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Abstract

Parkinson’s disease which is the second most prevalent neurodegenerative disorder in the

United States is a serious and complex disease that may progress to mild cognitive

impairment and dementia. The early detection of the mild cognitive impairment and the iden-

tification of its biomarkers is crucial to support neurologists in monitoring the progression of

the disease and allow an early initiation of effective therapeutic treatments that will improve

the quality of life for the patients. In this paper, we propose the first deep-learning based

approaches to detect mild cognitive impairment in the sleep Electroencephalography for

patients with Parkinson’s disease and further identify the discriminative features of the dis-

ease. The proposed frameworks start by segmenting the sleep Electroencephalography

time series into three sleep stages (i.e., two non-rapid eye movement sleep-stages and one

rapid eye movement sleep stage), further transforming the segmented signals in the time-

frequency domain using the continuous wavelet transform and the variational mode decom-

position and finally applying novel convolutional neural networks on the time-frequency rep-

resentations. The gradient-weighted class activation mapping was also used to visualize the

features based on which the proposed deep-learning approaches reached an accurate pre-

diction of mild cognitive impairment in Parkinson’s disease. The proposed variational mode

decomposition-based model offered a superior accuracy, sensitivity, specificity, area under

curve, and quadratic weighted Kappa score, all above 99% as compared with the continu-

ous wavelet transform-based model (that achieved a performance that is almost above

92%) in differentiating mild cognitive impairment from normal cognition in sleep Electroen-

cephalography for patients with Parkinson’s disease. In addition, the features attributed to

the mild cognitive impairment in Parkinson’s disease were demonstrated by changes in the

middle and high frequency variational mode decomposition components across the three

sleep-stages. The use of the proposed model on the time-frequency representation of the

sleep Electroencephalography signals will provide a promising and precise computer-aided

diagnostic tool for detecting mild cognitive impairment and hence, monitoring the progres-

sion of Parkinson’s disease.
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1. Introduction

Parkinson’s Disease (PD) [1, 2] is a complex neurodegenerative disease that is characterized by

motor symptoms such as: slowness of movement and tremor as well as non-motor symptoms

including cognitive and memory changes, anxiety, depression and sleep problems. According

to Parkinson’s foundation, 1 million patients were diagnosed with the disease in the U.S. and

10 million individuals suffer from the disease worldwide [3].

The disease is depicted as challenging for physicians and specialists to diagnose and grade.

Observation of motor system abnormalities is the current means of clinical diagnosis despite

being subjective and prone to human error. It was also reported in [4] that the accuracy of the

clinical diagnosis performed by movement disorders experts is unsatisfactory (79.6% initial

assessment accuracy and 83.9% follow-up assessment accuracy). Hence, earlier and precise

detection of PD and initiation of neuroprotective treatments are crucial to improve the disease

prognosis and possibly slow down its progression.

Several state-of-the-art deep-learning techniques have been recently proposed for PD diagno-

sis, staging and biomarkers detection based on Electroencephalography (EEG), Magnetic Reso-

nance Imaging (MRI), speech tests, handwriting exams and sensory data [5]. It was reported in

[5] that the majority of the deep-learning techniques exploit either resting state EEG or hand-

writing/sensory data. As compared to CT, PET and MRI, EEG is relatively an inexpensive tool

used for the diagnosis of several brain diseases including epilepsy, tumors and stroke. In addi-

tion, EEG derived from polysomnography is the gold standard measure for evaluation of sleep.

Even if imaging modalities such as CT, MRI or PET were attempted during sleep, EEG would

still be required to distinguish between sleep and wake and to distinguish between sleep stages.

There have been several studies that have shown that subjects with PD exhibit unique EEG

biomarkers including decreased β (12–35 Hz) and γ (> 35 Hz) powers [6, 7], slowing of rest-

ing-state oscillatory brain activity [8, 9] and significant changes in phase-amplitude coupling

when compared to healthy controls (HC) [10, 11]. Patients with PD frequently experience

sleep disorders, including insomnia, rapid eye movement (REM) sleep behavior disorder

(RBD), and excessive daytime sleepiness [12, 13]. In addition, PD is characterized by alter-

ations in sleep architecture, including reductions in REM sleep which plays a vital role in con-

solidating procedural memory and motor skills [14]. Recent studies have shown that both

REM and non-REM (NREM) sleep exhibit unique features in PD and PD with dementia as

compared to healthy controls (HC), including lower stability, higher slowing ratio, an increase

in spectral power in the δ (1–4 Hz) and θ (4–8 Hz) bands during REM, as well as lower baseline

power in σ waves (12–15 Hz) within the parietal regions during the NREM sleep stages [15–

19]. Since patients with PD have both cognitive and motor dysfunction, alterations in sleep

stages have potential clinical implications.

Mild cognitive impairment (MCI) which is a non-motor complication of PD can be visual,

spatial dysfunction, or executive dysfunction, that may occur with or without memory loss. In

addition, cognitive impairment has been related to disease morbidity, significant burden on

caregivers, social and working impairment, placement at long-term care facilities, and mortal-

ity [20]. There are currently no established biomarkers or effective treatments for cognitive

impairment, but earlier identification of impairment may allow earlier intervention which is

urgently needed to improve the prognosis of the disease.

Machine and Deep Learning (MDL) techniques [21–29] have been shown to successfully

screen patients based on dataset modalities including MRI [30–32], speech patterns [33–38],

sensory or handwriting data [39–51] and EEG [52–72]. However, the use of MDL for the

detection of PD-MCI or the prediction of the risk of progression of PD to MCI and the identi-

fication of the disease biomarkers in sleep EEG have not yet been addressed.
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In this paper, we introduce two novel deep-learning based frameworks to screen and clas-

sify subjects into PD patients with normal cognition (NC) or with MCI at a high accuracy up

to 99.9%. In both frameworks, a convolutional neural network (CNN) was applied on the

time-frequency representation (TFR) of each sleep stage of recorded and verified EEG signals

for PD patients. The contributions of the proposed work can be summarized as follows:

1. To the best of our knowledge, this is the first work to address the use of deep learning for

the detection of MCI in sleep EEG for patients with PD.

2. The proposed frameworks are capable of screening patients at a significantly high 4-fold

cross validation accuracy, sensitivity, specificity, quadratic weighted Kappa score and area

under curve (AUC).

