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Abstract

We present the results of a study investigating the use of speech and language characteristics 

extracted from spontaneous spoken discourse to assess changes in cognitive function. Specifically, 

we investigated the use of automatic speech recognition technology to characterize spontaneous 

speech disfluency induced by topiramate, an anti-epileptic medication with language-related 

side-effects. We audio recorded spontaneous speech samples from 20 participants during several 

picture description tasks and analyzed the recordings automatically and manually to extract a 

range of spoken fluency measurements including speech discontinuities (e.g., filled pauses, false 

starts, and repetitions), silent pause duration, speaking rate and vowel lengthening. Our results 

indicate that some of these paralinguistic speech characteristics are a) sensitive to the effects of 

topiramate, b) are associated with topiramate concentrations in the blood, and c) complement 

standard neuropsychological tests typically used to investigate cognitive effects of medications. 

This work demonstrates the use of computational linguistic tools to assess cognitive effects in a 

more sensitive, objective and reproducible manner than is currently available with standard tests.
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1. Introduction

The field of computational linguistics has generated a wealth of automated and semi-

automated approaches and systems designed to process natural language and speech. 

However, most of the advances in the development and validation of language technology 

have been focused on language produced by neurotypical adults and children under various 
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conditions and using a variety of modalities - newspaper text, dictation, dialogue, as 

well as other common forms of human-human and human-computer communication. As 

a result, the majority of computerized language technology today is based on the reasonable 

assumption that the speech and language that it targets contains regularities and patterns that 

may be captured via explicit rules or language and acoustic models based on distributional 

characteristics of linguistic entities in text and speech corpora. While this assumption may 

be true for the majority of the typical end-users of human language technology, it is 

certainly not true, at least not entirely, for speech and language produced by people with 

cognitive impairment arising from traumatic brain injury, neurodegenerative disorders, or 

even something as common as stress, fatigue, and use of alcohol and drugs (both illicit and 

prescribed). In a recent publication, Krahmer [1] outlined several areas where the fields of 

computational linguistics and psychology may intersect and learn from each other. Krahmer 

maintains that words and sequences of words can provide valuable information about the 

person who produces them (p. 7). This is particularly true of words (and we might add 

sounds and silent pauses) produced by cognitively impaired individuals.

The field of neuropsychology has traditionally relied on standard neuropsychological test 

batteries consisting of tests designed to assess specific functions. For example, one of the 

standard tests of verbal fluency involves asking the subjects to name in 60 seconds as many 

words as they can that start with a certain letter of the alphabet (phonemic fluency) or that 

belong to a certain semantic category such as “animals” (semantic fluency). These tests of 

verbal fluency are able to distinguish between people with damage to the frontal networks 

(e.g., Left Inferior Frontal Gyrus (LIFG) - Broca’s area) resulting in decreased performance 

on phonemic fluency but not semantic fluency, from people with damage to the temporal 

networks (e.g. Anterior Temporal Lobe (ATL)) resulting in the opposite effect - decreased 

semantic fluency with preserved phonemic fluency. However, these neuropsychological tests 

of verbal fluency are not designed to assess what we commonly think of as linguistic 

fluency, which is a multifaceted speech characteristic consisting not only of how many 

words or syllables per unit time one can produce but also various prosodic features such 

as intonation, rhythm, and presence of disfluent events (e.g. um’s and ah’s, repetitions, and 

repairs) [2]. This notion of “natural” fluency has become the focal point of attention in 

research on progressive aphasia - a spectrum of conditions caused by gradual deterioration 

of language-related cognitive networks in the brain and evident in impaired language use. 

Distinguishing between fluent and non-fluent subtypes of progressive aphasia is critical 

to developing accurate information processing models that underlie this condition and can 

inform its treatment [3]. Furthermore, it has been recognized by researchers in clinical 

neuropsychology that a truly comprehensive description of progressive aphasia necessitates 

the inclusion of prosody into language assessment instruments [4].

In the field of clinical neuropharmacology, one of the central questions is to determine 

how medications designed to treat neurological conditions interact with the brain to explain 

variability in response across individual patients. For example, a regularly prescribed dose 

of an anti-epileptic medication may be toxic to some people and have therapeutic or 

subtherapeutic effect in others. In treating epilepsy, neurologists typically start patients with 

very low doses and slowly titrate them to therapeutically effective levels. Thus, appropriate 

medication dosing is currently determined by a “trial-and-error” approach. An improved 
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dosing approach would be able to identify those individuals who would not benefit or who 

may be hurt by a medication, so that these medications could be avoided. In addition, the 

capability to determine the relationships between drug concentration and response along 

with factors that can influence these relationships (i.e., race, age, genetics) will enable the 

choice of an optimal initial and target dose in patients and thus avoid the unnecessary 

exposure to toxicity or seizures (in the case of epilepsy). This ability to predict drug 

response prospectively, and at the individual patient level, would enable a more rational 

approach to determining the most effective medication and its dosage. Improvements in 

objective and reproducible behavioral measurements of drug response are needed in order 

to adequately describe the relationship between concentration and response in the patient. 

This provides a unique niche to which computational linguistics and automated language 

and speech processing technology can contribute.

In the current study, we address the problem of using speech fluency analysis to measure 

cognitive effects of an anti-epileptic medication - topiramate (brand name - Topamax ®). 

This medication is approved by the Food and Drug Administration in the U.S. for the 

treatment of epilepsy and migraine prophylaxis but is also widely utilized for the treatment 

of chronic pain, obesity, and alcohol addiction. Despite its effectiveness in treating epilepsy 

and migraine, this medication has a number of cognitive side-effects including deficits 

in memory and attention and, most notably, word-finding problems. Patients treated with 

topiramate report numerous events in which they know the word that they want to say 

but just can’t “get it out.” [5, 6] However, these cognitive side-effects are reported only 

by a subset of the patients taking this medication [6]. It remains unclear what individual 

physiological and/or neuropsychological differences may account for these differential 

effects. Furthermore, the exact mechanism of action of this medication in the brain is 

currently not well understood. Being able to quantify behavioral linguistic characteristics 

such as speech fluency may help to predict how different individuals will respond to this 

drug and thus determine the most optimal dose in a more rational manner than currently 

exists.

In the current article, we extend Krahmer’s [1] argument to the domain of neuropsychology 

and demonstrate the application of several natural speech and language processing 

approaches to fully automated, objective, and reproducible quantification of the effects 

of anti-epileptic medications on cognitive function as manifest in fluency of spontaneous 

speech. We also demonstrate how our cross-disciplinary approach benefits the field of 

computational linguistics by providing experimental data for validation of automated speech 

and language processing technology.

