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High-grade serous ovarian carcinoma (HGSOC) is the most common subtype

of ovarian cancer with 5-year survival rates below 40%. Neoadjuvant chemo-

therapy (NACT) followed by interval debulking surgery (IDS) is recom-

mended for patients with advanced-stage HGSOC unsuitable for primary

debulking surgery (PDS). However, about 40% of patients receiving this treat-

ment exhibited chemoresistance of uncertain molecular mechanisms and pre-

dictability. Here, we built a high-quality ovary-specific spectral library

containing 130 735 peptides and 10 696 proteins on Orbitrap instruments.

Compared to a published DIA pan-human spectral library (DPHL), this spec-

tral library provides 10% more ovary-specific and 3% more ovary-enriched

proteins. This library was then applied to analyze data-independent acquisition

(DIA) data of tissue samples from an HGSOC cohort treated with NACT,

leading to 10 070 quantified proteins, which is 9.73% more than that with

DPHL. We further established a six-protein classifier by parallel reaction mon-

itoring (PRM) to effectively predict the resistance to additional chemotherapy

after IDS (Log-rank test, P = 0.002). The classifier was validated with 57

patients from an independent clinical center (P = 0.014). Thus, we have devel-

oped an ovary-specific spectral library for targeted proteome analysis, and pro-

pose a six-protein classifier that could potentially predict chemoresistance in

HGSOC patients after NACT-IDS treatment.
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1. Introduction

Ovarian cancer is the ninth most common cancer

among females worldwide [1] and the most fatal tumor

of the female reproductive system in the United States

[2]. For patients with advanced-stage ovarian cancers

who are not suitable candidates for primary debulking

surgery (PDS), management with neoadjuvant chemo-

therapy (NACT) and interval debulking surgery (IDS)

is a potentially beneficial option as reducing residual

disease could improve surgical outcomes [3]. However,

compared with advanced-stage patients receiving PDS,

no significant survival benefit was observed in patients

receiving NACT-IDS [4–7]. It has been reported that

44.2% of patients treated with NACT-IDS were che-

moresistant, which is higher than those treated with

PDS (31.2%) [8]. Thus, the NACT-IDS treatment-

induced platinum resistance may be one among several

causes for this unfavorable treatment response. Both

the reduction of CA125 levels [9] and sequential F-18-

fluorodeoxyglucose positron emission tomography [10]

during NACT have been reported to be associated

with cytoreduction outcomes at IDS and long-term

prognosis. Higher levels of stromal tumor-infiltrating

lymphocytes both pre- and post-NACT [11] and

reduced expression of certain homologous recombina-

tion genes [12], as well as the decreased expression of the

stemness marker, ALDH1 [13], have been found associ-

ated with favorable outcomes in patients with NACT by

Cox proportional hazard regression models. Lee et al.

[14] performed multiomics profiling, including proteo-

mics, of HGSOC samples from patients treated with

complete PDS or NACT, and cataloged multiple altered

molecules and pathways among groups with poor or

favorable outcomes.

Recently, advanced proteomic technologies applied

in primary ovarian cancers have reported (a) bio-

markers for differential diagnosis of histotypes [15,16];

(b) patient stratification for precision therapy [17–21];

and (c) potential therapeutic targets [22–24]. However,

no study has yet systematically characterized protein

dysregulations which underpin chemotherapy resis-

tance after NACT-IDS or provided a predictive model

for resistance and sensitivity to chemotherapy after

NACT-IDS treatment.

DIA mass-spectrometry (DIA-MS)-based quantita-

tive proteomics enables comprehensive and permanent

digital profiling of LC–MS-compatible peptide precur-

sors from clinical specimens with high reproducibility

and throughput [25–27]. Thus, it has found to be

increasingly used in clinical applications to identify

dysregulated proteins in disease states. Although sev-

eral library-free tools for untargeted analysis of DIA

have been developed, library-query targeted

approaches for interpreting DIA data are still a widely

used strategy, owing to its high specificity for detecting

proteins expressed in particular tissue types [27–29].
Targeted proteomics, such as selected reaction moni-

toring (SRM) [30] and PRM [31], has emerged to ver-

ify and validate expression of selected proteins in

complex proteomes, allowing reproducible measure-

ment of up to about 100 proteins of interest in a single

analysis. Spectral libraries are required for developing

SRM or PRM assays in targeted proteomics.