3. The feature maps of the last convolutional layer of the highest-performing deep-learning

framework have been identified using the Grad-CAM method [79] to highlight the spatio-

temporal features of MCI during the different sleep-stages.

Finally, we would also like to emphasize that we have used the term (Normal Cognition or

NC) throughout the paper to refer to PD patients without any cognitive dysfunction including

MCI or dementia. However, the term (Healthy Controls or HC) only refers to subjects with no

decisive clinical diagnosis of PD and those subjects were not considered in this study. The

remainder of this paper is organized as follows. Section 2 provides an overview on the related

work. Section 3 presents the dataset adopted in this study, followed by a detailed description of

the proposed approach in Section 4. The experimental study and results are then discussed in

Section 5. Finally, the conclusion and discussion are presented in Section 6.

2. Related work

Vanegas et al. used extra tree, logistic regression and decision tree to identify the EEG based

biomarkers of PD achieving Area Under Curve (AUC) of the Receiver Operating Characteris-

tic (ROC) curve of 99.4%, 94.9% and 86.2% [52]. The models were applied on the EEG spectral

amplitudes of the posterior occipital area of the brain during visual stimulation. The weights of

the logistic regression along with the decision nodes of the decision tree were used to identify

the frequencies that discriminate the PD subjects from HC. The theta, alpha to beta frequency

ranges were found to be the most influential frequencies in the classification problem.

Oh et al. developed a 13-Layer Convolutional Neural Network (CNN) in order to classify

subjects into PD and controls using a resting-state EEG for 20 PD subjects and 20 HC [53].

The model achieved an accuracy of 88.3%, a sensitivity of 84.7% and a specificity of 92%.

Wagh et al. introduced an 8-layer graph CNN applied on EEG features for 1,385 subjects with

neurological diseases including PD and 208 HC achieving an AUC of 85% in detecting the dis-

eases [54].

Koch et al. used a machine learning model based upon Random Forest in order to classify

PD subjects into patients with good or poor cognition. The model was applied on clinical and

automated EEG features achieving an AUC of 91% AUC [55]. Shi et al. developed two hybrid

models based upon two dimensional and three dimensional CNN and Recurrent Neural Net-

work (RNN) frameworks where the three dimensional CNN-RNN achieved an accuracy of

82.89% outperforming the two dimensional model [56]. Lee et al. have also introduced a

hybrid model based on CNN and Long Short Term Memory (LSTM) in order to classify sub-

jects into PD and HC at an accuracy of 96.9% [57].

Khare et al. have used several machine learning methods including the Least Squares Sup-

port Vector Machine (LSSVM) on features that have been identified from the tunable Q-factor
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wavelet transform (TQWT) applied on resting-state EEG dataset related to 15 PD subjects and

16 HC [58]. The LSSVM model was able to differentiate between HC and PD subjects with

and without medications at an accuracy of 96% and 97.7% respectively. In addition, Khare

et al. have also developed a 10-Layer CNN that was applied on the smoothed pseudo-Wigner

Ville distribution (SPWVD) transformation of two EEG datasets representing 35 PD subjects

and 36 HC [59]. The model achieved an accuracy of 99.9% and 100% on the two datasets

respectively. Loh et al. have applied a 2D-CNN on the Gabor transform of a resting-state EEG

dataset of 15 PD subjects and 16 controls in order to classify subjects into HC and PD with

and without medications at an accuracy of 99.5% [60].

Shaban has also developed three 13-layer ANN models applied on the Oz, P8, and FC2

channels of a resting state EEG dataset for 15 PD subjects and 16 HC [61]. The models outputs

were fused using a majority voting method achieving an accuracy of 98% for classifying sub-

jects into PD or HC. In addition, Shaban et al. have recently developed a Continuous Wavelet

Transform (CWT) based CNN where a 20-layer CNN model was trained and validated on the

Morlet wavelet transform [62, 63] and the second order derivative of the wavelet transform

[64] of a resting-state EEG at an accuracy up to 99.9% for distinguishing PD patients from HC.

In [65], Khare et al. introduced the use of the automated extreme learning machine

(AOELM) algorithm on the automated variational mode decomposition (AOVMD) of a rest-

ing-state EEG dataset related to 16 HC and 15 PD subjects. The model was capable of classify-

ing the subjects into PD off medication and HC at an accuracy of 98.9% and distinguishing PD

on medication from HC at an accuracy of 98.6%. Further, in [66], Chawla et al. introduced a

machine-learning framework using the k-nearest neighbors (KNN), SVM, logistic, and radial

basis function (RBF) classifiers to differentiate PD subjects from HC. The classifiers were

applied on a set of entropy features extracted from the flexible analytic wavelet transform

(FAWT) of two resting-state EEG datasets. The proposed framework based upon KNN was

able to classify subjects at an accuracy of 99% and 95.9% based on the two datasets respectively.

Table 1 shows a summary of the-state-of-the-art machine and deep-learning methods used for

PD diagnosis, staging and biomarkers identification based upon awake EEG.

In addition to the use of machine and deep-learning for PD diagnosis, staging and biomark-

ers identification based on EEG data, various studies have used non-machine learning

Table 1. The state-of-the-art machine and deep-learning techniques applied on awake EEG for PD diagnosis, staging and biomarkers identification.

Reference Application Dataset Size Method Performance

Vanegas et al.
[52]

PD Biomarkers Extraction 29 PD and 30 HC Extra Tree, Logistic Regression, Decision

Tree

AUC: 99.4%, 94.9%,

86.2%

Oh et al. [53] PD Diagnosis 20 PD and 20 HC 13-Layer CNN Accuracy: 88.25%

Wagh et al. [54] Diagnosis of Several Neurological

Diseases

1,385 Diseased and 208 HC 8-Layer Graph CNN AUC: 0.9

Koch et al. [55] Cognition Level Classification for

PD

20 Good Cognition and 20 Poor

Cognition

Random Forest AUC: 91%

Shi et al. [56] PD Diagnosis 40 PD and 30 HC Two and Three- dimensional CNN-RNN Accuracy: 81%, 83%

Lee et al. [57] PD Diagnosis 20 PD and 22 HC CNN-LSTM Accuracy: 97%

Khare et al. [58,

59]