2. Background

Hesitations are part of normal spontaneous speech production and constitute 5-10% of 

speech output in naturally occurring conversations [7, 2, 8, 9]. Hesitations consist of 

a variety of speech events including but not limited to unfilled pauses (silences), filled 

pauses (um, ah, etc.), repetitions, vowel lengthening [2, 10], and have a number of diverse 

functions. One of these functions is to allow the speaker time to plan the content and 

form of an upcoming utterance [11, 12]. Thus, predictably, more hesitations are found near 
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utterances that are less routine and are more cognitively demanding [13, 14, 15]. Hesitations 

may also be used as a conversational strategy in order to retain the listeners attention, 

signaling to the listener that the speaker is not yet ready to give up the floor [9, 2, 16]. 

Hesitations have also been found to be related to the contextual probability and frequency 

of the words following the hesitation [17, 18, 19, 20, 21], as well as boundaries of various 

units of syntactic and discourse structure [22, 23, 2, 24, 25, 26, 27]. The functions of filled 

and unfilled pauses often overlap, as do the cognitive explanations for these various forms of 

hesitations [9, 22, 28, 2, 29]. When both filled and unfilled pauses are considered together 

as a single phenomenon, they tend to appear at regular intervals, alternating with more fluent 

speech forming periodic temporal cycles that have been postulated to reflect cognitive cycles 

[30, 31]. Word fragments are not considered to be hesitations but rather are typically found 

as part of speech repairs - a disfluent speech event resulting from the speaker’s monitoring 

of his/her own speech and interrupting the speech when an error is detected with subsequent 

correction of the problem. The interruption in speech repairs may occur in the middle of 

a word resulting in a word fragment in approximately 22% of all repairs [12] (e.g., ”I see 

a mo- um a mother doing dishes”). For the purposes of our study, both hesitations and 

disfluencies produced as part of speech errors are of interest as they may signal a disruption 

in cognitive processing affected by medications. In the study, we limited the labeling of 

repairs to only those with word fragments, grouped these distinct classes of speech events 

together, and refer to them as speech discontinuities in the remainder of this article.

Methods that are typically used to study hesitations and speech errors in spontaneous speech 

production rely on automatic speech recognition technology used in a semi-automated 

mode. In this mode, the speech samples are transcribed verbatim at the word level by 

hand and the transcripts are subsequently aligned using supervised phone-based recognition 

[32, 33, 34, 35] resulting in highly accurate timing information. The alignment accuracy 

on the SWITCHBOARD corpus, for example, was estimated to be 91% at the word 

level (correctly matching to within 40 milliseconds word onsets and offsets) [32]. The 

SWITCHBOARD corpus represents one of the more acoustically challenging sources of 

audio data to process because it contains spontaneous telephone conversations that were 

recorded at a 8 kHz sampling rate (limited by the telephone channel bandwidth) and 

contain numerous speaker overlaps, signal corruptions and non-speech noise. An example 

of accurate automatic alignments obtained on spontaneous dialogues recorded with close-

talking microphone quality at a 16 kHz sampling rate is the TRAINS corpus [36]. The 

accuracy of automatic word-level alignment is reported to be 83% to within 50 milliseconds 

boundary identification precision. The agreement between manual alignments and those that 

were subsequently corrected using the spectrogram for improved precision was reported 

to be 95%, thus establishing the ceiling for manually achievable accuracy. The developers 

of the TRAINS corpus also made the assumption that phone-level alignments were likely 

to be as accurate as word-level alignments [36, p. 9]. Similarly good results on alignment 

(81% accuracy) were achieved on the ATIS corpus that also represents spontaneous speech 

sampled at 16 kHz using a high quality desktop microphone. In the domain of read speech, 

highly accurate word and phone-level alignment have also been reported on the TIMIT 

corpus recorded in a controlled environment at a 16 kHz sampling rate. This corpus 

represents an “easier” target than those containing spontaneous dialogues and telephony 
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speech; however, the accuracy of 93% achieved on phonetic alignment to within 20 

milliseconds precision [37] is very close to the ceiling performance of 95% demonstrated on 

the TRAINS corpus.

Phonetic and word-level alignments resulting from these semi-automated approaches have 

been used extensively to describe the distributional, acoustic and prosodic properties of 

various types of hesitations [2, 38, 39, 40, 41]. For example, Shriberg [39] has shown 

experimentally on the ATIS corpus that vowels tend to be significantly longer in duration 

and may change in quality (e.g., the article ”the” pronounced as [ð i]) in the context of 

a repetition as well as other types of hesitations. Hesitation-related vowel lengthening 

typically occurs in the last syllable of the word preceding the hesitation but may also 

occur in other vowels as well as continuant consonants such as [m], [n], [η], [l], [j], [w], 

[r]. Furthermore, filled pauses (in English) consist of at least one vowel (e.g., [a, e, u]) 

that may sometimes be followed by nasalization typically realized as a nasal consonant 

(e.g., [m, n, η]), and tend to be longer in duration than equivalent vowels and consonants 

pronounced as parts of words [39, 21]. This is an important observation in the context 

of automated quantification of speech fluency characteristics. The amount of vowel and 

consonant lengthening present in a given speech sample may be indicative not only of the 

number of filled pauses it contains but also of how hesitant the speech is overall. However, 

one of the disadvantages of the semi-automated approaches to prosodic feature analysis is 

the necessity to have a verbatim or near-verbatim transcript aligned with the audio signal. 

Verbatim transcription is difficult and time consuming [42] and therefore may not be feasible 

in settings that require fast response such as clinical neuropsychological testing.

One of the current challenges facing automated identification of disfluent events is the 

relatively low accuracy of automatic speech recognition (ASR) systems on continuous 

spontaneous speech. While modern ASR systems are able to achieve accuracies close 

to 90% on read speech exemplified by the English Broadcast News benchmark tests, 

spontaneous conversational speech continues to present a considerable challenge, with 

benchmark accuracy results in the 50%-80% range depending on the task and environment 

(NIST RT-09 Evaluation). Low ASR accuracy presents a problem for disfluency detection 

because approaches that work best on this task rely on lexical and syntactic information 

obtained from the raw ASR output. Also, ASR errors tend to occur around disfluent events 

of interest, thus making the task of improving ASR spontaneous speech-to-text transcription 

even more challenging.

While relatively high ASR word-error rates may preclude the use of the technology for 

reliable speech to text conversion, the ASR output at the subword level may still be useful 

in developing a measure of fluency for neuropsychological testing. For example, phone-

level ASR output may be able to identify silent pause and phone boundaries with enough 

consistency to be indicative of durational and segmental properties of speech sounds present 

in a sample of speech. Thus, from the standpoint of using ASR for accurate speech to text 

conversion, the critical question is how good the ASR system is at correctly identifying the 

spoken words. From the standpoint of using ASR to measure fluency for neuropsychological 

testing, however, the critical question is whether the measurements derived from the 

ASR output have any validity in relation to the cognitive processes impaired by disease, 
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medications or other factors. This type of validity in psychological research is sometimes 

referred to as construct validity [43]. To validate a new construct, it is necessary to show that 

the measurement being validated for a specific use correlates with other independent types 

of measurements known to capture the phenomenon being measured (criterion validity). It 

is also necessary to show that the new measurement is able to distinguish between groups 

of interest such as healthy vs. impaired subjects (concurrent validity) or can be used to 

predict future states (predictive validity) or events (e.g., using disfluency score to predict the 

likelihood of developing a neurologic disorder). In the current study, we validate a novel 

application of ASR for the purpose of measuring the fluency/disfluency characteristics of 

spontaneous speech.

