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ABSTRACT: Using literature on materials science, one often encounters the notion of the
Hubbard model HM. Although frequently used in calculations, the HM still remains somewhat
mysterious. The aim of this paper is to present a mini-review of the HM for the nonspecialized
readers. The HM has become a complex research subject. Therefore, this paper will be limited
to those aspects of the model with which the author has had research contact. The first section
is devoted to the basics of the HM. The following part is devoted to thermodynamics and
electrical conductivity. Reflectivity of the HM is then defined and briefly discussed. Examples of
results concerning conductivity and reflectivity are treated next. The paper ends with a few
comments.

■ INTRODUCTION
In the first decade of the last century several important
experimental problems arose, which could not be explained by
classical physics. These ”problems” gave rise to what is now
called old quantum theory. Theoretical work in the 1920s led to
the formulation of quantum mechanics and its applications in
atomic and condensed matter physics. Around the first half of
the last century, one of the big unsolved problems of condensed
matter physics was the quest for the theory of the metal to
insulator transition (M → I). It was shown around 1928/29 that
metals have partially filled energy bands and that the insulators
have completely filled bands. Work performed a short time after
that showed that there exist transition metal oxides, which have
partially filled bands but, at the same time, are bad conductors. It
was shown that this is due to electron−electron correlations. As
a consequence of this interaction, an insulating state called the
Mott insulator could be formed.

Near the middle of the last century, John Hubbard, a physicist
from Britain, began work on the problem of the metal to
insulator transition. He wrote a series of six papers on the (M →
I) problem. These papers later became known as the Hubbard
model (HM).1 Personally, Hubbard was a brilliant, discreet man
who died early. The main facts of his biography can be found at
the address theor.jinr.ru/∼kuzemsky/hubbio2.html.

In general terms, the Hamiltonian of the HM has the
following form:

H H H0 I= + (1)

where the first term is the kinetic energy termH0, and the second
one is the interaction term HI. The kinetic term describes the
hopping of the electrons, while the second term is ”responsible”
for the mutual interaction of electrons in lattice nodes. It may

seem strange, but in spite of the fact that the HM was proposed
more than 60 years ago, it has so far been solved only for the 1D
case.2

Why is that so? The difficulty is that the dimension of the
Hilbert space needed to describe a system of N particles
increases exponentially with N. Solving a model is defined as
obtaining results for an observable of physical interest but to an
accuracy better than comparable calculations or experiment.3

Results concerning the 2D HM can be obtained from those in
1D by a suitable transition. Apart from those purely academic
motivations for work on 1D and 2D materials, there is also the
fact that there exist many real 1D and 2D materials, with various
applications.

This paper is divided into several sections. The next one
contains the basics of the HM. The following part is devoted to
thermodynamics and electrical conductivity, where reflectivity
of the HM is briefly touched upon. Examples of results
concerning the conductivity and reflectivity are discussed next.
The paper ends with a few comments. Any reader interested in
details on the 1D HM is advised to consult ref 4.

■ THE HUBBARD MODEL
The Basics. The Hamiltonian of the HM is given in eq 1. In

two dimensions, using the formalism of second quantization,
this Hamiltonian can be expressed as
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The symbols i and j denote different ions in a lattice, while μ, ν
denote different orbitals in ions. In the case of a 1D system, and
introducing two simplifying assumptions proposed by Hub-
bard,1 the Hamiltonian of the HM has the following form
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Symbols of the form cl,σ
+ denote a creation operator for an

electron having spin σ on lattice site l, while cl+1,σ is the
annihilation operator for an electron at lattice site l + 1 with spin
σ. All the other symbols in this equation have their standard
meanings: t is the electron hopping energy, and U is the
interaction energy of a pair of electrons having opposite spins
within an atom on lattice site l. The symbol nl,↑ denotes the ratio
of the number of electrons on a given site with upward spin with
the total number of spins.

Thermodynamics. Once the Hamiltonian of a system has
somehow been determined, further work can proceed along one
of the following two directions. One of them is oriented toward
the phase diagram and thermodynamical potentials of the
system, while the other direction is oriented toward the study of
transport processes. In order to obtain the phase diagram, one
must at first calculate (or estimate) the free energy of the system
under study. An interesting approach to this calculation is given
in ref 5, where a lower bound to the free energy of the HM has
been determined. It was shown in that paper that the free energy
of the HM fulfills the inequality

F F Fkin HM C (4)

where
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N N
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In these and the following equations, the symbol β denotes
the inverse temperature. In more recent times, exact results for
the free energy of the 2D HM were obtained in ref 6.