PD Diagnosis 35 PD and 36 HC Tunable Q-factor Based LSSVM, SPWVD

Based CNN

Accuracy: 97.7%, 99.5%

Loh et al. [60] PD Diagnosis 15 PD and 16 HC Gabor-Transform Based 8-Layer CNN Accuracy: 99.5%

Shaban et al. [61–

63]

PD Diagnosis 15 PD and 16 HC 13-Layer ANN, Wavelet-Based 12-Layer

CNN

Accuracy: 98%, 99.9%,

99.9%

Khare et al. [65] PD Diagnosis 15 PD and 16 HC AOVMD-Based AOELM Accuracy: 98.9%, 98.6%

Chawla et al. [66] PD Diagnosis 35 PD and 36 HC FAWT-Based KNN Accuracy: 99%, 95.9%

https://doi.org/10.1371/journal.pone.0286506.t001

PLOS ONE Deep-learning for PD-MCI diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0286506 August 3, 2023 4 / 23

https://doi.org/10.1371/journal.pone.0286506.t001
https://doi.org/10.1371/journal.pone.0286506


techniques to detect PD as well as investigate the influence of EEG electrodes number and

location on the models’ performance. Sahota et al. proposed a novel representation for the

EEG time-series data by transforming a single EEG time-series into a 7-variate series of coeffi-

cients per 20s or 30s epoch of data reducing the sampling rate of the data from 256Hz to

0.05Hz [67]. Further, MrSQL time-series classification method was applied on the transformed

data to differentiate PD from HC achieving an accuracy of 90.2% based on wakeful EEG data

and up to 95.5% on N3 and REM sleep EEG data. Suuronen et al. investigated the significance

of the number and the location of the EEG device electrodes on the classification accuracy of

machine learning algorithms used to differentiate PD from HC based on resting-state EEG

data [68]. Using a budget search algorithm, it was shown that the performance of a logistic

regression classifier measured using a nested 10-fold cross validation improved when patients’

eyes were open rather than closed. Based on the eyes open data, it was also demonstrated that

the best performance was obtained where AUC> 0.7 using only five channels placed far away

from each other.

Several other studies have experimented the use of deep-learning on raw EEG recordings

for the automatic detection of Schizophrenia at an accuracy of up to 97% using a fine-tuned

short-time Fourier transform based VGG-16 [69] and an accuracy up to 99.5% using a CWT

based VGG-16 [70]. Further, a fine-tuned pre-trained VGG-16 model was introduced to clas-

sify the Hilbert spectrum images of the first four intrinsic mode functions (IMFs) components

obtained by applying the Empirical Mode Decomposition on the EEG recordings for patients

with schizophrenia and HC [71]. The deep-learning model was able to obtain an accuracy of

up to 98.2% in differentiating Schizophrenia from HC. Other studies proposed using a set of

pre-trained and fine-tuned deep-learning models including VGG-16, DenseNet121,

ResNet101 and Xception models for the automated detection of migraine from the CWT

images of EEG signals for 39 subjects (i.e., 18 migraine patients and 21 HC) [72]. A maximum

accuracy of 100% was achieved using the VGG-16 model for classifying subjects into patients

with migraine and HC.

Although several methods have been proposed for the detection and staging of PD

based upon awake EEG, the use of deep-learning for identifying the cognitive complica-

tions of PD including MCI or dementia based upon sleep EEG has not yet been investi-

gated. To address this critical issue, we propose a TFR based deep-learning framework that

exploits the sleep stages of EEG that were recorded for patients with PD in order to classify

the subjects into patients with NC or MCI as well as visualize the features attributed to

MCI.

3. Materials

This study leveraged a previously collected dataset including 36 participants with idiopathic

PD. PD participants (age: 65.5 ± 7.1; 62.7% male; race: Caucasian (91.5%) and African Ameri-

can (8.5%) participants; duration of PD: 5.63 ± 4.45 years; years of education: 15.7 ± 2.47

years) were recruited from the University of Alabama at Birmingham (UAB) Movement Dis-

orders Center.

Inclusion required age� 45 years, clinical diagnosis of idiopathic PD, Hoehn and Yahr

stage 2–3 and stable medication regimen for at least 4 weeks prior to study entry. Exclusion

criteria included examination or historical findings suggestive of secondary or atypical Parkin-

sonism, Montreal Cognitive Assessment (MoCA) score < 18, untreated sleep apnea, or use of

investigational drugs.

All PD participants underwent overnight laboratory-based polysomnography, with

study starting at approximately 10 pm and the duration of recording was 8 hours. EEG
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was recorded using 6 electrodes (i.e., F3, F4, C3, C4, O1, O2) at a sampling rate of 512 S/s.

Both Electromyography (EMG) and Electrooculography (EOG) data was collected as well.

Additionally, all participants were evaluated with a level II neurocognitive battery as defined

by the PD-mild cognitive impairment diagnostic criteria as recommended by the Movement

Disorders Society (MDS), with at least two tests in each of five cognitive domains [73]. Classifi-

cation of PD-MCI or PD-NC was determined using this assessment with 16 subjects having

MCI and 20 subjects having NC. All PD participants were also evaluated with the MDS-Uni-

fied PD Rating Scale (UPDRS).

In addition, for each of the subjects that have been identified as PD patients with NC or

MCI, a label was assigned to each fixed time interval (i.e., 30 seconds) of the sleep EEG time-

series in order to refer to the corresponding sleep stage (i.e., N1, N2, N3 and REM). In this

study, we have mainly focused on N2, N3 and REM only since the N1 sleep stage is light sleep

and often combined with α frequencies (8–12 Hz) of wakefulness.

4. Methods

Prior to the use of the dataset in this study, the institutional review boards for both the Univer-

sity of South Alabama and the University of Alabama at Birmingham have determined that

this study is not subject to FDA regulations and is not considered human subjects research.

De-identified subjects’ data were shared between the two institutions and a written informed

consent was obtained from all participants.

In this section, we introduce two deep-learning based frameworks applied on the TFR

representation of each sleep-stage segment of the sleep EEG time-series. The proposed frame-

works consist of three main stages: sleep-stage extraction, TFR, feature selection and classifica-

tion using proposed CNN models. The three stages of the proposed framework (See Fig 1) are

described as follows:

Fig 1. Proposed deep-learning framework.

https://doi.org/10.1371/journal.pone.0286506.g001
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4.1 Sleep-stage extraction

Each EEG time-series recorded for each subject mainly represents the four sleep-stages.