3. Methods

3.1. System Design

Phone-level transcription of spontaneous speech samples was performed using the Hidden 

Markov Model Toolkit (HTK 3.4) [44]. We used a standard ASR system architecture 

consisting of a front-end signal processing and encoding encoding module and a decoder 

module. The front-end signal processing was performed with HWave and HParm modules 

of HTK in order to convert the digitized waveform audio files to a series of Mel-frequency 

Cepstral Coefficients (MFCCs) parameter vectors representing discrete observations derived 

from the FFT-based log spectra. A detailed description of the filterbank used by HTK 

to derive MFCCs can be found in the HTK Book [44]. The HTK decoder module 

(HVite) constructs a lattice of hypotheses from a set of Hidden Markov Models (HMMs) 

representing an acoustic model, a language model, and a dictionary. Subsequently, the token 

passing variation of the Viterbi search algorithm [45] is used to traverse the lattice in order 

to find the most likely path. We trained a set of tri-phone HMMs (an acoustic model) 

specifically for this task and constructed a simple phone-loop language model. Both acoustic 

and language modeling are described in more detail in the following sections.

3.1.1. Phone Inventory—We used a standard set of phones for acoustic and language 

modeling consisting of the following set of 39 phones including pure vowels, diphthongs 

and consonants (shown in TIMIT format followed by the corresponding IPA symbol):

aa [ɑ], ae [æ], ah [a], ao [ɔ], aw [aw], ax [ə], ay [aj], b [b], ch [ç], d [d], dh [ð], eh 

[e], ey [ej], f [f], g [f], hh [h], ih [ɪ], iy [i], jh [J], k [k], l [l], m [m], n [n], ng [η], ow 

[ow], oy [oj], p [p], r [r], s [r], sh [ʃ], t [t], th [θ], uh [ʊ], uw [u], v [v], w [w], y [j], 

z [z], zh [ʒ]

and two special phones to represent silent pauses: (sp - short pause and sil - long pause) for a 

total of 41 items.

3.1.2. Acoustic Model—We trained a speaker independent acoustic model on speech 

collected for another unrelated study that used the same microphones and similar speech 

tasks to the current study. A total of 73 samples from 45 older and younger subjects (25 

men, 20 women, mean age 58.1 years old) were collected from speakers instructed to 

describe a series of pictures some of which were the same as those in the current study 
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and some that were similar. The speech used in acoustic modeling was recorded at 16 

kHz sampling rate and 16 bit resolution with Andrea Electronics microphone array with 

an external USB sound card. The total duration of speech used in acoustic modeling was 

approximately 1.3 hours. This model is speaker independent only in the sense that it was 

not constructed or adapted for a specific speaker. The relatively small amount of training 

data for a speaker independent acoustic model is addressed in the Limitations section of 

this article. MFCC-type acoustic models for each of the three corpora were trained, each 

consisting of a set of five-state tied-state continuous density tri-phone HMMs. We used 19 

filterbank channels and 10 cepstral features with cepstral mean normalization turned on. The 

audio was sampled at 10 millisecond intervals with a Hamming window of 25 milliseconds. 

The same signal processing parameters were used during decoding.

3.1.3. Language Model—A phone loop finite-state network was constructed consisting 

of the 39 phones in the phone inventory. The network contained mandatory utterance initial 

and final nodes and an optional silent pause (sil) following each of the phones as defined 

by the BNF-style grammar in Figure 1. This grammar allows any sequence of phones mixed 

with silences in any order and thus results in an ASR system that relies only on the acoustic 

model to determine the most likely phone sequence corresponding to the input speech 

signal. The dictionary for this language model was constructed by using each phone symbol 

in the phone inventory as its own pronunciation.

In addition to using the phone-loop language model, fixed-order word-level language 

networks were constructed for each individual picture description sample from the verbatim 

transcripts. Thus, these networks represent sample-dependent (in contrast to domain or 

speaker-dependent) language models that were used in forced alignment. Word sequences 

were encoded via Backus-Naur Form (BNF) grammars in which each word in the verbatim 

transcript was entered in a fixed sequence with optional silences between words. The 

dictionary for word-level models was constructed by selecting pronunciations from the 

Carnegie Mellon University (CMU) dictionary (cmudict.0.6). Pronunciations for unknown 

words were automatically approximated with the MBRDICO ID3-based letter-to-phoneme 

conversion toolkit trained on the CMU dictionary.

Thus the first system (based on phone-loop network) constitutes completely free phoneme 

recognition without forced-alignments, whereas the second system constitutes phoneme 

recognition based on forced alignment with word-levewl verbatim transcripts.

3.2. Study Design

3.2.1. Participants—Twenty-five (n=25) native English-speaking, healthy volunteers (8 

women, 17 men) between 18 and 50 years of age were recruited for this study. During 

initial screening, persons who reported clinically significant cardiovascular, endocrine, 

hematopoietic, hepatic, neurologic, psychiatric, or renal disease; current or a history of drug 

or alcohol abuse; the use of concomitant medications known to affect topiramate, lorazepam, 

or that alter cognitive function; prior adverse reaction or prior hypersensitivity to topiramate, 

lorazepam or related compounds; demonstrated a positive pregnancy test (administered 

to all women before enrollment and before each experimental session); received any 
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investigational drug within the previous thirty days, were excluded from participation in 

the study.

3.2.2. Experiment Design—This paper presents a method developed for data analysis 

of a previous study. The study design involved recruitment at two different study sites - 

University of Minnesota (UMN) and University of Florida (UF). Each sites Institutional 

Review Board (IRB) Human Subjects’ Committee approved this protocol. Using a 

randomized, double-blind, crossover design, subjects at UMN received 100 mg oral 

topiramate (TPM), 2 mg oral lorazepam (LZP) (brand name Ativan ®), and an inactive 

placebo (PBO), while those at UF received only TPM and PBO. LZP is a sedative that was 

used as an active control in order to distinguish between language-specific effects of TPM 

and generalized sedative effects. The study design at both sites is illustrated in Figure 3.

Each UMN subject participated in five sessions, whereas each UF subject participated in 

four sessions. Each potential subject participated in a telephone screening interview in which 

the risks associated with the study were discussed and an IRB-approved consent form was 

subsequently mailed to those subjects that met the inclusion criteria. On the first visit (WK1 

pre-baseline) the study staff went over the terms of the consent form with the subject one 

more time and the subject supplied a brief demographic, medical and medication history. 

