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Abstract

An appropriate dynamic coupling form between nodes and edges’ state can effectively pro-

mote the emergence of desired network function (phenomenon), but the existing literatures

have not conducted in-depth research on the coupling mechanism. This paper mainly

focuses on the coupling auxiliary mechanism of dynamic edges for the emergence of cluster

phenomenon of nodes, explores the essential relation between structure and function in

complex dynamical networks (CDNs). Firstly, a novel model of CDNs has dynamic systems

attached on not only nodes but also edges is proposed from the viewpoint of large-scale sys-

tem. Secondly, a feedback nodes controller is synthesized associate with the designed lin-

ear and adaptive dynamics of edges. Via the appropriate dynamic behaviors of the edges

system, the controlled nodes can realize cluster synchronized. Finally, the validity of the pro-

posed approaches is verified by a given numerical example.

Introduction

In early two decades, cluster synchronization in complex dynamical networks (CDNs) has

been widely studied because of its application in communication engineering and bioscience

[1–4]. From the viewpoint of graph theory, the nodes and edges, as the constituent elements of

complex network, represent respectively the entities and connection relationships between

entities in real networks. The nodes are seen as the representation subject of cluster synchroni-

zation, the edges are regarded as the bridge of communication between nodes to assist the

nodes realizing the desired cluster phenomenon via specific connection mode and strength

[5].

In order to more truly depict the structure of real networks, some types of edges are utilized

to describe the topology of CDNs in the existing literatures, such as, fixed topologies [6, 7],

multiple links [8–10], switchable topologies [11–13], random connection [14, 15] and so on.

Multi-links mean that there exists more than one edge between nodes, for example, people can

connect each other by mail, telephone, e-mail and so on. Switchable topologies imply that
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there are multiple different topologies in complex network controlled by switching signals. In

the studies about CNDs with random edges, the change of connection (connect or not-con-

nect) and strength obeys the given probability distribution. Although the diversity of edges

and its impact on the realization of cluster synchronization have been considered as noted

above literatures, the edges are not seen as the dynamic systems just like the nodes.

In many researches on dynamic characteristics in real networks, the edges are regarded as

the dynamic systems like the node, the mutual-coupling dynamic behaviors between nodes

and edges are studied. For example, in Internet congestion control, the resource transmission

rate of competing users and the links’ price can be regarded as the state of nodes and edges,

respectively. By designing the appropriate dynamics of edges, the maximum utility can be

obtained [16, 17]. In industrial web-winding system, the coupling mathematical models about

motors’ (nodes) velocity and webs’ (edges) tension are formed, the both can track the reference

value via the proposed controller [18, 19]. In biological nerve researches, some dynamics of

edges are proposed to understand learning, memory and oscillations in neural network [20–

25]. The edges can be provided with dynamic coupling characteristics with nodes instead of

static or simple switchable from the above instances, the desired function of complex network

will appear when the edges present the appropriate dynamic behavior. However, the dynamics

of dynamic edges for the evolution of cluster synchronization is discussed rarely.

In recent researches about CDNs control, the mutual-coupling models with nodes and

edges are proposed to explore the dynamic behaviors of CDNs. In [26, 27], the matrix equa-

tions about the connection relationships between nodes are built to analyze the evolution pro-

cess of structural balance, the nodes can be divided into two antagonistic factions in the

complex networks satisfying the feature of structural balance. In [28, 29], the dynamic behav-

iors of edges are concerned further, the Riccati-type matrix differential or difference equations

are adopted as the mathematical model of edges, the tracking control goal of edges can be real-

ized via the help of controlled nodes. In [30–32], the complete synchronization of nodes is

achieved via the assistant role of the proposed dynamics of edges.

Through the further analysis of the existing literatures, the shortcomings are summarized

as follows: (i) In [6–9, 11, 12, 14, 15], only one of the nodes and edges’ model is established not

both of them. (ii) In [28–32], the cluster synchronization of the CDNs composed of the

dynamic edges and nodes is not discussed, just pay attention on complete synchronization.

(iii) In [30, 32], the presupposed synchronization state of nodes is strongly related to the track-

ing target of edges, which is not common. In order to compensate for these deficiencies, firstly,

this paper proposes the nodes and edges dynamic models which are coupled mutually. Then,

by designing the more universal coupling form and node controllers, we explore the cluster

synchronization of nodes under the auxiliary role of the designed edges’ dynamics of edges,

and discuss the different roles that the linear and adaptive dynamics of edges for the dynamic

behaviors of CDN.

The main contributions are as follows: (i) Compared with [6–9, 11, 12, 14, 15], the novel

model of continuous-time CDNs is proposed. From the viewpoint of large-scale system con-

trol theory, the CDNs are considered to be composed of the nodes and edges dynamical sys-

tems (see Fig 1), the mutual-coupling mathematical models are established at the same time

not just nodes or edges. (ii) Two equations are employed to govern the dynamic behaviors of

linear and adaptive edges systems. The cluster synchronization is explored, and the different

effects of linear and adaptive dynamics of edges for the dynamic behaviors of CDNs are dis-

cussed. Compared with [28–32], the simplicity and universality of designed coupling form are

more than the counterpart. (iii) Under the proposed adaptive dynamics of edges, the intercon-

nection in the same cluster does not tend to zero while the synchronization is achieved, this

result is more general compared to the existing literatures.
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The remainder of the paper is organized as follows. Section 2 gives the mathematical model

and preliminaries. Section 3 presents the dynamics of edges system and the design approach of

node controller. A numerical simulation and conclusion are given in section 4, 5.