Excluding N1 from our analysis, each of the N2, N3 and REM sleep-stage EEG signals were

extracted for each subject and at each channel using the manually provided expert-based

labels.

4.2 TFR

Two TFR representation approaches were considered in this study; the CWT [74] and the vari-

ational mode decomposition (VMD) [75].

Using the CWT method, each sleep-stage EEG time-series was transformed into a two-

dimensional matrix Xi with each value defined as follows:

Xi s;Tð Þ ¼
1
ffiffi
s
p

Z 1

0

xi tð Þφð
t � T
s
Þdt ð1Þ

where xi(t) is the sleep-stage EEG time-series measured at the i th electrode, φ is the Morlet

analysis wavelet, T is the translation and s is the scale of the Wavelet where the scale is the

reciprocal of the Fourier frequency. As shown from Eq 1, the transformed signal Xi (s,T) is a

function of both time and scale.

Each Xi matrix was calculated using Eq 1 for each sleep stage EEG signal captured at each

electrode and related to each subject. We found that the matrix has 146 rows for N3 or REM

EEG signals and 176 rows for N2 signals where each row represents a scale. The bottom rows

represent lower scale values whereas the top rows represent higher scale values. This may show

that the N2 signals are composed of more scales or Fourier frequency components with respect

to other sleep stage signals.

Due to the large number of columns in each Xi matrix representing the total number of

time-samples recorded during an 8-hour sleep and to reduce the complexity of the following

deep-learning methods, the Xi matrices were further segmented across the columns creating

146×146 (N3/REM) or 176×176 (N2) smaller matrices. The absolute values of the 146×146

(N3/REM) or 176×176 (N2) matrices were calculated and normalized (i.e., were divided by the

maximum absolute value of each matrix). The normalized matrices were then provided to the

following proposed CNN-based model. Fig 2(a) and 2(b) shows the N3-CWT images for PD

subjects with NC and MCI respectively.

Using the VMD method, each sleep-stage EEG signal was decomposed and simplified into

a finite number of components or IMFs, each related to an independent source or a frequency.

The objective of VMD is to minimize the bandwidth of each mode such that the sum of all the

modes are equivalent to the original EEG sleep-stage signal. As a result, the VMD method is

noise-resilient, ensuring an almost accurate separation of the components of the EEG signal.

The VMD optimization method is defined as follows:

minBn
X

n

�
�
�
�
d
dt

d tð Þ þ
j
pt

� �

∗sn tð Þ
� �

e� jBnt
� ��

�
�
� ð2Þ

s:t:
X

n
sn tð Þ ¼ f tð Þ

where f(t), sn(t) and Bn represent the sleep-stage EEG time-series, the IMFs of the signal f(t)
and the bandwidths of the IMFs respectively. The IMFs of each sleep-stage EEG signal for each

subject and at each electrode were then calculated using Eq 2 and represented as two-dimen-

sional matrices with the columns of each matrix representing the IMFs of the signal while the
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rows represent the time-index. The left-most columns correspond to lower-frequency modes

whereas the right-most columns represent higher-frequency modes. The number of modes

was arbitrarily selected (e.g., 256) to ensure the simplicity of the required computations to exe-

cute the constrained optimization approach without losing any significant components of the

original sleep-stage EEG signals.

Further, each VMD matrix was further segmented across the rows generating square matri-

ces of 256×256 values. Each square matrix was then normalized, resized to 512×512, and finally

provided as an input to the following proposed CNN model. Fig 2(c) and 2(d) shows the

N3-VMD images for PD subjects with NC and MCI respectively.

4.3 Feature extraction and classification using the proposed CNNs

The proposed CNN models applied on the CWT and VMD data are described in Fig 3.

The proposed CNN models were trained and 4-fold cross validated in order to classify sub-

jects into PD with NC or PD with MCI. The proposed CNNs layers description is detailed in

Tables 2 and 3 when the CNNs were applied on both CWT and VMD data respectively.

5. Results

In this study, we aimed at studying N3 at both frontal channels (F3, and F4) and analyzing

both N2 and REM at central channels (C3, and C4). This is because delta frequencies in N3 are

most prominent in the frontal regions and that is associated with increased brain metabolic

activity in the frontal lobes [76]. Further, sleep spindles in N2 are generated in the thalamus

and are most easily detected in the central leads in a sleep study [77]. REM sleep can be

Fig 2. (a) N3-CWT for PD-NC (b) N3-CWT for PD-MCI (c) N3-VMD for PD-NC (d) N3-VMD for PD-MCI.

https://doi.org/10.1371/journal.pone.0286506.g002
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detected well in any leads, but the rapid eye movements are sometimes detected in the frontal

leads as artifacts.

5.1 Performance of the proposed CWT-based CNN

Following the sleep-stage EEG time-series extraction, time-segmentation, and CWT applica-

tion, we have obtained a number of segments per each sleep-stage as indicated in Table 4.

Based on the sleep EEG data collected, we were able to obtain a number of N2 CWT seg-

ments that are almost three times the number of samples obtained for N3 or REM. This is due

to the fact that N2 is considered the longest period representing the deeper sleep. The two

dimensional CWT segments were then provided to the proposed CWT-based CNN with train-

ing parameters defined in Table 5 that were identified by varying the number of epochs, the

optimizer, the learning rate and the batch size using the grid search algorithm [78] while

Fig 3. Proposed CNN for (a) N3 and REM CWT data (b) N2 CWT data (c) VMD data.

https://doi.org/10.1371/journal.pone.0286506.g003
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monitoring the 4-fold cross validation performance of the model (i.e., 4-fold cross-validation

accuracy, sensitivity, specificity, AUC and quadratic weighted Kappa (QWK) score).

For each sleep-stage, the 4-fold cross validation performance of the model was reported in

Table 6. It is clear from Table 6 that the proposed model achieved an accuracy, sensitivity and

specificity within the range of 92% to 96%, 91% to 95% and 91% to 95% respectively across the

three sleep-stages. It was also observed that the model offered a relatively higher accuracy up

to 95.9% and elevated QWK of 0.91 when applied on the N3 sleep-stage signals as compared

with N2 or REM signals. This may indicate that N3 may exhibit discriminative features of

PD-MCI and PD-NC. Further, it was also shown that the CWT-based CNN achieved the high-

est sensitivity of 94.9% and specificity of 95% for detecting PD-MCI when applied on N3 (F3).