The Electrical Conductivity. An important and measurable
characteristic of any system is its electrical conductivity. In
principle, it can be calculated in several ways: using the Green’s
functions, Kubo‘s formulas, and the “memory function”
approach MF. The results on the electrical conductivity
presented later in this paper were obtained by the memory
functionmethod,7 which was developed in the 1970s as a follow-
up to previous work by Kubo.13 The aim of this theory is to
develop a scheme for the calculation of the kinetic coefficients
for quantities such as the electrical and thermal conductivity.
Kubo has shown that this calculation can be performed as a
calculation of time correlation functions in equilibrium. From
the viewpoint of pure theory, Kubo’s theory solves the
problem�it gives formal expressions for the required physical
quantities. However, the expressions it gives are far too complex

for application to real materials. The main equations of the MF
are the following7

z A B i izt A t B t( ) ; exp ( ), (0) dAB 0
= = [ ]

(7)

whereA = B = [j,H], j denotes the current operator and χAB(z) is
the generalized susceptibility. The conductivity is
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The symbol P denotes the polarization operator, defined by

P R n
i

i i=
(9)

where Ri is the position of lattice point i and ni is the number
density of particles at lattice point i. The current operator is
defined as follows:9

j
t

P i H P,= = [ ]
(10)

The symbol ωP denotes the plasma frequency, which is given
by ωP

2 = 4πe2n/m and where e, n, and m are the electron charge,
number density, and mass, respectively. In the special case of a
1D model, the current operator has the form

j it c c c c( )l l l l, 1, 1, ,= +
+ +

+
(11)

The final expression for the electrical conductivity of a 1D
system is within the memory function method given by ref 8:
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2
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(12)

and the symbol S denotes the following function:
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where b = −4 × [1 + cos(1 − π)], μ denotes the chemical
potential of the electron gas on a 1D lattice, s is the lattice
constant, and L = N × s is the length of the specimen. The
imaginary part of the conductivity is given by
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Expressions presented so far refer to 1D systems. The symbol
β denotes the inverse temperature. In the case of a rectangular
lattice, as discussed in ref 10, the conductivity can be calculated
by a simple expression

x y
2 2 2= + (16)
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The chemical potential of the electron gas on a 1D lattice is
given by8

t ns t
t t

( ) ( 1)
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+ + (17)

where n is the filling factor of the lattice, N the number of sites in
the lattice, and b a numerical constant.

Figure 1 shows the dependence of the real conductivity of a
1D material on the temperature under different values of n. The

maxima of the three curves presented are all attained at
approximately similar values of the temperature. Once the
electrical conductivity is known, the next logical step is the
calculation of the reflectivity. The reflectivity of a material is
defined as the ratio of the reflected flux of light to the incoming
flux. It is known in medical practice that various equipment used
in the treatment of patients is sensitive to incoming flux. Broadly
speaking, the reflectivity depends on the frequency of the
incoming radiation and material parameters. This calculation is
in principle an easy task, as it can be performed by using the
Kramers−Kronig relations. This opens the possibility of
determining the region of parameter space in which the material
is weakly visible or invisible. For details, see ref 11.

Introduction of the Strain. The notion of the strain in the
case of a 1D object is very simple. If an object of length s0 is
expanded to length s, then the strain to which it is exposed is
defined as the ratio

s s
s

0

0
=

(18)

Studying the influence of variable strain on a material is of
both physical and mathematical interest. Physically, varying the

strain to which a specimen is subdued opens up a new region in
its parameter space. This, in turn, can be useful for work on
materials under naturally and artificially variable strain. The
interest of studies of materials under variable strain appears, for
example, in medicine. It is known in clinical practice that various
equipment gets subdued to stress. Manufacturing artificial body
parts, like electronic skin, poses the same problem.12 Mathemati-
cally speaking, variable strain introduces one more variable in
the equation of state of a material.

■ EXAMPLES OF RESULTS
This section contains various examples of results obtained by
using the HM, taken from previous work of the present author
(such as refs 8 and 9).

