensitivity analyses
The directionality of effect estimates across all evaluated 
subgroups aligned with the overall outcomes (Fig. 4 and 
Supplementary Fig.  2). Of significance was the associa-
tion between serum levels of RC and the likelihood of 
frailty, which demonstrated statistical significance irre-
spective of age subgroup: OR of 2.44 (95% CI = 1.41 to 
4.22, P = 0.002) for middle-aged adults (< 60  years), and 
1.56 (95% CI = 1.02 to 2.40, P = 0.042) for older adults 
(≥ 60 years). Corresponding trends were observed for the 
RC-to-TC ratio and RC-to-LDL-C ratio (Supplementary 
Fig. 2). No significant interactions were detected (Fig. 4 
and Supplementary Fig. 2).

Three distinct sensitivity analyses were conducted to 
verify the robustness of the principal findings. First, the 
association of RC levels with frailty, as determined by the 
modified FI, was verified (Supplementary Table  7). Sec-
ond, missing data were addressed via two methods, direct 
deletion and multiple imputation, confirming that the 
associations of RC, RC-to-TC ratio, and RC-to-LDL-C 

ratio with the likelihood of frailty remained consist-
ent irrespective of the method applied (Supplementary 
Table 8 and Supplementary Table 9). Lastly, the congru-
ence between the results drawn from Friedewald and 
Sampson equations with the primary findings was estab-
lished (Supplementary Table  10 and Supplementary 
Fig. 3).

Mendelian randomization analysis for causal association 
of RC with frailty
A total of 51 RC-related, 16 FI-related, and 36 FP-
related SNPs, all with F-statistics exceeding 10, were 
employed as genetic instrumental variables (Supplemen-
tary Tables  11–13). The multiplicative random-effects 
IVW analysis illuminated a positive correlation between 
the genetically inferred heightened level of RC and an 
increase in FI (β = 0.059 per 1  mmol/L increase in RC 
levels, 95% CI = 0.033 to 0.085, P = 1.05E-05; Table  2). 
However, no causal associations between RC and FP were 
found (Supplementary Table 14).

Fig. 3  Restricted Cubic Spline Curves for Association of RC with the Frailty. (A) Association of RC with the likelihood of frailty, (B) Association 
of RC to TC ratio with the likelihood of frailty, (C) Association of RC to LDL-C ratio with the likelihood of frailty. (D) Association of RC with the FI, (E) 
Association of RC to TC ratio with the FI, (F) Association of RC to LDL-C ratio with the FI. The models adjusted for age (continuous), gender (female 
and male), ethnicity (white, black, or other), ethnicity (white, black, or other), education level (below high school, or high school and above), 
marital status (non-married or married), smoking status (never, former, and current), HEI-2015 (quartile), BMI (continuous), SBP (continuous), DBP 
(continuous), eGFR level (≥ 90, 60 to 89, and < 60 ml/min per 1.73 m2), CVD (no or yes), DM (no or yes), statins use (no or yes), anti-Diabetic drug 
use (no or yes), and anti-Hypertensive drug use (no or yes). For RC, the model additionally adjusted for TC (continuous) and LDL-C (continuous). OR, 
odds ratio; CI, confidence interval; RC, remnant cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol
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The multivariable MR analysis substantiated a direct 
effect of RC on FI. Following adjustment for TC and 
LDL-C via multivariable MR, the results maintained 
alignment with the principal findings (β = 0.086 per 
1  mmol/L increase in RC levels, 95% CI = 0.012 to 
0.161, P = 0.024; Table 3). The associations of RC with FI 
remained stable, irrespective of adjustment for CHD, HF, 
stroke, T2DM, BMI, SBP, or DBP (Table 3).

Fig. 4  Forest Plot for Subgroup Analyses of the Association Between RC and Frailty. Adjusted for age (continuous), gender (female and male), 
ethnicity (white, black, or other), education level (below high school, or high school and above), marital status (non-married or married), smoking 
status (never, former, and current), HEI-2015 (quartile), BMI (continuous), SBP (continuous), DBP (continuous), eGFR level (≥ 90, 60 to 89, and < 60 ml/
min per 1.73 m2), CVD (no or yes), DM (no or yes), statins use (no or yes), anti-Diabetic drug use, anti-Hypertensive drug use, TC (continuous), 
and LDL-C (continuous), except the subgroup variable. P-value for interaction was corrected for false discovery rate (FDR)-based multiple hypothesis 
testing. *, < 0.05; **, < 0.01; ***, < 0.001