Several prebuilt pan-human spectral libraries using

both TripleTOF (pan-human library, PHL) [32] and

Orbitrap (DIA pan-human library, DPHL) [33] spec-

tral data and an ovary-specific library using Triple-

TOF spectral data [34] have been published. PHL and

DPHL contain spectral information of over 10 000

unique proteins. These pan-human libraries, although

comprehensive, are inferior to tissue-specific libraries

[35] mainly because of false negatives resulting from

larger search space and technical variability of instru-

ments in the case of published human spectral librar-

ies. Optimizing the spectral library size into a subset

library from a prebuilt pan spectral library helps

improve proteome coverage by DIA [36]. Of note,
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both PHL and DPHL do not contain spectral data

for ovarian tissue specimens [32,33]. To date, only one

ovary-specific library using peptides from primary

HGSOC and Orbitrap spectral data has been pub-

lished but contains fewer than 8000 proteins [37].

Thus, there is need for an in-depth tissue-specific

library of ovarian tissue specimens representing differ-

ent histopathological diagnoses to expand the spectral

library for interrogating the ovarian tissue proteome.

In this study, we developed a comprehensive spectral

library for ovarian tissue specimens and applied it to

propose a protein-based classifier for predicting che-

moresistance in HGSOC patients after NACT-IDS

treatment.

2. Materials and methods

2.1. Patients and samples

This study was approved by the Medical Ethics Commit-

tees of the Cancer Hospital of the University of Chinese

Academy of Sciences (IRB-2020-155), Shengjing Hospital

of China Medical University (2015PS28K), and Westlake

University (20190401GTN0009, 20221124GTN003). The

study methodologies followed the standards set by the

Declaration of Helsinki, and the experiments were under-

taken with the understanding and written consent of each

subject.

To generate an ovary-specific spectral library, 167

surgically resected ovarian tissues, including 33 cases

of normal tissues from patients with uterine myoma or

cervical cancer without histologically documented

ovarian involvement, 44 cases of benign tissues, 10

cases of borderline tissues, 35 cases of epithelial ovar-

ian cancer (EOC) tissues obtained from PDS, 20 cases

of EOC tissues from relapsed patients, and 25 cases of

primary EOC tissues with NACT [38] were collected

from the Cancer Hospital of the University of Chinese

Academy of Sciences between 2006 and 2018. Details

of the histopathology of borderline tumors are pro-

vided in Table S1. Nine of 10 borderline tumors were

serous, while one of them was mucinous. Twenty-eight

of 35 ovarian carcinomas dissected by PDS were

HGSOC, while only one was a low-grade serous carci-

noma. Among 35 primary EOC tissues by PDS, we

also included one mucinous adenocarcinoma, three

endometrioid carcinomas, and two clear cell carcino-

mas. The proportions of these histological types were

similar to their natural incidence rates. Detailed sam-

ple and patient information are provided in Table S1.