These preliminary findings motivate the need for further future clinical analysis of the

Table 2. Components of the proposed CNN model applied on the CWT data.

Layer No. of Layers Layer Size No. of Kernels Kernel Features

Input Layer 1 176 × 176 × 3 (N2)/

146 × 146 × 3 (N3/REM)

- -

Convolution/ReLU 3 3 × 3 32 Same Padding

Pooling Layer 1 2 × 2 32 No Padding

Convolution/ReLU 3 3 × 3 64 Same Padding

Pooling Layer 1 2 × 2 64 No Padding

Convolution/ReLU 2 3 × 3 128 Same Padding

Pooling Layer 1 2 × 2 128 No Padding

Convolution/ReLU 2 3 × 3 256 Same Padding

Pooling Layer 1 2 × 2 256 No Padding

Fully Connected/ ReLU 3 128, 64, 32 1 -

Fully Connected 1 2 1 -

Softmax/Classification 1 1 -

https://doi.org/10.1371/journal.pone.0286506.t002

Table 3. Components of the proposed CNN model applied on the VMD data.

Layer No. of Layers Layer Size No. of Kernels Kernel Features

Input Layer 1 512 × 512 × 3 - -

Convolution/ReLU 3 3 × 3 32 Same Padding

Pooling Layer 1 2 × 2 32 No Padding

Convolution/ReLU 3 3 × 3 64 Same Padding

Pooling Layer 1 2 × 2 64 No Padding

Convolution/ReLU 3 3 × 3 128 Same Padding

Pooling Layer 1 2 × 2 128 No Padding

Convolution/ReLU 3 3 × 3 256 Same Padding

Pooling Layer 1 2 × 2 256 No Padding

Convolution/ReLU 2 3 × 3 512 Same Padding

Pooling Layer 1 2 × 2 512 No Padding

Convolution/ReLU 1 3 × 3 1024 Same Padding

Pooling Layer 1 2 × 2 1024 No Padding

Fully Connected/ ReLU 3 128, 64, 32,16 1 -

Fully Connected 1 2 1 -

Softmax/Classification 1 1 -

https://doi.org/10.1371/journal.pone.0286506.t003
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significance of and relevance of N3 sleep stage EEG particularly recorded at the frontal regions

of the brain to the PD-MCI early diagnosis and detection.

Further, Fig 4 shows the receiver operating characteristic (ROC) curves of the proposed

model which appear to be almost identical across the three sleep-stages. It is also obvious that

the model exhibits high separability between the two classes of interest (i.e., MCI and NC)

with a true positive rate of 1 at a false positive rate that is nearly less than 0.1. From the ROC

curve for the model applied on N3 EEG at the F3 shown in Fig 4(b), the model exhibits a

slightly improved AUC as compared to the same model when applied on N2 as well as REM

EEG data.

Further, the confusion matrix for the worst-performing CWT-based CNN when applied on

the testing set of the N2 (C3) data is provided in Table 7. The rows represent the ground truth

while columns represent the predictions.

It is clear from Table 7 that both the true positive and true negative image counts are signifi-

cantly high as compared to the false positive and false negative counts. This proves the ability

of the CWT-based CNN classifier to successfully identify NC or MCI at a high rate.

5.2 Performance of the proposed VMD-based CNN

Once again, we have obtained a number of VMD-based samples as indicated in Table 8 follow-

ing the segmentation of each sleep-stage EEG signal and the application VMD constrained

optimization.

The proposed CNN was then trained and a 4-fold cross-validated on the VMD-based seg-

ments with the model training parameters presented in Table 9 was conducted. The optimized

hyperparameters shown in Table 9 were obtained using the grid search algorithm [62].

Table 4. CWT dataset description.

Sleep Stage Training Data Size

N2 1,332,741

N3 406,886

REM 415,171

https://doi.org/10.1371/journal.pone.0286506.t004

Table 5. Proposed CNN training parameters.

No. of Epochs 100

Optimizer Adam Optimizer

Learning Rate 0.0001

Batch Size 32

https://doi.org/10.1371/journal.pone.0286506.t005

Table 6. Performance of the proposed CWT-based CNN.

Accuracy Sensitivity Specificity AUC QWK

N2 (C3) 92.1% ± 0.6% 91.2% ± 0.6% 91.5% ± 0.5% 0.97 ± 0.002 0.83 ± 0.012

N2 (C4) 93.1% ± 0.7% 92.6% ± 1% 93.2% ± 0.8% 0.98 ± 0.003 0.87 ± 0.014

N3 (F3) 95.8% ± 0.5% 94.9% ± 0.4% 95% ± 0.6% 0.98 ± 0.002 0.90 ± 0.01

N3 (F4) 95.9% ± 0.5% 94.7% ± 0.4% 94.9% ± 0.4% 0.98 ± 0.004 0.91 ± 0.011

REM (C3) 92.9% ± 0.5% 91.9% ± 0.4% 92.3% ± 0.4% 0.97 ± 0.003 0.85 ± 0.009

REM (C4) 94.7% ± 0.9% 93.9% ± 1% 94.1% ± 1% 0.98 ± 0.006 0.88 ± 0.02

https://doi.org/10.1371/journal.pone.0286506.t006
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The accuracy, sensitivity, specificity, AUC and QWK were also reported for each sleep-

stage (see Table 10).

Comparing Table 10 with Table 6, the proposed VMD-based CNN outperforms the CWT-

based CNN in terms of the accuracy, sensitivity, specificity, AUC and QWK with almost 7%

improvement across the different sleep-stages. This may indicate that VMD is more robust as

compared to CWT to artifacts and noise that may compromise the discriminative features of

PD-MCI.

We have also observed that the accuracy of the proposed VMD-based CNN model did not

significantly change across the different sleep stages or at the various brain regions where there

is almost a 0.8% deviation between the best accuracy at N3 (F3) and the least accuracy at REM

(C4). Although the proposed model has the highest sensitivity of 99.5% for detecting PD-MCI

from N3 EEG data at F4 channel, there was no significant deterioration in the sensitivity of the

model applied on other sleep-stages or brain regions. In addition, the QWK for the proposed

VM-based model was almost comparable to the accuracy metric across the sleep stages and

Fig 4. ROC of the proposed classifier applied on (a) N2 (C3) (b) N3 (F3) (c) REM (C3).

https://doi.org/10.1371/journal.pone.0286506.g004

Table 7. Confusion matrix of the proposed CWT-based CNN on N2 (C3).