Each participant was then given a neuropsychological test battery lasting approximately 1 

hour after which they were randomly assigned to a study treatment sequence (UMN: TPM, 

LZP, PBO; UF: TPM, PBO). During second visit (WK2), subjects were administered the 

drug (or placebo) and after 1 or 1.5 hours (UMN and UF, respectively) they were given 

the same neuropsychological battery as in the first session, but with alternate versions of 

each test. After completing the battery, vital signs were recorded and a blood sample was 

drawn to determine drug concentrations in the blood. Participants returned one week later 

(WK3) in order to repeat the testing protocol after switching drugs according to the fixed 

randomization scheme. For subjects at UMN, the third treatment session (WK4) occurred 

seven days after the second drug administration. Since there was one less treatment at UF 

than at UMN, subjects at UF did not have session number 4 (NO SESSION). One week 

after WK4 session for UMN and two weeks after WK3 session for UF, subjects returned 

for a second baseline (WK5 post-baseline) testing session. The two baseline scores were 

averaged in order to correct for any practice effects that might have occurred across the 

entire study period, which was kept constant across sites despite the difference in number 

of treatments. The average baseline score was used to compute the percent change score 

of each test administered under drug conditions as the ratio of the difference between the 

score obtained during the experimental session from the average baseline score divided by 

the average baseline score.

3.2.3. General Corpus Characteristics—Due to a variety of reasons including 

adverse drug effects and the presence of drug from the previous treatment arm, five 

subjects either had missing data or were excluded from analysis resulting in a set of 20 

remaining subjects. The experiments resulted in a corpus of 89 audio recordings collected 

from the picture description task lasting a total of 123.6 minutes. Some of the recordings 

(n=11) were lost due to operator errors and equipment malfunction. The mean length 
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of a picture description recording was 83.3 seconds (SD = 52.5). The shortest recording 

was 20.2 seconds and the longest - 291.5 seconds. Descriptive statistics summarizing key 

corpus characteristics are shown in Table 1. Table 2 shows the distribution of speech and 

silent pause duration and raw counts of speech discontinuities across different experimental 

conditions - Baseline, TPM, LZP and PBO.

A subset of 29 out of 89 recordings was used to evaluate the reliability of transcription. This 

subset contained a total of 4633 words (mean = 159.8, SD = 87.4) and was transcribed once 

by each transcriptionist and subsequently used to calculate inter-rater agreement.

3.2.4. Cognitive Measures—The testing battery administered during each of the study 

sessions included the following measures of cognition directly relevant to the assessment of 

fluency:

Word-level Verbal Tests:  Phonemic (Controlled Oral Word Associations (COWA)) and 

Semantic Fluency (animals/clothes) Tests [46, 47]

Discourse-level Verbal Tests:  Picture Description Task [48]

During the test of phonemic fluency, the subjects were asked to say out loud as many 

words as they could that started with a specific letter of the English alphabet in 60 seconds 

while avoiding the use of proper names. A trained psychometrist administering the test 

counted the number of valid responses from the subjects as the phonemic fluency score. 

In each session the subjects underwent three trials consisting of the following alternating 

sets of three letters (A, F, S) or (B, H, R). The phonemic fluency score was computed by 

averaging the scores across the three letters in a set. During the picture description test, 

the subjects were presented with one of four standard pictures and were asked to describe 

them verbally. The pictures were selected from standard test batteries designed to assess 

aphasia: 1) Boston Diagnostic Aphasia Examination [48]; 2) Minnesota Test for Differential 

Diagnosis of Aphasia [49]; 3) Nicholas-Brookshire “Rescue” Picture Description Task [50]; 

4) Nicholas-Brookshire “Birthday Picture Description Task [50]. During both pre- and post- 

baseline assessments, the subjects were asked to describe the Boston Diagnostic Aphasia 

Examination picture. The picture description tests did not have a time limit and were 

administered using the following standardized instructions script: “I am going to show you 

a picture. Please describe everything you see going on in the picture. Try to speak in 

sentences.” The recording was stopped if the subject indicated completion or was silent for 

longer than 30 seconds. Both the phonemic fluency and the picture description tests were 

administered to all participating subjects at UMN and UF sites.

All tests were administered by a trained examiner at each site. All language based tests 

including the picture descriptions and phonemic fluency tests were audiorecorded using an 

Andrea Electronic Array Microphone at 44.1 kHz downsampled to 16 kHz (16 bit PCM) and 

subsequently transcribed verbatim including hesitations.
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3.2.5. Speech Measures—We calculated a total of five different manual and automatic 

measurements related to spontaneous speech characteristics elicited with the picture 

description task.

Manual Measures:  One of the measures was based on manual transcriptions of the spoken 

narratives subsequently aligned with the audio signal. Two transcriptionists were instructed 

to identify and transcribe all speech and non-speech events including words, filled pauses, 

repetitions, repairs, lipsmacks, breaths, coughing, and laughter. Other unclassifiable speech 

and non-speech events were transcribed as noise. Examples of the verbatim transcripts are 

provided below.

“he is flying a different kite and the do- a dog is watching him as he’s flying it 

FP_um and assume this is his family”

“T_NOISE we have a scenario where my T_LIPSMACK gosh where do i start well 

there’s a tree a tree T_COUGH in the center”

In this example, non-speech events and speech noise are marked with a prefix ”T_”, filled 

pauses are marked with the ”FP_” prefix, and word fragments in the reparandum of repairs 

are marked with ”-”. Repetitions are counted as the number of repeated one-, two-, and 

three-word sequences. Thus, the two examples above contain 43 words, one filled pause, one 

repair, and one repetition.

Inter-rater agreement between the two transcriptionists was calculated on the subset 

of 29 randomly selected picture descriptions. We used the NIST ‘sclite’ tool with 

“dynamic programming” and “time-mediated alignment” options turned on. In addition 

to inter-rater agreement on transcription, we assessed the differences in word boundary 

assignments performed fully manually and with forced alignment. The manual word 

boundary determination used the Praat system [51] for acoustic analysis and relied on using 

the spectrogram in addition to voice and the waveform cues. Automatic forced alignments 

were performed with HTK automatic speech recognition toolkit. The comparisons between 

manually and automatically determined boundaries were performed on the portions of the 

transcripts where the two transcriptionists agreed with each other.

Based on the manual verbatim transcriptions, we defined a manual measure of speech 

discontinuity as the ratio of hesitations to the total number of words in the transcript (SDR). 

Another manual measure of mean vowel length (MVL) was calculated based on phone 

durations extracted by hand from vowels in a random sample of words produced by each 

participant in the study in each of the experimental conditions. Vowels occurring as part 

of filled pauses were excluded in computing MVL. The words for each recording were 

obtained by randomly sampling the beginning, middle and the end of the recording resulting 

in a data set containing 1,766 vowel instances representing a vocabulary of 313 unique 

words. To obtain these phone durations, a linguistics graduate student with experience in 

acoustic phonetics manually corrected phone boundaries produced via automatic alignments 

shown in Figure 4 and calculated the durations of vowels in each of the sampled words. All 

phone durations were normalized to word length and log-transformed after normalization.
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Automatic Measures:  In addition to the SDR and MVL measures based on manual 

annotations, we defined three measures derived from the output of the ASR system as shown 

in Figure 4.