Seventy-one ovarian cancer tissue samples were col-

lected from 63 patients treated with NACT-IDS in the

Cancer Hospital of the University of Chinese Academy

of Sciences (cohort A) between 2009 and 2017. All

patients had late-stage HGSOC and all had received

two or three cycles of platinum-based neoadjuvant

therapy and at least six cycles of chemotherapy in

total. For the purpose of machining learning, this

NACT-IDS cohort was divided into training (N = 36,

n = 42) and test (N = 27, n = 29) subcohorts by year of

diagnosis (where N denotes the number of patients,

and n denotes the number of specimens). For external

validation, 62 ovarian cancer tissue samples of 57

HGSOC patients treated with NACT-IDS were col-

lected from Shengjing Hospital of China Medical Uni-

versity (cohort B) between 2013 and 2019. Detailed

patient information is listed in Table S1. Patients who

relapsed within 6 months after the last cycle of adju-

vant therapy were considered to be the resistant group,

while those who relapsed after 6 months since the last

cycle of adjuvant therapy were grouped as the sensitive

group. Specimens of cohort A were embedded in opti-

mal cutting temperature (OCT) compound, while spec-

imens of cohort B were formalin fixed and paraffin

embedded (FFPE). Histological features and propor-

tions of tumor nuclei were evaluated in histological

sections stained with hematoxylin and eosin. All tumor

samples contained at least 60% tumor nuclei.

2.2. Protein extraction and digestion assisted by

pressure cycling technique

To remove OCT, each fresh frozen tissue sample

(~ 1 mg) was washed in sequential concentrations (vol-

ume/volume) of ethanol-water as follows: 70% (30 s),

0% (30 s), 70% (5 min, twice), 85% (5 min, twice),

and 100% (5 min, twice) [39]. FFPE tissue samples

were firstly dewaxed using heptane, rehydrated using

sequential concentrations (volume/volume) of ethanol-

water (100%, 90% and 75%), hydrolyzed in 0.1% for-

mic acid and finally in 100 mM Tris–HCl (pH 10) [40].

Thereafter, tissue samples were transferred into pres-

sure cycling technique (PCT) tubes and processed into

peptide samples by PCT-assisted tissue lysis and pro-

tein digestion according to the published protocol [40].

2.3. Spectral library generation

Peptide samples from four groups of tissue specimens

were pooled, respectively, for the spectral library build-

ing. These four groups were normal (N = 33), benign

(N = 44), primary malignant samples obtained from

PDS (N = 45; 10 borderline cases and 35 carcinoma

cases), and postchemotherapy samples (N = 45; 20

cases from relapsing EOC cohort and 25 cases from

EOC cohort treated with NACT). Using Thermo
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Ultimate Dionex 3000 (Thermo Fisher Scientific, San

Jose, CA, USA), each pooled peptide sample was frac-

tionated into 60 aliquots as previously described [41].

The 60 aliquots of three pooled peptides of normal,

benign and primary malignant samples from PDS were

combined into 10 fractions in the following combination

scheme: 1 + 11 + 21 + 31 + 41 + 51, 2 + 12 +
22 + 32 + 42 + 52, . . ., 10 + 20 + 30 + 40 + 50 + 60

(Table S1). Similarly, pooled peptide fractions of post-

chemotherapy samples were combined into 15 fractions

in the following scheme: 1 + 16 + 31 + 46,

2 + 17 + 32 + 47, . . ., 15 + 30 + 45 + 60 (Table S1).

Each fraction was dried and then redissolved in

buffer A (2% ACN, 0.1% formic acid), before further

separation in a 60-min gradient and analyzed by Q

Exactive HF hybrid Quadrupole-Orbitrap (QE-HF;

Thermo Fisher Scientific) in data-dependent acquisi-

tion (DDA) mode with the same settings as described

previously [42]. The top 20 precursors were fragmented

using higher energy collisional dissociation (HCD).

Eighteen fractions randomly selected from the 45 frac-

tions were injected twice as technical replicates. Addi-

tional details are provided in Table S1. In total, 63

DDA files were generated and analyzed by Spectronaut

(Version 13.5.190902.43655, Biognosis, Schlieren,

Switzerland) against a Swiss-Prot human protein data-

base (downloaded on 9 February 2018) comprising

20 555 reviewed proteins. All parameters were by

default according to the BGS Factory Settings in Spec-

tronaut. The ovarian spectral library is hereafter

referred to as OVLib.

2.4. PulseDIA and DIA data analysis

Two hundred and fifty nanogram of peptide samples

were separated over a 30-min LC gradient on a nano-

flow Dionex UltiMate 3000 RSLCnano System and

then analyzed by a QE-HF with the PulseDIA in two

parts as described previously [43]. Five peptide samples

were randomly selected as technical replicates and MS

data acquisition was performed twice for them.