Table 2  Bidirectional MR analyses for the association between 
RC and FI

Notes: The effect size (β) is per 1 mmol/L increase in RC. IVW Inverse-variance-
weighted, MR-PRESSO Mendelian Randomization-Pleiotropy RESidual Sum and 
Outlier, CI Confidence interval, RC Remnant cholesterol, FI Frailty index. *, < 0.05; 
**, < 0.01; ***, < 0.001

Methods β (95% CI) P-value

Effect of RC on FI
  IVW 0.059 (0.033, 0.085) 1.05E-05***

  MR-Egger 0.058 (0.015, 0.100) 0.011*

  Weighted median 0.063 (0.032, 0.093) 5.18E-05***

  Simple median 0.083 (0.050, 0.117) 1.61E-06***

  MR-PRESSO 0.059 (0.033, 0.085) 5.67E-05***

  MRlap 0.061 (0.036, 0.086) 9.81E-07***

Effect of FI on RC
  IVW -0.140 (-0.293, 0.014) 0.075

  MR-Egger -0.989 (-1.477, -0.502) 0.001**

  Weighted median -0.137 (-0.300, 0.025) 0.113

  Simple median -0.079 (-0.235, 0.077) 0.358

  MR-PRESSO -0.140 (-0.293, 0.014) 0.095

  MRlap 0.030 (-0.170, 0.230) 0.772

Table 3  Multivariable MR analyses for the Causal Effect of RC on 
FI

Notes: The effect size (β) is per 1 mmol/L increase in RC. LDL-C Low-density 
lipoprotein cholesterol, TC Total cholesterol, T2DM Type 2 diabetes mellitus, HF 
Heart failure, BMI Body mass index. *, < 0.05; **, < 0.01; ***, < 0.001

Adjustment β (95% CI) P-value

TC and LDL-C 0.086 (0.012, 0.161) 0.024*

CHD 0.032 (0.006, 0.058) 0.001**

HF 0.043 (0.018, 0.067) 5.67E-04***

Stroke 0.051 (0.025, 0.076) 9.05E-05***

T2DM 0.068 (0.027, 0.108) 0.001**

BMI 0.069 (0.031, 0.107) 2.11E-04***

SBP 0.047 (0.021, 0.073) 4.30E-04

DBP 0.041 (0.015, 0.067) 0.002**
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Furthermore, the accuracy of the inferred causal direc-
tion was verified using the MR-Steiger test for direc-
tionality. In addition, no significant causal effect of FI 
on RC was noted (Table 2). The MRlap analysis compar-
ing observed and corrected effects affirmed consistency 
(Table 2).

High statistical heterogeneity was observed among 
individual SNP estimates in the analysis of FI (IVW, 
Cochran’s Q Statistic = 95.04, I2 = 47.39%, P = 1.27E-04; 
MR-Egger, Cochran’s Q Statistic = 95.03, I2 = 48.44%, 
P = 8.92E-05) and FP (IVW, Cochran’s Q Statistic = 88.18, 
I2 = 60.31%, P = 1.76E-06; MR-Egger, Cochran’s Q Statis-
tic = 87.78, I2 = 61.27%, P = 1.22E-06). Funnel asymme-
try was suggested by the visual inspection of the funnel 
plot (Supplementary Fig. 4). Upon removal of heteroge-
neity-associated SNPs (rs653178, rs9682783, rs102275, 
and rs6601299), heterogeneity was eliminated (IVW, 
Cochran’s Q Statistic = 61.26, I2 = 24.91%, P = 0.065; 
MR-Egger, Cochran’s Q Statistic = 0.054, I2 = 26.53%, 
P = 0.054), while the causal association maintained sig-
nificance (Supplementary Table 15).

MR-Egger intercept test provided no evidence for 
directional pleiotropy in assessing the causal association 
of RC with FI (Egger intercept = 7.55 × 10–5, P = 0.954). 
Utilizing the PhenoScanner tool, three SNPs (rs12916, 
rs4876611, and rs653178) that had associations with 
potential confounders (BMI, SBP, and/or DBP) were 
identified in the publicly available summary-level GWAS 
data. An additional sensitivity analysis was conducted, 
excluding these SNPs and the four previously men-
tioned SNPs, which yielded similar results of all MR 
methods (Supplementary Table  16) and no significant 
heterogeneity was detected (IVW, Cochran’s Q Statis-
tic = 58.05, I2 = 24.21%, P = 0.076; MR-Egger, Cochran’s 
Q Statistic = 57.89, I2 = 25.73%, P = 0.064; Supplementary 
Table 16).