One of these automatic measures comprised the mean of log-transformed silent pause 

duration (MPD). Log-transformation was used based on the results of a recent study by Hird 

and Kirsner [52] showing that pause durations computed in real time on spontaneous speech 

samples have a long-tailed distribution that may mask an underlying bimodal distribution 

evident when log time is used to measure duration. A silent pause was defined as a silent 

segment in the raw ASR output longer than 150 milliseconds in duration. This cutoff was 

chosen conservatively to avoid counting phonetically conditioned pauses such as the release 

phase in the phonation of a word-final stop consonant that may last up to 100 ms in 

duration [53, 12]. We also defined an automatic measure of phone lengthening (APL) that 

was based on the mean duration of pure vowels and nasal continuant consonants that were 

extracted from the raw ASR output and log-transformed similarly to silent pause durations. 

Finally, we defined a measure of speaking rate (SPR) computed as the ratio of words in the 

verbatim transcript to the total duration of non-silent segments in each recording. Non-silent 

segments were defined as those representing intelligible speech or disfluencies - speech and 

non-speech noise was treated as silent segments. As with cognitive measures, we used the 

relative change from averaged baselines to make group comparisons between LZP, TPM and 

PBO conditions.

3.2.6. Physiological measures—All subjects in this study were given the same dose 

of both TPM (100 mg) and LZP (2 mg); however, there are still large individual differences 

in the amount of medication that is present the bloodstream and delivered to the target 

receptors in the brain. Therefore, in order to account for the variability in drug response, it 

is necessary to determine the amount of the drug present in the bloodstream after it has been 

metabolized by the body. A single blood sample was collected for analysis immediately 

following each drug testing session, which occurred approximately 2 hours after drug 

administration at UMN and 3 hours at UF. Samples were immediately centrifuged and 

the plasma frozen at −80 degrees Celsius until analysis. Plasma concentrations of TPM 

were measured using a simultaneous assay, developed by Subramanian et al. [54] for the 

measurement of nine anti-epileptic drugs. Another fast and sensitive analytical method was 

developed for the analysis of subject plasma samples containing LZP. The assay was based 

on a method previously published by Zhu and Luo [55]. Analyses were performed on 

a coupled high performance liquid chromatograph-electrospray tandem mass spectrometer 

(Waters Micromass Quatro Ultima). The assay’s Limit of Quantification (LOQ) was 1 

ng/mL, and the run time for each sample was six (6) minutes. The assay was validated 

according to FDA guidelines [56]. Samples were tested for both TPM and LZP to determine 

the concentration of the treatment drug and to ensure that the drug from the previous 

treatment was not present.

3.3. Statistical Analysis

Spearman rank correlation was used to test for correlations between speech, 

neuropsychological, and physiological measurements. Standard two-tailed t-test based on 
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the binomial distribution was used to test for differences between group means. Paired t-test 

was used to compare variable means on different experimental conditions (TPM vs. PBO) 

because subjects’ visits were randomized to these conditions and, thus, each subject was 

on both PBO and TPM but at different time points. Simple linear regression modeling was 

used to test for associations between continuous variables. All statistical calculations were 

performed using the R statistical package (version 2.9).

4. Results

We first present the results of calculating inter-rater agreement and the accuracy of 

automatic word boundary identification, followed by the results of comparisons of 

automatically derived speech variables to manually derived variables, as well as the results 

of testing both manually and automatically derived variables for association with drug 

effects. This section concludes with the presentation of results of traditional cognitive testing 

known to be sensitive to effects of TPM on cognition. The group means for various arms 

of the study and correlations with individual blood concentrations of TPM and LZP are 

summarized in Table 4.

4.1. Inter-annotator Agreement and Word Boundary Identification

The transcriptionists agreed 85.7% of the time. The comparison of word beginning 

boundaries (WBB) and word end boundaries (WEB) identified with forced alignment and 

manually showed that the mean WBB difference was 55 milliseconds (SD = 172) and 

WEB was 60 milliseconds (SD = 188). Approximately 86% of the word-onset boundaries 

and 80% of the word-offset boundaries were identified with better than 50 milliseconds 

precision, which is comparable to the accuracy of alignments in the TRAINS corpus [36].

4.2. Automatically Assessed Disfluency

The automatically obtained mean log-transformed pause duration (MPD) measurements 

significantly and negatively correlated with the manually assessed disfluency measurements 

- SDR (rho = −0.24, p = 0.023). The mean difference in log-transformed pause durations 

from baseline measurements on TPM was positive (relative change = 0.005) but was not 

significantly different from the negative mean relative change of −0.008 from baseline on 

PBO (p = 0.206). As a quality control step, we compared pause duration measurements 

obtained in this fully automated mode to pause durations measured semi-automatically 

based on forced alignments between the audio and the verbatim transcriptions and did not 

find a statistically significant difference (log-transformed MPD mean of 6.53 vs. 6.42, p 

= 0.256). Furthermore, automatic and semi-automatic mean pause durations were highly 

correlated (rho = 0.75, p <0.001, n = 89). Similarly, counts of silent pauses greater than 

100 milliseconds in duration were also highly correlated between the automatic and semi-

automatic measurements (rho = 0.96, p <0.001, n = 89).

The automatically obtained measurement of phone lengthening (APL), was tested in 

two stages. In the first stage, we correlated mean durations of all available vowels and 

consonants with manually assessed SDR. In the second stage, we computed mean durations 

of a subset of vowels and consonants (phone composite variables) consisting only of those 
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phones that had statistically significant correlations with manually assessed SDR. The 

results of the first stage are presented in Table 3.

The results in Table 3 show that statistically significant correlations were found between 

SDR and most of the monophthong vowels [ah, aa, ih, iy, uh, eh], as well as the voiced nasal 

bilabial continuant consonant [m]. The relationship between the phone composite variable 

AVL-C2 consisting of [ah, aa, ih, iy, uh, eh, m] and SDR is shown in Figure 5. In addition to 

these correlations with SDR, we fitted a linear regression model with the manually assessed 

disfluency as the outcome and both AVL-C2 and MPD as predictors to determine if the 

phone lengthening variable (AVL-C2) predicts SDR independently of mean pause duration 

(MPD). The resulting model is shown below:

SDR = − 0.60763 + 0.20541 ∗ AVL − C2 + − 0.03872 ∗ MPD

Both AVL-C2 and MPD variables had a statistically significant effect on the SDR (AVL-C2: 

p = 0.009, MPD: p <0.001, R-squared = 0.42, df = 86) showing that vowel lengthening 

contributed information in addition to that provided by the mean pause duration.