NC MCI

NC 160,415 14,903

MCI 13,893 143,973

https://doi.org/10.1371/journal.pone.0286506.t007

Table 8. VMD dataset description.

Sleep Stage Training Data Size

N2 303,550

N3 232,055

REM 236,779

https://doi.org/10.1371/journal.pone.0286506.t008

Table 9. Model training parameters.

No. of Epochs 25

Optimizer Adam Optimizer

Learning Rate 0.00001

Batch Size 8

https://doi.org/10.1371/journal.pone.0286506.t009
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brain regions which indicate that the predictions of the model did not take by chance and the

high agreement between the predictions and the ground truth annotations (i.e., PD-MCI or

PD-NC) are based on reliable and unique features of the disease.

Fig 5 shows the ROC of the proposed VMD-based CNN across the three sleep-stages indi-

cating the superior separability of the classifier with an almost 100% true positive rate at a very

low false positive rate (~0%).

The confusion matrix for the relatively worst-performing VMD-based CNN model when

applied on N2 (C3) data is provided in Table 11 as follows.

Comparing the confusion matrix for the VMD-based CNN with that of the CWT-based

CNN, the proposed VMD-based CNN classifier outperforms and surpasses the CWT-based

CNN model in the ability to differentiate MCI from NC as well as exhibiting relatively lower

missed detection and false alarm rates.

5.3 Computational-time analysis

In addition to evaluating the performance of the proposed frameworks, we have measured the

time taken by the proposed approaches to execute the TFR representation operation and CNN

classification on a desktop computer with the following specifications: Intel(R) Xeon(R) Gold

5222 CPU@ 3.8 GHz, RAM of 80GB, NVIDIA Quadro P4000 GPU, and Graphics Memory @

48,858 MB. Table 12 shows the computational-time for both the CWT-based and VMD-based

deep-learning frameworks in order to classify 50 segments representing 50 seconds of the

patient brain behavior into PD-NC or PD-MCI.

From Table 12, it is clear that there is a slight difference between the time-delay incurred by

the two CNN models applied on the CWT and VMD data respectively (i.e., ~2s). However, the

VMD operation is extensively complex and required almost 6.4hrs to execute while the CWT

Table 10. Performance of the proposed VMD-based CNN.

Accuracy Sensitivity Specificity AUC QWK

N2 (C3) 99.2% ± 0.8% 98.5% ± 0.9% 98.7% ± 1% 0.99 ± 0.002 0.98 ± 0.02

N2 (C4) 99.4% ± 0.6% 98.7% ± 1.2% 99% ± 0.8% 0.99 ± 0.0007 0.98 ± 0.016

N3 (F3) 99.8% ± 0.1% 99.2% ± 0.5% 99.4% ± 0.5% 0.99 ± 0.0004 0.99 ± 0.007

N3 (F4) 99.6% ± 0.4% 99.5% ± 0.5% 99.6% ± 0.4% 0.99 ± 0.0001 0.99 ± 0.009

REM (C3) 99.5% ± 0.4% 99.1% ± 0.6% 99.3% ± 0.6% 0.99 ± 0.0001 0.98 ± 0.008

REM (C4) 99% ± 1% 98.1% ± 1.3% 98.4% ± 1.2% 0.99 ± 0.0001 0.97 ± 0.025

https://doi.org/10.1371/journal.pone.0286506.t010

Fig 5. ROC of the proposed classifier applied on (a) N2 (C3) (b) N3 (F3) (c) REM (C3).

https://doi.org/10.1371/journal.pone.0286506.g005
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application took slightly over 18 seconds. Hence, the VMD-based CNN framework may offer

a superior performance over the CWT-based CNN, however this is achieved at the cost of an

additional computational-time overhead (~6.4hrs). This may burden the real-time realization

and application of the VMD-based framework.

5.4 Feature visualization and interpretation

Due to the significant improvement in performance for the proposed VMD-based CNN with

respect to the CWT-based CNN, we have focused in this section to visualize, highlight and

interpret the significant features in the VMD images that triggered the highly accurate predic-

tion of PD-MCI or PD-NC. Fig 6 shows the VMD images for PD-MCI and PD-NC across N2

(C3), N3 (F3) and REM (C3) and the corresponding generated heat maps when the Grad-

CAM [79] was used. The Grad-CAM method calculates the averages of the gradients of the

score of a certain class (i.e., PD-NC or PD-MCI) with respect to the feature maps of the last

convolutional layer of the proposed VMD-based CNN. This operation can be defined as fol-

lows:

ak
c ¼

1

Zk

X

i

X

j

dyc

dAk
ij

ð3Þ

where yc is the score value generated by the model at the node/neuron designated for the class

‘c’ prior to the application of the SoftMax function, Zk is the size of the kth feature map (i.e.,

pixel count of the feature map), and Ak
ij are the pixel values of the kth feature map. Finally, the

class discriminative maps (which are represented using heat maps) for a certain VMD image

are then calculated as follows:

Grad � CAMc ¼ ReLU
X

k
ack∗Ak

� �
ð4Þ

where ReLU is the rectified linear unit.

From Fig 6, we have observed that across the three sleep-stages, the proposed VMD-based

CNN model was able to predict PD-MCI based on changes in the mid-frequency (for N3 and

REM) as well as high-frequency (for N2) VMD components (i.e., marked in red and yellow).

Although the patterns may not be easily interpretable by the human eye, this shows that those

components carry significant discriminative features of the disease. Further, PD-NC was dis-

tinguishable from PD-MCI based on changes attributed to low-frequency (for N3) as well as

mid-frequency (for N2 and REM) VMD components.

Table 11. Confusion matrix of the proposed CWT-based CNN on N2 (C3).

NC MCI

NC 39,654 523

MCI 536 35,177

https://doi.org/10.1371/journal.pone.0286506.t011

Table 12. Comparison of the computational-time for both the CWT-based and VMD-based CNN frameworks.