Normalization and Values of Parameters. In the
remainder of this paper, the following question: ”If a low
dimensional material is exposed to a change of external
conditions to which it is subdued, how do its reflectivity and
conductivity change?” will be addressed.

The conductivity will be normalized to σr = 1 at the following
point: n0 = 0.9, ϵ0 = 0, t0 = 0.02 eV, and T = 116 K. Due to the
influence of strain, all the parameters of a material within the
HM are strain dependent. As discussed in ref 10, the strain
dependence of the hopping can be represented by the following
expression:
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In line with previous work, various parameters of the problem
have the following values: N = 150, χ0 = 1/3, b = −1.83879, ω0 =
2.8 × t, ωP = 12 × t,U = 4 × t, and ne = n0/(1 + ϵ). Figure 1 shows
the temperature dependence of the conductivity on three values
of the band-filling factor n. The curves for the three values of the
temperatures decrease after approximately T ≈ 125 K. Figure 2
shows two graphs. One of them shows the strain dependence of
the imaginary conductivity of a material with t0x = 0.03. The
other graph in this figure shows the strain dependence of a 2D
material with t0x = t0y = 0.03. The shapes of the two graphs are
similar, but their numerical values differ by a scale factor.

The following figure (Figure 3) shows the strain dependence
of the real conductivity of 1D and 2D materials. The value of
hopping is the same as in the previous figure.

Note that the trends of the conductivity as a function of strain
in Figures 2 and 3 are mutually opposite. Figure 4 shows the
dependence of the reflectivity on the strain. Theminimal value is
at ϵ ≅ 0.02, while the maximum is achieved around ϵ ≅ 0.1
Achieving as small as possible values of reflectivity physically
means rendering an object hardly visible. This, in turn, can have
various practical applications.

■ A FEW FINAL COMMENTS
The aim of this paper has been to present a mini-review of the
HM for readers nonspecialized in statistical physics.

The oldest method for the study of transport properties is the
procedure proposed by Kubo in 1957. From a purely theoretical
point of view, this method gives the solution of the problem.
However, personal experience of the author shows that is very
difficult to obtain the value of the conductivity of a real material
by using Kubo’s formulas. The difficulty is in the fact that one
encounters an infinite number of commutators.

Figure 1. Electrical conductivity of a 1D material under variable (n, T).
Figure reproduced under a CCBY license from Celebonovic V. 2023.
Strain-tunable conductivity and reflectivity of low-dimensional
materials within the Hubbard model. J. Phys.: Conf. Ser. 2023, 2436,
012010. Copyright 2023, Institute of Physics Publishing.
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A more practical line of approach to the study of transport
properties is the memory function method. The equations are
mathematically clear, and they contain only physically important
quantities. The same method is applicable to the calculation of
the reflectivity of the HM. This aspect offers interesting

possibilities for future work. Examples are given for the
dependence of the conductivity and reflectivity on the strain.
If in a certain system the reflectivity tends to zero, it means that
the system is becoming hardly visible.

The HM has until now been solved in 1D. Efforts are
underway toward finding solutions in 2D and 3D. With some
luck, perhaps a reader of this paper will contribute to a solution.
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Figure 2. Imaginary conductivity of 1D and 2Dmaterials under variable
strain. Figure reproduced under a CCBY license from Celebonovic V.
2023. Strain-tunable conductivity and reflectivity of low-dimensional
materials within the Hubbard model. J. Phys.: Conf. Ser. 2023, 2436,
012010. Copyright 2023, Institute of Physics Publishing.

Figure 3. Real conductivity of 1D and 2D materials under variable
strain. Figure reproduced under a CCBY license from Celebonovic V.
2023. Strain-tunable conductivity and reflectivity of low-dimensional
materials within the Hubbard model. J. Phys.: Conf. Ser. 2023, 2436,
012010. Copyright 2023, Institute of Physics Publishing.

Figure 4. Reflectivity of a 1D material under variable strain. Figure
reproduced under a CCBY license from Celebonovic V. 2023. Strain-
tunable conductivity and reflectivity of low-dimensional materials
within the Hubbard model. J. Phys.: Conf. Ser. 2023, 2436, 012010.
Copyright 2023, Institute of Physics Publishing.
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