In the second stage, we tested the phone composite variable AVL-C2 to determine if this 

variable had different means in the TPM and PBO conditions. The comparison of AVL-C2 

means in the two conditions showed that the mean AVL-C2 duration on TPM increased from 

the baseline by 1.3% whereas the duration of PBO decreased from baseline by 0.4%. This 

difference is small but statistically significant (p <0.001, df = 19) indicating that subjects on 

TPM had a slight but highly consistent tendency towards phone lengthening as compared 

to PBO. We also determined that vowel lengthening was distinct from the speaking rate 

by doing the same comparisons between groups using the SPR variable. The speaking rate 

increased from the base-line in both conditions (TPM: 6.3%, PBO: 0.7%); however, the 

difference was not statistically significant (p = 0.538). Furthermore, we also tested manually 

assessed vowel durations (MVL) for correlation with automatically assessed vowel durations 

(AVL) and found a relatively strong and significant correlation between the two variables 

(rho = 0.64, p = 0.003, n = 20).

4.3. Manually Assessed Disfluency

The ratio of speech discontinuities to words (SDR variable) in the transcripts of the subjects’ 

speech produced on the picture description task correlated with the pharmacokinetic 

measures of TPM plasma concentrations (rho = 0.47, p = 0.035, n = 20). The correlation 

with LZP plasma concentration was not significant (rho = 0.26, p = 0.44, n = 11). There was 

a statistically significant difference in the SDR means between the PBO condition showing 

a 3% decrease in SDR and the TPM condition showing a 44% increase in SDR (p = 0.002). 

With LZP, we observed a 12% decrease in SDR and a decrease of 5% on PBO; however, this 

difference was not significant (p = 0.585). In summary, the subjects were significantly more 

disfluent on TPM than on PBO and the degree of disfluency on TPM was responsive to the 

amount of medication present in the bloodstream.

The manually assessed vowel lengthening (MVL) measure did not correlate with TPM 

concentrations but there was a significant difference between the MVL means in the TPM 
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vs. baseline (p <0.001), and LZP vs. baseline (p <0.001) conditions, but not between the 

PBO and baseline (p = 0.201). Vowel lengthening of 10 and 16 milliseconds on average, as 

compared to baseline, was observed for both TPM and LZP, respectively. There was a strong 

correlation between MVL and LZP concentrations (rho=0.76, p = 0.006, n=11).

4.4. Hesitation vs. Disfluency

In a post-hoc analysis, we combined filled pauses, repetitions and vowel elongations to 

form a measure of hesitancy separate from a measure of speech errors consisting of 

word-fragment-containing repairs. We did not find either significant correlations with TPM 

concentrations or a significant difference between relative change from baseline for TPM 

and PBO group means (p = 0.129) in the rate of speech repairs. The correlation between 

the measure of hesitation that included filled pauses, repetitions and vowel elongations and 

TPM levels was 0.41 (p=0.07), which is slightly lower than 0.47 (p=0.03) with the measure 

of speech discontinuities (filled pauses, repetitions and repairs). The differences between 

the means of relative change from baseline in the TPM and PBO groups were significant 

for the hesitations (t = 2.69, df = 19, p = 0.014), but not for speech repairs (t=2.09, df = 

19, p = 0.055). However, the difference in the means for speech repairs is on the border of 

significance defined at 0.05 Type I error probability level. Thus we think that the rate of 

speech repairs may be affected by TPM but they may not occur often enough in our data 

sample to be treated separately from hesitations.

4.5. Cognitive Measures

The performance on the standard neuropsychological test of phonemic fluency decreased by 

24% on TPM relative to the baseline, as compared to 1.4% on PBO (p <0.001). However, 

there was no statistically significant correlation between the scores on the phonemic fluency 

test and the physiological measures of TPM plasma concentrations (rho = −0.38, p = 0.10, n 

= 20). The performance on the semantic fluency test did not seem to be affected by TPM, as 

no statistically significant differences were found between the TPM and the PBO conditions.

A comparison between the means for phonemic fluency and SDR scores across the baseline, 

TPM, PBO and LZP experimental conditions is illustrated in Figure 6. The figure shows that 

phonemic fluency scores are lowest and the SDR scores are highest in the TPM condition. 

These significant group means differences contrast poor correlations between phonemic 

fluency and TPM concentrations in the blood and significant correlations between blood 

concentrations and spoken fluency reflected in the SDR measurement. We further address 

the significance of this finding in the Discussion section.

When calculated across all individual subject testing sessions (i.e., baseline, TPM, PBO or 

LZP), phonemic fluency scores had a statistically significant but weak correlation with SDR 

scores (rho = −0.24, p = 0.025, n = 89), while semantic fluency test scores did not show a 

significant correlation with SDR (rho = −0.17, p = 0.102, n= 89). However, after separating 

the scores by experimental condition, only the PBO group had a statistically significant 

correlation between phonemic fluency and SDR (rho = −0.57, p = 0.008, n = 20). The phone 

composite variable AVL-C2 also was not significantly correlated with phonemic fluency test 

scores (rho = −0.20, p = 0.064) and was significantly but weakly correlated with semantic 
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fluency test scores (rho = −0.25, p = 0.017). Neither semantic nor phonemic fluency test 

scores significantly correlated with the log-transformed mean pause durations (MPD).

5. Discussion

In this paper we have demonstrated a novel application of spoken human language 

technology to the domain of neuropsychological testing and neuropharmacology. Our fully 

automated approach, based on measuring durational characteristics of silent pauses and 

phones output by an ASR system, was able to produce measurements that correlated 

with manually assessed disfluencies consisting of filled pauses, repetitions and false 

starts. Furthermore, our findings indicate that the notion of spontaneous speech disfluency 

measurable via automated or semi-automated approaches is associated with objective 

physiological measurements and are consistent with what is known to date about the 

cognitive effects of TPM. In particular, the use of TPM has been reported to result in word 

finding difficulties [6] that are likely to manifest themselves via a more effortful and hesitant 

speech. Thus, these findings offer support for the criterion and concurrent components 

of construct validity [43] of our approach. Further validation is currently underway and 

includes the predictive component of construct validity in which we will determine if the 

disfluency response at a lower (100 mg) dose of TPM is predictive of the response at a 

higher (200 mg) dose.

Automated or even semi-automated tools for assessing spontaneous speech fluency on 

tasks that are closer to what people do in real life than standard neuropsychological tests 

provide a novel dimension to the assessment of global cognitive functioning. Standard 

neuropsychological tests are reportedly anxiety-producing for the subjects, which may 

alter their cognitive state and produce results that do not reflect functioning under normal 

conditions. Automated tools based on spontaneous speech task described in this paper 

may provide a less anxiety-provoking and more ecologically valid approach to measuring 

and monitoring cognitive effects of medications and neurodegenerative disorders such as 

dementia. Patients with these disorders frequently present with aphasia but may also have 

relatively subtle changes in language production such as alterations in hesitation behavior 

while describing a picture. Recent research on primary progressive aphasia, a language 

disorder characterized by the atrophy of frontal and temporal brain networks, points out 

that early diagnosis of the non-fluent variant of primary progressive aphasia remains the 

subject of much debate and that “… developing reliable and objective measures that capture 

patients early in the disease process is very important …” to addressing this challenge [57]. 