The DIA raw data were firstly converted into mzML

format filtered by peakPicking by MSCONVERT (v3.0),

and then analyzed by DIA-NN (v1.8.1) against the

DPHL [33] and the OVLib, respectively. All parame-

ters of DIA-NN were set by default.

2.5. Quality control and statistical analysis

Pearson correlation was calculated by log2(intensity) of

protein abundance between replicates. Intensities from

technical replicates were averaged. Proteins with over

70% missing values in the sample set were filtered out,

after which missing values of the remaining proteins

were imputed as 0.8*minimum. Unpaired Student’s t

test by log2(intensity) was performed between sensitive

and resistant groups of the training cohort. Fold

change was calculated from the means of protein

intensities between these two groups. Criteria for dif-

ferentially expressed proteins were that the P < 0.05

and fold change > 2. Statistical analysis was performed

by R (version 4.0.5). Pathway enrichment for differen-

tially expressed proteins was performed by METASCAPE

(v3.5).

2.6. Machine learning

Criteria for selecting differential features between the sen-

sitive and resistant groups of the training cohort by Stu-

dent’s t test were P value < 0.05 and fold change > 1.5.

The protein matrix of 145 features by DIA was normalized

using Z-score, and the same Z-score normalization was

applied to the test cohort. Fifty-four proteins in the train-

ing set with mean decrease accuracy larger than 1.5 were

first selected using the R package randomForest (version

4.6.14). Then, we randomly split the training set into 80%

of samples (n = 34) for training to build 1000 trees and

remaining 20% samples (n = 8) for internal validation by

the hold-out method. This process was repeated 250 times.

We selected the model with highest accuracy rate in valida-

tion set and evaluate its prediction utility in an indepen-

dent test (n = 29) cohort.

2.7. Targeted proteome by PRM

Firstly, the expression of 30 out of 40 proteins from

the prognosis model was verified by PRM. For reten-

tion time calibration, 15 peptides were selected from

OVLib as common internal retention time (CiRT)

standard peptides following the procedures described

previously [33] (Table S2). The peptides were separated

at 300 nL�min�1 over a 45-min LC gradient from 5%

to 30% buffer B (buffer A: 2% ACN, 0.1% formic

acid; buffer B: 98% ACN, 0.1% formic acid) in

UltiMateTM 3000 RSLCnano System (Thermo Fisher

Scientific). The ionized peptides were transferred

into QE-HF. Fifty-four peptides (including 15 CiRT

peptides, Table S2) were selected and analyzed in

a � 3 min time window by time-scheduled acquisition.

The full scans were performed at a resolution of 60 000

and m/z from 400 to 2000 were collected. The AGC

target was set as 3e6 with maximum IT at 55 ms. The

isolation window for target precursors was set as 1.6

with normalized collision energy at 27%. The product

ions were collected at a resolution of 30 000, AGC

target of 2e5 and maximum injection time of 80 ms.
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Next, we established a short-gradient PRM method

for quantification of six proteins in the final model to

analyze the selected proteins in the independent

validation cohort. The peptides were separated over a

15-min LC gradient from 10% to 42% buffer B in

UltiMateTM 3000 RSLCnano System (Thermo Fisher

(A)

(B)

(E)

(F)

(G) (H)

(C) (D)

Fig. 1. The ovary spectral library. (A) Workflow for the generation of an OVLib. PGs represent protein groups. (B) The distribution of

precursor m/z. NACT, Neoadjuvant chemotherapy; PDS, Primary debulking surgery; PCT, Pressure cycling technique; DDA, data-dependent

acquisition; OVLib, Ovary spectral library; DIALib-QC, DIA library quality control; PGs, protein groups. (C) The distribution of precursor charge

states, proteotypic peptides for each protein, fragment ions per precursor ion, and fragment ion charge states. m/z, Mass-to-charge ratio.