Framework Operation Time-delay

CWT-based CNN CWT 18.03 s

CNN 3.54 s

VMD-based CNN VMD 6.4 hrs

CNN 5.4 s

https://doi.org/10.1371/journal.pone.0286506.t012
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5.5 Comparative study of the proposed work and the-state-of-the-art

methods

Although a comparative analysis of the proposed CNN models with traditional machine

learning approaches including but not limited to SVM, KNN and multilayer perceptron

(MLP) would provide a justification for the selection of deep-learning in exploiting the

sleep EEG for patients with PD rather than standard machine learning, the use of machine

learning techniques will be challenging as the techniques require one-dimensional inputs

(e.g., sleep EEG time-series) rather than a two-dimensional input (e.g., CWT and VMD

samples/images). Further, we have previously experimented the use of standard machine

and deep-learning techniques directly on the time-representation of sleep EEG and the

classification accuracy was minimal. This may be due to the challenges related to the

inability to extract unique and discriminative features of the disease from instantaneous

time-series data that may be prone to noise and artifacts. In addition, the past studies [6, 7,

15–19] have focused on exploiting certain frequency bands of the EEG including δ, θ, β
and γ frequency bands in order to classify subjects into patients with PD and HC. That

motivated the use of two-dimensional TFR components of the sleep EEG in this study as

features of PD with MCI may be attributed to changes in both the time and frequency

domains.

Fig 6. VMD gray-scale images and their corresponding heat maps where the rows from top to bottom represent the N2 (C3), N3 (F3)

and REM (C3) respectively. Also, the first and last two columns represent the VMD images for PD-MCI and PD-NC respectively.

https://doi.org/10.1371/journal.pone.0286506.g006
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Despite not using the-state-of-the-art pre-trained models including VGG-16, DenseNet,

ResNet-50, MobileNet, etc. in our analysis, we have achieved a significantly high accuracy

using the proposed CNN models up to 95.9% and 99.8% when the CWT and VMD data were

used. In this study, we proposed novel CNN models with less number of layers and low

computational complexity with respect to most of the-state-of-the- art pre-trained models

including ResNet-50, MobileNet, DenseNet among others. The number of layers used in the

CWT-based CNN was 14 layers while the number of layers used in the VMD-based CNN was

19 layers as compared to 50 layers used in ResNet-50 and 203 layers used in DenseNet and that

may eventually minimize model overfitting.

In addition, the proposed models were adapted to the size of the input images representing

the 176 ×176 or 146 ×146 CWT samples and the 256 × 256 VMD samples without losing sig-

nificant details due to scaling the images (i.e., oversampling or undersampling the images) to

fit into the input layer of the models. For pre-trained models, images need to be scaled to a

fixed size such as 224 × 224 as in VGG-16 and ResNet-50 which may influence the quality of

the images, compromise the amount of detail and features related to the disease in the CWT/

VMD samples and eventually limit the ability of the models to identify distinctive and reliable

features of the disease.

Since to the best of our knowledge this is considered the first deep-learning framework that

has been developed to exploit the sleep EEG for patients with PD to identify the features of

MCI and NC, it is challenging to conduct an objective comparison between the proposed

work and other related works that have been limited to the use of deep-learning for PD detec-

tion, staging and biomarkers identification based upon awake EEG. Further, the dataset that

has been used in this study was recorded for PD patients during sleep while other datasets are

mostly related to resting-state EEG. Finally, we were able to provide a holistic comparative

study of the proposed work and the related state-of-the-art deep-learning methods applied on

the TFR of the awake EEG for patients with PD as shown in Table 13.

Table 13. Comparison of the proposed approach and the-state-of-the-art architectures for PD detection.

Approach Dataset TFR MDL Classification Accuracy

Khare et al., 2021

[58]

UC San Diego Resting State EEG for 15

PD and 16 HC

TQWT LSSVM HC Vs. PD (OFF Medication)

HC Vs. PD (ON Medication)

96.13%

97.65%

Khare et al., 2021

[59]

1. UC San Diego Resting State EEG for 15

PD and 16 HC

2. UKM Medical Center EEG for 20 PD

and 20 HC

Smoothed Pseudo Wigner Ville

Distribution

7-Layer

CNN

HC Vs. PD (OFF Medication)

HC Vs. PD (ON Medication)

99.7%

100%

Loh et al., 2021

[60]

UC San Diego Resting State EEG for 15

PD and 16 HC

Gabor Transform 5-Layer

CNN

HC Vs. PD (ON, OFF Medication) 99.46%

Shaban et al. [63] UC San Diego Resting State EEG for 15

PD and 16 HC

CWT 17-Layer

CNN

HC Vs. PD (OFF Medication)

PD (OFF Medication) Vs. PD (ON

Medication)

HC Vs. PD (ON, OFF Medication)

99.9%

99.8%

99.6%

Khare et al. [65] UC San Diego Resting State EEG for 15

PD and 16 HC

AOVMD AOELM HC Vs. PD (OFF Medication)

HC Vs. PD (ON Medication)

98.9%

98.6%

Chawla et al. [66] 1. UC San Diego Resting State EEG for 15

PD and 16 HC

2. UKM Medical Center EEG for 20 PD

and 20 HC

FAWT KNN HC Vs PD 99%

95.9%

Proposed Work UAB Sleep EEG for 16 PD-MCI and 20

PD-NC

CWT

VMD

14-Layer

CNN

19-Layer

CNN

PD-MCI Vs. PD-NC Up to

95.9%

Up to

99.8%

https://doi.org/10.1371/journal.pone.0286506.t013
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While it is not relevant to compare our proposed method with the current literature due to

the differences in the objective and the datasets used, the proposed CWT-based and VMD-

based deep-learning frameworks still provide a comparable high detection accuracy for

PD-MCI with respect to the related work.