Discussion
This study determined that higher establishes a correla-
tion between elevated RC levels and an increased sus-
ceptibility to frailty among middle-aged and older adults. 
Both observational and MR studies corroborate this, 
with sensitivity analysis further strengthening the valid-
ity of the findings. Additionally, a threshold effect was 
observed in the relationship between RC and frailty.

The Rookwood frailty index and the Fried frailty 
phenotype are the two most commonly employed 
instruments for identifying frailty. The results of the 
observational analysis indicated a consistent trend in the 
effects of both the FI and the FP. However, the MR analy-
sis revealed no significant association between RC and 
FP. These findings align with those reported in a recent 
study [39]. While the converging evidence for risk factors 

between the two measurements is regarded as indica-
tive of validity, the two measurements should be deemed 
complementary but not equivalent [40, 41]. The FP pri-
marily focuses on physical functioning, whereas the FI 
encompasses accumulation of health deficits, such as 
coronary heart disease, angina, heart attack, stroke, and 
T2DM. Furthermore, the sensitivity analysis of modified 
FI, excluding items related to cardiometabolic disease, 
suggested high levels of serum RC might contribute to a 
high burden of multimorbidity in middle-aged and older 
adults.

Despite a lack of direct epidemiological evidence link-
ing serum circulating RC levels to frailty, recent MR 
studies have spotlighted the influential role of elevated 
LDL-C levels in inducing frailty [9]. Substantial increases 
in RC levels have been documented in adults consuming 
high-fat diets [42]. The same diets administered to mice 
resulted in a heightened frailty level [43], while simulta-
neously diminishing the anti-frailty benefits of intermit-
tent fasting [44]. Consequently, this indirect evidence 
suggests a connection between higher RC levels and a 
heightened frailty risk, which this study substantiates.

Although increased serum RC levels are regarded as 
a potent independent risk factor for CVD [45, 46], this 
analysis reveals that the association between serum RC 
levels and frailty persists, even after adjusting for CVD 
and T2DM. This suggests that the contribution of RC to 
frailty risk is not exclusively attributed to a higher suscep-
tibility to CVD. Furthermore, the results from our epi-
demiological studies and multivariable MR confirm that 
this association remains significant, regardless of total 
cholesterol or LDL-C levels.

Individuals exhibiting high RC levels, and therefore 
a greater frailty risk, should be promptly identified and 
intervened, especially those with underlying cardio-
metabolic conditions such as coronary heart disease and 
diabetes. The findings suggest that RC is a risk factor 
for frailty, which should urge clinicians and research-
ers to prioritize attention toward such individuals. This 
becomes particularly vital as statin therapy, commonly 
used to lower LDL-C and prevent cardiovascular inci-
dents, has minimal effect on reducing RC. As such, 
focusing on managing elevated RC levels is critical to 
counteract its potential role in accelerating aging and 
frailty.

Strengths and limitations
This study offers multiple points of strength. This study 
is the first to investigate the correlation between RC and 
frailty among non-institutionalized middle-aged and 
older adults. While the cross-sectional design of the 
observational data inherently restricts causal interpreta-
tion, efforts have been undertaken to strengthen causal 
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inferences through the robustness of MR analysis. Fur-
thermore, this study has found an association of the pro-
portion of RC to TC or LDL-C with frailty, underscoring 
a saturation effect.

Conversely, this research also exhibits certain limita-
tions that warrant acknowledgment. The LDL-C levels 
reported in the observational study were not direct meas-
urements but rather, estimated values, thereby introduc-
ing potential measurement bias. However, this risk has 
been mitigated by employing three different equations 
to predict LDL-C levels and subsequently comparing the 
results. Additionally, the study’s reliance on NHANES 
data that predominantly features individuals of white 
ancestry could potentially restrict the broader applica-
bility of the findings to diverse populations. Another 
limitation pertains to the non-linear MR design, which 
was constrained by the unavailability of individual-level 
GWAS data that is publicly accessible. Lastly, the FI uti-
lized in this research was dependent on self-reported 
data, a factor that could lead to potential reporting bias.

Conclusion
To summarize, this research, through a combined obser-
vational and MR study, provides compelling evidence 
that an elevated RC level amplifies the risk of frailty in 
middle-aged and older adults. Interventions aimed at 
decreasing RC levels and the proportion of RC to TC or 
LDL-C could potentially confer benefits in the preven-
tion and management of frailty. This underscores the 
importance of developing innovative therapies aiming at 
reducing the risk of frailty.
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