(D) The distribution of peptide lengths. (E) The distribution of three modifications (16: oxidation in methionine, 42: acetylation in N terminal,

47: carbamidomethylation in cysteine). (F) The proportion of b, y ions. (G) The Venn plot of unique proteins among OVLib and two prepub-

lished libraries. DPHL, DIA pan-human spectral library. The counts of ovary-specific proteins and ovary-enriched proteins (H) among OVLib

and two prepublished libraries.
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Scientific). Twenty-three peptides (including 15 CiRT

peptides, Table S2) were selected and analyzed in

a � 2.5-min time window by time-scheduled acquisi-

tion. Other parameters were identical as that in the 45-

min gradient PRM methods.

3. Results and discussion

3.1. Ovarian tissue spectral library

To generate the OVLib, we firstly processed 167 surgi-

cally resected ovarian tissues consisting of 33 cases of

normal tissues, 44 cases of benign tissues, 10 cases of

borderline tissues, 35 cases of EOC tissues by PDS, 20

cases of EOC tissues from relapsed patients, and 25

cases of EOC tissues with NACT (Fig. 1A). Peptides

from these fresh frozen tissues were prepared using

PCT [26,40,44]. Peptides from normal tissues (n = 33),

benign tissues (n = 44), malignant tissues by PDS

(n = 45) and postchemotherapy tissues (n = 45) were

combined into four pooled samples (Fig. 1A). Ten to

15 fractions of each pooled sample were separated by

high pH fractionation, and 63 injections (including 18

technical replicates) were acquired using 60-min gradi-

ent DDA on Orbitrap MS instruments (Fig. 1A). The

OVLib built by Spectronaut contained 175 769 precur-

sors, 130 735 proteotypic peptides, 10 780 protein

groups, and 10 696 unique proteins (Fig. 1A). The

proteomic depth achieved here is higher than those

reported in the literature [21,22].

We next assessed the complexity and characteristics

of OVLib by DIAlib-QC [45]. The precursors ranged

from 400 to 1200 m/z primarily ionized at two

(53.24%) or three (35.35%) charges (Fig. 1B,C). The

retention time (RT) between [M + 2H]2+ and

[M + 3H]3+ charge states of the same peptide was cali-

brated using Biognosys’s Deep Learning Assisted iRT

Calibration. High RT correlation has been reported to
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Fig. 2. Quality control of the proteome against OVLib and its application. (A) The comparison of the unique proteins identified in ovarian

cancer tissues against DPHL and OVLib. The plot whiskers define outliers according to Tukey’s rule (e.g., more than 1.5 times the

interquartile range from the quartiles). (B) The Pearson correlation of the quantified proteins between technical replicates and biological

replicates. The biological replicates represent the proteomic data obtained from different ovarian tissue samples which are dissected from

the same patients, while the technical replicates represent the proteomic data that was run twice using the same peptide samples. Eight

pairs of biological replicates and five pairs of technical replicates were included. (C) Unsupervised clustering by differentially expressed

proteins using PCA. (D) The enriched pathways for differentially expressed proteins by METASCAPE. (E) The protein expression of differentially

expressed proteins between the sensitive and resistant groups. The P values were calculated by Student’s t test. **, P value < 0.01;

*, 0.01 ≤ P value < 0.05. The plot whiskers define outliers according to Tukey’s rule.
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improve selectivity of chromatogram extraction for

DIA analysis, leading to increased identifications com-

pared to other studies [45]. The range of peptide length

covered was from 7 to 52, and 82.52% of them were

between 8 and 20 (Fig. 1D). Oxidation was the most

common modification and detected in 9509 peptide

precursors (Fig. 1E). Most (89.27%) of proteins were

identified from at least two peptides, and up to 5647

proteins were identified from more than seven peptides

(Fig. 1C). Over 93% of precursors generated at least

five fragments (Fig. 1C), and significantly more frag-

ments with y ion (79.33%) were detected than those

with b ions (20.67%) (Fig. 1F). Most fragment ions

were observed in charge one (84.53%) and two

(14.42%) states (Fig. 1C). The overall characteristics

of our spectral library are consistent with previous

reports of pan-human proteome libraries [32,33].