6. Discussion

PD is the second most common neurodegenerative disease in the United States caused by the

degeneration of neurons in the substantia nigra of the brain. It is expected that the number of

patients who suffer from the disease will rise to 1.2 million by 2030 with almost 90,000 individ-

uals being diagnosed with PD each year according to the Parkinson’s foundation [3]. By the

time of onset of motor symptoms and diagnosis, almost 60%-80% of the dopaminergic nerve

cells are damaged in the substantia nigra of the brain [1]. At that point, the clinical diagnosis is

mainly based on the observation of the abnormalities in the motor system and is considered

subjective and prone to human error [3]. Accordingly, an early diagnosis and a timely initia-

tion of efficient therapeutic and neuroprotective treatments are crucial to improve the quality

of life for the patients and potentially slow down the progress of the disease. Although EEG is

not currently used for the clinical diagnosis of PD, several studies have shown its promise for

identifying unique and discriminative features for PD and cognitive dysfunction complica-

tions [6–11, 15–19]. In addition, age, sex, behavioral state (wake vs sleep), medication regime,

time of recording, EEG electrode position capturing the neural activity within a certain region

of the brain, sampling rate, and the artifacts or noise caused by patient’s motion or REM are all

important factors that need to be considered when conducting a clinical evaluation of PD

based on EEG.

Other studies have introduced machine and deep-learning approaches to differentiate PD

from HC, support the staging and biomarker identification of the disease based upon EEG,

MRI, speech tests, handwriting tests and sensory data [30–72]. In this study, we have proposed

two TFR based deep-learning frameworks where the sleep-stage (i.e., N2, N3 and REM) EEG

signals of overnight recorded EEG for PD patients with NC and MCI were extracted while

CWT or VMD transformation was applied on the segments and further two novel CNN mod-

els were developed to classify the CWT or VMD segments into PD-NC or PD-MCI. The pro-

posed CWT-CNN provided an accuracy of 92% to 96% across the three sleep-stages and at

four selected electrodes. In addition, the proposed VMD-CNN offered a significantly high

accuracy of 99.2% to 99.8% with a corresponding QWK of 0.97 to 0.98 proving the reliability

and preciseness of the models.

Further, it was also observed that the performance of the proposed CWT-based CNN mod-

els at the frontal regions are relatively higher than that at the central regions. There is almost

3.8% improvement in the performance of the model when applied on the N3 EEG data at the

frontal channel F4 over the same model when applied on N2 EEG data at the central channel

C3. However, there is no significant improvement of the application of the VMD-based CNN

on the frontal regions of the brain with respect to the central regions. It is also worth mention-

ing that our analysis was focused on studying certain brain regions for each sleep-stage due to

the relevance of the features at those locations for the discrimination of PD-MCI from

PD-NC. It has also been shown that PD-MCI was attributed with changes in the mid- or high-

frequency VMD components while PD-NC was characterized by variations in the low- and

mid-VMD components as determined by the Grad-CAM method.

The proposed frameworks serve as accurate as well as reliable computer aided-diagnostic

tools for neurologists to perform pre-screening of MCI in patients with PD in order to monitor

the progression of the disease to MCI based upon EEG signals recorded during each sleep

PLOS ONE Deep-learning for PD-MCI diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0286506 August 3, 2023 17 / 23

https://doi.org/10.1371/journal.pone.0286506


stage. This will also reduce the total cost of unnecessary cognitive testing for PD patients who

do not have MCI. In addition, this tool can also be used to minimize the number of failed clini-

cal trials identifying PD patients with MCI conducted by sleep medicine scientists.

Although the proposed frameworks provided promising results in differentiating PD-MCI

from PD-NC, it has the following limitations:

1. The size of the dataset that the models have been trained and validated on is limited. In

addition, the models have not been tested on real-time clinical data which is always a chal-

lenge facing deep-learning studies in the neuroscience field. However, our future plans will

include introducing a graphical user interface based software that implements the deep-

learning frameworks we have proposed and the software can be used by clinicians to test on

new EEG data for patients with PD and compare with their cognitive testing results.

2. In this study, we have not directly applied deep-learning on each IMF of a total of 256 IMFs

or subsets of IMFs generated by the VMD method to investigate the significance of each

individual IMF in the prediction outcome. This would have offered further insights into the

vital and significant frequency sub-bands that are useful in differentiating PD with MCI

from PD with NC. However, in this study, we were able to highlight the range of IMFs that

significantly influences the prediction of MCI using the Grad-CAM method. We have con-

cluded that across most of the VMD samples/images related to the three sleep-stages, the

mid and high frequency VMD components present unique and significant features for

MCI detection.

3. Although, we were able to identify samples based upon the sleep EEG for PD subjects with

and without MCI that have distinctive and discriminative features of the disease using a

simple and fast continuous wavelet transform and can be further classified with the pro-

posed CNN at a high accuracy (i.e., above 92%), the use of more efficient techniques includ-

ing Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor and

Margenau–Hill transforms will be further investigated to better understand unique features

of PD with MCI and dementia as well as early or prodromal PD using a larger dataset to be

collected for patients during sleep.

4. Although the proposed CWT-based CNN showed a significant improvement in classifying

subjects into PD-MCI and PD-NC when applied on the N3 segments of the sleep-EEG,

which is consistent with the findings of a recent study that demonstrated the correlation

between the N3 δ waves and cognition in PD [80], it would be useful to develop a proposed

framework that exhibit the ability to automatically segment N3 time-frames from the EEG

time-series and further classify the signals into MCI and NC.

5. Although the proposed VMD-based CNN provides a superior performance with respect to

the CWT-CNN framework, the computational-time required to execute the VMD transfor-

mation of 50 segments exceeds 6 hours which is not appropriate for the real-time applica-

tion and testing of the framework. In the future, we will address the optimization of the

VMD method and identify techniques that minimize the size of the input to the VMD

method.

6. Our proposed approach provides a precise prediction of the presence of MCI in PD patients

who have already developed MCI, However, it would be interesting if the proposed

approach predicts the risk of the progression to MCI. This can only be realized by having

access to sufficient sleep EEG data recorded for patients who have previously been with NC

but later progressed to MCI and further using the deep-learning models to classify PD sub-

jects into NC who have not progressed to MCI and patients who have developed MCI. This
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would provide outstanding support for specialists to recognize the risk for each patient and

take proactive steps to slow down the progression of the disease using effective and efficient

therapeutic treatments.
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15. Wetter T., Högl H., Yassouridis A., Trenkwalder C., and Friess E., Increased Alpha Activity in REM

Sleep in De Novo Patients with Parkinson’s Disease, Movement Disorders, Vol. 16, no. 5, pp. 928–933,

2001. https://doi.org/10.1002/mds.1163 PMID: 11746625

16. Latreille V., Carrier J., Gaudet-Fex B., Rodrigues-Brazéte J., Panisset M., Chouinard S., et al., Electro-
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