In our previous work, we have successfully used an approach similar to the one described 

in this paper that relied on the alignment between audio and verbatim transcripts of picture 

descriptions by patients with primary progressive aphasia to distinguish between speech, 

motor, and semantic deficits [58]. Also, other groups have successfully investigated the use 

of similar approaches to the diagnosis of patients with mild cognitive impairment (MCI), an 

early disorder associated with Alzheimer’s disease [59], and probable Alzheimer’s disease 

[60]. Durational speech characteristics including silent pause duration, duration of phonation 

with and without pauses, as well as the ratio of pauses to words, have been found to be 

associated with diagnoses of various types of dementia in these previous works. The work 

presented in this paper examines additional speech fluency characteristics such as hesitation 
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rate and vowel lengthening and their relation to the cognitive effects of medications that may 

be just as subtle at lower doses as early effects of dementia and primary progressive aphasia.

The results of linear regression on manually assessed speech discontinuity show that 

the mean duration of automatically recognized phones (vowels in particular) contributes 

information that accounts for variability in discontinuity not accounted for by the 

duration of silent pauses. This finding is consistent with prior experimental research in 

speech disfluency showing that vowel lengthening is one of the many ways in which 

speakers express hesitation in spontaneous speech [39, 21]. Our study validates a fully 

automated methodology for the assessment of vowel lengthening and shows that, in 

certain experimental environments (e.g, exposure to a cognitive-impairing medication), 

the phenomenon of vowel lengthening is robust enough to overcome any imprecision in 

the phone boundary identification by an automatic speech recognizer. These results are 

particularly encouraging because the automatic speech recognition system we used in this 

study is relatively simple and constitutes our baseline approach, thus further improvements 

to the acoustic and the language model are likely to strengthen these results.

We found that both LZP and TPM negatively affect speech fluency but not to the 

same extent. Higher TPM concentrations result in significantly more disfluent speech (as 

measured by SDR); however, the association of disfluency with LZP is less pronounced. 

Medically, the positive correlation between TPM and speech disfluency is consistent with 

reports of patients complaining of word finding problems while on TPM. We would also 

expect administration of LZP to have some effect on speech fluency. LZP belongs to a class 

of benzodiazepines that are used to relieve anxiety but also may have generalized sedative 

effects. The anxiolytic property of LZP would be expected to result in more fluent speech, 

whereas the sedative property may cancel out or even counteract that leading to increased 

variability in speech disfluency. The increased variability, coupled with the relatively small 

sample size of subjects on LZP, makes these results more difficult to interpret. However, 

the fact that a MVL, a manual measurement of vowel duration, is highly correlated with 

LZP concentration is at least suggestive that LZP indeed does have a pronounced effect 

on spontaneous speech. The correlation results between AVL, the automated counterpart 

of MVL, and LZP concentrations are not as pronounced, but are consistent with MVL 

findings. The correlation between AVL-C2 subset of phones and LZP concentrations is not 

consistent with MVL and AVL findings. This is likely due to the fact that AVL-C2 subset 

contains the vowel ”ah” and the consonant ”m” that compose the pronunciations of filled 

pauses and, therefore, lengthening observed with this subset correlates with SDR, which 

in turn correlates better with TPM concentrations than LZP concentrations. Filled pauses 

were explicitly excluded from the computation of the MVL variable and thus may have 

been responsible for this discrepancy. These preliminary results indicate that LZP and TPM 

may have differential effects on speech disfluencies and vowel lengthening; however, further 

work with larger samples must be done to test this hypothesis.

Another important finding was that the concentrations of disfluencies in spontaneous speech 

narratives, captured by the SDR variable, correlated with concentrations of TPM in the 

blood, an objective physiological measure, whereas the standard phonemic fluency test 

scores did not. Moreover, we did not find a strong correlation between the phonemic 
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or semantic fluency test scores and any of the automatically or manually determined 

discourse disfluency measurements; however, both the phonemic fluency test scores and 

all of the discourse disfluency assessments demonstrated significant differences in group 

means between subjects on TPM vs. PBO. These results lead us to believe that while both 

the standard phonemic fluency and the discourse disfluency measurements can reliably 

distinguish between groups of individuals on TPM vs. PBO, only the discourse disfluency 

measurements are sensitive to the individual drug concentrations. Therefore, we believe 

that the standard test of phonemic fluency and the disfluency in spontaneous speech reflect 

different underlying cognitive processes with differential sensitivity to exposure to TPM. 

Producing words that start with a certain letter of the alphabet places more demand 

specifically on working memory and executive control in addition to lexical retrieval, 

phonological encoding and motor planning; however, the fluency of a spontaneous speech 

narrative may be more reflective of global cognitive functioning and indicative of how well 

various cognitive systems interact to accomplish the complex task of thought organization 

and expression in speech [61].

One of the possible concerns with any study including ours that involves multiple visits 

over time is the possibility of learning effects. We expected subjects to have more difficulty 

with the pictures in the first visit when the stimulus and the task were novel to the subjects 

and much less difficulty due to practice and learning effects during the last visit. Therefore, 

we expected the average score between the two baseline visits to be more representative 

of the true baseline performance on the task. Furthermore, the very possibility of having 

learning effects in our experiments makes our results stronger by making the overall design 

more conservative. For example, prior work on TPM has demonstrated that this drug has 

significant cognitive side effects. Thus we would expect to observe worsening of function 

during the visits in which subjects receive TPM. A possible learning effect would tend to 

help subjects improve in their performance thus making it all the more difficult for us to 

detect any worsening of cognitive function. The fact that we did find worsening of cognitive 

function despite the possible learning effects in the TPM group strengthens our findings.

While the overall correlation between the phonemic fluency test scores and the SDR 

measurements was weak, we did find a relatively strong correlation between these 

measurements in the PBO condition. This finding is likely reflective of the placebo 

effect. Despite blinding, all subjects underwent informed consent by which they became 

familiar with the details of the study and possible side-effects of the medications. Thus, the 

subjects may have been exerting more effort in the experimental conditions (vs. baselines) 

in order to counter the anticipated negative effects of the medication. Therefore, in the 

experimental sessions where the subject received a placebo, this extra effort may have 

resulted in improved performance across all tests leading to a more clear divergence between 

spontaneous speech fluency and phonemic fluency.

In summary, our study found that paralinguistic disfluency characteristics obtained from 

spontaneous speech narratives may serve as a sensitive way to assess cognitive effects 

of medications such as TPM at the level of individual patients in addition to coarse-

grained group-level distinctions. The use of automatic speech recognition technology to 

characterize spontaneous speech disfluency offers an additional advantage of objectivity 
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and reproducibility of the measurements. Finally, discourse-level tests such as the picture 

description task are also more likely to reflect how one is able to function in daily 

activities such as interpersonal verbal communication and, therefore, are more ecologically 

valid than standard neuropsychological tests of verbal fluency. Thus, our study has also 

defined a unique niche for human speech and language technology in the realms of 

neuropsychological testing and neuropharmacology.