We compared the OVLib with the two published

libraries, namely the DPHL [33] and the prebuilt

ovary-specific library based on Orbitrap [37]. The

HCD protein numbers identified in the OVLib were

comparable with those in DPHL and more than 90%

of identified proteins overlapped in both libraries,

while unique proteins in the prebuilt ovary-specific

library were significantly fewer than those in OVLib

(Fig. 1G). Tissue-specific and -enriched proteins have

been reported to mediate physiological functions of

the tissue [46]. In the OVLib, 28 out of 31 annotated

ovary-specific proteins and 94 out of 97 annotated

ovary-enriched proteins were identified [46], which

exceed those identified in both two published libraries

(Fig. 1H). This demonstrates the advantages of OVLib

for characterizing ovarian tissue-specific proteins more

comprehensively.

3.2. Proteomic analysis of HGSOC samples from

patients with NACT-IDS

We next applied OVLib to study the proteome of

ovarian cancer tissues of patients treated with

NACT-IDS. We profiled the proteome of 71 ovarian

tumor samples from 63 cases of patients using the

Fig. 3. The schematic study design

to establish a protein classifier for

predicting chemoresistance of

HGSOC patients after NACT-IDS

treatment. (A) The rationale for the

protein classifier. (B) The workflow

of establishing the protein classifier.
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PulseDIA method [43] (Table S2). The DIA data

were analyzed against both DPHL and our OVLib

using DIA-NN (v1.8) with the same setting. A total of

114 754 peptides and 10 070 proteins were identified

against the OVLib compared with 107 132 peptides

and 9177 proteins by DPHL (Fig. 2A, Table S2).

7.11% more peptides and 9.73% more proteins were

identified by the OVLib, compared with those by the

DPHL. In addition, 13.42% and 7.17% fewer missing

values were observed in the peptide and protein

matrices, respectively (Table S2). Pearson correlations

of protein quantification were 97.0% for the technical

replicates and 94.2% for the biological replicates

(Fig. 2B), indicating a high degree of reproducibility

of DIA-MS data.

3.3. Protein classifier to predict chemotherapy

resistance

We next divided these patients into a training cohort

(n = 42) and a test cohort (n = 29) by the year of diag-

nosis (Table S1). A total of 40 proteins exhibited dif-

ferential expression between sensitive (n = 25) and

resistant (n = 17) ovarian cancer tissue samples of the

training cohort (Table S3, P value < 0.05 and fold

change > 2). These differentially expressed proteins,

which clearly separated the resistant and sensitive

groups in principal component analysis (PCA;

Fig. 2C), were enriched in G alpha (12/13) signaling

events, blood vessel morphogenesis, metabolism of

lipids, and actin cytoskeleton organization (Fig. 2D).
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Fig. 5. Six-protein classifier for predicting chemoresistance of HGSOC patients after NACT-IDS treatment. (A) Development of a six-protein

classifier using random forest based on PRM data. RF, random forest analysis. (B) The representative peak group chromatography (left) of

top six features selected by RF analysis, and their expression between the resistance and sensitive groups in the training set. The P

was calculated by Student’s t test. **, P < 0.01; *, 0.01 ≤ P < 0.05. z represents the charge state of a peptide precursor. The plot whiskers

define outliers according to Tukey’s rule. (C) The rank of mean decrease accuracy of the six features. (D) The ROCs of training, validation

set and test cohort by the six-protein classifier. (E) The Kaplan–Meier plot of the predicted groups by the six-protein classifier in the test

cohort. The P was calculated by Log-rank test. (F) The Kaplan–Meier plot of the predicted groups by the six-protein classifier in the external

validation cohort. The P was calculated by Log-rank test.
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Among them, several proteins have been reported and

validated to be associated with tumorigenesis and

resistance in ovarian cancer. For example, our data

showed significant upregulation of histone deacetylase

8 (HDAC8), creatine kinase B-type (CKB), and poly-

pyrimidine tract-binding protein 2 (PTBP2) in the

resistant group (Fig. 3E). HDAC enzymes deacetylate

histones and modulate the transcription of multiple

tumor suppressor genes [47]. In addition, HDAC

inhibitors have known anticancer activities and are

synergistic in clinical chemotherapeutics not only in

ovarian cancer and multidrug-resistant cell lines but

also in xenografts [48,49]. Creatine kinase B-type par-

ticipates in energy homeostasis by reversibly transfer-

ring phosphate between ATP and phosphogens. CKB

knockout in an ovarian cancer cell line induced G2

arrest, sensitivity to chemotherapeutic agents, and a

tumor-suppressive metabolic state of decreased glycol-

ysis but increased oxidative phosphorylation [50]. Pro-

tein expression of PTBP was upregulated in the

ovarian cancers compared to normal tissues, and its

knockdown inhibited tumor cell proliferation and

invasiveness [51], possibly due to the effect of PTBP

knockdown on reducing alterative splicing of multi-

drug resistance protein [52].

To distinguish patients resistant to platinum-based

additional chemotherapy from the NACT-IDS cohort

(Fig. 3A), we performed random forest analysis using

dysregulated proteins between resistant and sensitive

groups (Figs 3B and 4A, Table S3). Forty proteins

were prioritized by the ranked order of importance by

random forest analysis (Table S3). The area under the

curve (AUC) for internal validation dataset reached 1

(Fig. 4B). In the test dataset, this model correctly iden-

tified 23 out of 29 patients, achieving an AUC of

0.867 (Fig. 4B,C). The two groups predicted by this

model observed significant differences in relapse-free

survival (RFS) (Log-rank test, P value = 0.006;

Fig. 4D). Computational procedures are detailed in

the Section 2.

3.4. Verification of the protein classifier by PRM

To evaluate and verify these protein features in a more

sensitive, reproducible and high-throughput assay for

potential clinical application, we performed PRM quan-

tification of these proteins in the prognosis model

(Fig. 3B), and established robust assays for 39 peptide

precursors from 30 proteins (Table S2). Among them,

12 proteins were verified to be dysregulated between

resistant and sensitive groups of training cohort

(Table S3). Eight out of 12 proteins with mean decrease

accuracy larger than three were selected by random

forest (Fig. 5A). After hold-out validation, a six-protein

model (RBMXL1, DES, MCT1, SART1, GPKOW,

and PTBP2) was established (Fig. 5B,C). Desmin (DES)

is a marker for tumor-associated fibroblasts (TAFs),

indicating myofibroblast and provascularizing potential.

The overexpression of monocarboxylate transporter 1

(MCT1) has been reported to be correlated with cis-

platin resistance in both ovarian tumor tissues and cell

lines [53]. In addition, its knockdown in both cell lines

and xenograft model reversed cisplatin resistance and

activated Fas/FasL pathway [53]. Using this prognosis

model, AUCs for internal validation and test cohort

were 1 and 0.762, respectively (Fig. 5D). In the test

cohort, 22 out of 29 patients were correctly identified;

of the seven misclassified patients, four relapsed in

6 months after the last chemotherapy (Table S3),

which is the defining point of RFS for chemoresistance.

Similarly, the RFS of the two groups predicted by this

model showed a significant difference (Log-rank test,

P value = 0.002, Fig. 5E). To further determine the

validity of this prognostic model, we applied it to a val-

idation cohort from an independent clinical center

(cohort B; Fig. 3B) and found significant differences of

progression-free survival (Log-rank test, P value =
0.014) between the two predicted groups (Fig. 5F).

4. Conclusions

In summary, we present an ovary-specific spectral

library for targeted proteome analysis of ovarian tis-

sues. We propose here a six-protein classifier to distin-

guish the resistant and sensitive groups of HGSOC

patients after NACT-IDS treatment. This six-protein

classifier is based on PRM-MS and could be poten-

tially applied in clinical management. Further trials of

this classifier in multicenter prospective HGSOC

cohorts should be carried out in the future to investi-

gate its potential utility in the clinical management of

patients with ovarian cancers.
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