6. Limitations

This is a relatively small amount of training data for a typical speaker-independent acoustic 

model; however, according to studies by Lamel [62] and Moore [63], the relationship 

between the amount of speech training data and word error rates is close to linear with a 

gradual slope. For example, Lamel’s results show that that an ASR system with an acoustic 

model trained on 1 hour of speech in a fully supervised mode performs at 33.3% word error 

rate. Adding another 32 hours of speech improves the word error rate by 12% to 20.7%; 

adding another 34 hours only improves the performance by 2%. These data suggest that an 

ASR system trained on 1.3 hours of speech would have a word error rate of a little less than 

30% (or better than 70% accuracy) and adding significantly more data results in diminishing 

returns. Also, the speech collected to construct the acoustic model for this study was highly 

representative of the speech collected during subject testing and thus this task-dependent 
model is likely to perform well for the purposes of this study as evidenced by the accuracy 

of forced alignment results; however, further improvements can clearly be made.

The use of healthy volunteers can be perceived as limiting the generalizability of the results 

of these studies to patients. However, since individuals who are prescribed drugs such as 

TPM are, by the very nature of their condition, often prone to cognitive impairments, i.e., 

persons with epilepsy, the use of patients in this initial study would diminish our ability to 

isolate the cognitive effects of the treatment from that of the underlying disorder. In addition, 

we excluded subjects who were not native speakers of English, have been diagnosed with a 

speech and/or language impairment/disability, who have uncorrectable low vision or have a 

dominant left hand (to control for brain lateralization of language). We anticipate, however, 

that as our speech analysis technology advances, and speech elicitation stimuli improve, 

future studies will be able to accommodate speakers of common languages other than 

English, as well as those who have language/speech disabilities.
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*Highlights

• Our study defines a novel niche for using automatic speech and language 

processing in neuropharmachology

• Spontaneous speech dysfluency is a sensitive measure of cognitive effects of 

an anti-epileptic medication (topiramate)

• Fully automated quantification of pause duration and vowel lengthening are 

associated with cognitive effects of topiramate and manual assessments
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Figure 1: 
Phone-loop Language Network in BNF format.
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Figure 2: 
Examples of picture description stimuli: Boston Diagnostic Aphasia Examination (left) and 

Minnesota Test for Differential Diagnosis of Aphasia (right).
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Figure 3: 
Study Design Illustration.
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Figure 4: 
An example of the phone-loop recognizer’s output (tier 1) superimposed over the manual 

transcription forced aligned with the same audio (tier 2).
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Figure 5: 
Illustration of the relationship between automatically extracted phone durations and 

manually determined SDR.
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Figure 6: 
Means and 95% CIs for phonemic fluency vs. SDR measurements within different study 

conditions (Groups: Mean of two baselines; TPM - topiramate; PBO - placebo; LZP - 

lorazepam).
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Table 1:

Descriptive Corpus Statistics. The ”Total”, ”Min”, and ”Max” columns contain values computed over all 

available picture descriptions. The mean and stdev values represent the average and standard deviation of the 

average computed across the picture descriptions.

Corpus Characteristic Total Min Max Mean (stdev)

Words (W) 13027 37 514 146.4 (98.8)

Speech Duration (SpD) (seconds) 3954 9.9 151.5 44.4 (29.5)

Silence Duration (SilD) (seconds) 3462 10.4 146.2 38.9 (25.7)

Silent Pauses (SIL) 4361 8 143 40.1 (25.7)

Filled Pauses (FP) 581 0 37 6.5 (6.2)

Repetitions (REP) 90 0 9 1.0 (1.7)

Word Fragments (WF) 78 0 5 0.9 (1.2)

Speech Discontinuities (SD = FP + REP + WF) 749 0 38 8.4 (7.5)
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Table 2:

Distribution of means and total counts for general corpus characteristics presented in Table 1 across 

experimental conditions (Baseline, TPM, LZP, PBO).

Avg. Baseline* TPM LZP PBO

Total Mean Total Mean Total Mean Total Mean

W 2631 131.6 2949 147.4 2251 204.6 3082 154.1

SpD 831 41.5 901 45.1 658 59.8 887 44.4

SilD 734 36.7 839 42.0 541 49.1 729 36.5

SIL 765 38.3 854 42.7 542 49.3 807 40.4

FP 128 6.40 150 7.50 74 6.72 122 6.10

REP 14 0.70 30 1.50 13 1.82 19 0.95

WF 16 0.78 27 1.35 8 0.73 15 0.75

SD 158 7.88 207 10.35 95 8.64 156 7.80

*
Average baseline is the mean of speech event counts in pre- and post-baseline recordings. Therefore, the totals in this table do not add up to the 

totals in Table 1 that represents a sum of all counts and durations across all experimental sessions.
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Table 3:

Spearman rank correlations durations of individual phones and classes of phones with manual measurements 

of speech discontinuity (SDR).

Individual phones

Vowels Consonants

phone rho p-value phone rho p-value

ah 0.55 <0.001 w 0.13 0.238

uw 0.06 0.599 r −0.01 0.904

ao 0.14 0.185 jh 0.05 0.664

ax 0.08 0.435 dh 0.07 0.516

aw 0.21 0.050 d −0.01 0.943

oy 0.20 0.061 y −0.13 0.236

ih 0.43 <0.001 k 0.02 0.858

ay 0.01 0.897 ch −0.08 0.432

uh 0.27 0.012 g 0.20 0.060

ey 0.11 0.310 f −0.06 0.561

iy 0.35 <0.001 th −0.09 0.379

ae 0.13 0.226 t −0.05 0.658

aa 0.22 0.043 n 0.07 0.502

eh 0.21 0.043 zh 0.00 0.983

ow 0.10 0.339 m 0.24 0.026

v −0.23 0.028

s −0.10 0.335

l 0.14 0.180

p 0.04 0.734

b 0.09 0.383

z −0.15 0.163

hh 0.00 0.969

Phone Classes

All Vowels 0.51 <0.001

All Consonants 0.05 0.654

All phones 0.40 <0.001

AVL-C1 [ah,aa,ih,iy,uh,eh] 0.59 <0.001

AVL-C2 [ah,aa,ih,iy,uh,eh,m] 0.62 <0.001
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Table 4:

Results of comparison of speech characteristics and drug effects. Comparisons with TPM were based on 20 

subjects. Comparisons with LZP were based on 11 subjects.

Group means Correlations

Speech Variable Baseline TPM LZP PBO TPM ρ LZP ρ

Manual

SDR .068 .085 .062 .048 .47 (.03) .34 (.31)

MVL (ms) 107 114 94 97 .26 (.27) .76 (.01)

Automatic

MPD (ms) 89.9 91.8 91.1 86.22 .21 (.37) .25 (.45)

SPR (w/s) 3.25 3.31 3.42 3.55 .11 (.64) .06 (.85)

AVL (ms) 21.7 22.9 22.1 22.8 −.08 (.75) .43 (.19)

AVL-C2 (ms) 15.03 15.6 14.8 14.8 .02 (.94) −.30 (.37)

Cognitive

Ph-fluency 15.42 11.51 15.14 15.00 −.34 (.14) .54 (.09)
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