Preliminaries and model description

Notations: AT, A−1 denote the transpose and inverse of the matrix A, respectively. k�k

denotes the Euclid norm of the vector or the matrix. Rn, Rn×n denote the n-dimensional

Euclidean space and the set of n×n real matrix, respectively. In denotes the n-dimensional

identity matrix. diag{� � �} stands for a diagonal matrix or blocked diagonal matrix. A<0(>0)

denotes matrix A is a negative (positive) definite matrix (all real parts of eigenvalues are

negative (positive)). Let A = [aij]n×n, defining the operator D[A] = [dij]n×n, if aij 6¼1 then dij

=1, otherwise dij = 0. Symbols �, � stand for the Kronecker product and Hadamard prod-

uct, defined as A� B ¼

a11B � � � a1mB

..

. . .
. ..

.

an1B � � � anmB

2

6
6
4

3

7
7
5, A � C ¼

a11c11 a12c12 � � � a1mc1m

a21c21 a22c22 � � � a2mc2m

..

. ..
. . .

. ..
.

an1cn1 an2cn2 � � � anmcnm

2

6
6
6
6
6
4

3

7
7
7
7
7
5

,

where B is a matrix of any dimension, A = [aij]n×m, C = [cij]n×m.

Consider the continuous-time CDNs with N nonidentical nodes, the dynamic equations of

controlled nodes are proposed as follows

_xiðtÞ ¼ fiðxiðtÞÞ þ c
XN

j¼1

aijðtÞGhjðxjðtÞÞ þ uiðtÞ; i ¼ 1; 2; � � � ;N; ð1Þ

where, xi(t)2Rn is the state vector of nodes i, fi(�):Rn!Rn is nonlinear bounded function, c2R
is common coupling strength, Γ2Rn×n is inner coupled matrix, hj(�):Rn!Rn is coupled func-

tion and ui(t) is control input of node i. aij = aij(t)2R denote the time-varying connection

weight (edges) from node j pointing to node i.

Fig 1. The model composed of the edges and nodes systems.

https://doi.org/10.1371/journal.pone.0288657.g001
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Let xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; � � � ; xNðtÞ�
T
, A ¼ AðtÞ ¼ ½aijðtÞ�N�N , the nodes system composed of

all nodes is described by the following equation via Kronecker product

_xðtÞ ¼ FðxðtÞÞ þ c½AðtÞ � G�HðtÞ þ uðtÞ; ð2Þ

where FðxðtÞÞ ¼ ½f T
1
ðx1ðtÞÞ; f T

2
ðx2ðtÞÞ; � � � ; f T

N ðxNðtÞÞ�
T
,

HðtÞ ¼ ½hT
1
ðx1ðtÞÞ; hT

2
ðx2ðtÞÞ; � � � ; hT

NðxNðtÞÞ�
T
, and uðtÞ ¼ ½u1ðtÞ

T
; u2ðtÞ

T
� � � ; uNðtÞ

T
�
T
.

Define the edges system as follows

_aijðtÞ ¼
�ijðAðtÞ; xðtÞÞ; node i connects directly node j;

0; node i connects undirectly node j;
ð3Þ

(

where, function �ijð�Þ 6¼ �jið�Þ (i; j ¼ 1; 2; � � � ;N) which implies the network is directed, espe-

cially, the self-edge aii(t) is considered.

Let vectors aiðtÞ ¼ ½ai1ðtÞ; ai2ðtÞ; � � � ; aiNðtÞ�
T
ði ¼ 1; 2; � � � ;NÞ and ~AðtÞ ¼ ½a1

TðtÞ;
a2

TðtÞ; � � � ; aN
TðtÞ�T , the mathematical model of the node system can be rewritten as follows

_xðtÞ ¼ FðxðtÞÞ þ c½IN � ðG
~HðtÞÞ�~AðtÞ þ uðtÞ; ð4Þ

where ~HðtÞ ¼ ½h1ðx1ðtÞÞ; h2ðx2ðtÞÞ; � � � ; hNðxNðtÞÞ�.
Remark 1. (i) By the Vectorization operator

vecðAÞ ¼ ½a11; � � � ; an1; a12; � � � ; an2; � � � ; a1m; � � � ; anm�
T
, the equation vecðBACÞ ¼ ðCT �

BÞvecðAÞ holds, where A = [aij]n×m, B2Rs×n, C2Rm×g. Further, we can obtain

½AðtÞ � G�HðtÞ ¼ vecðG ~HðtÞAðtÞTÞ ¼ ½IN � ðG
~HðtÞÞ�vecðAðtÞTÞ ¼ ½IN � ðG

~HðtÞÞ�~AðtÞ, thus,

we can derive Eq (4) from Eq (2). (ii) The proposed complex networks in this paper have

dynamic systems attached on not only nodes but also edges, therefore, the dynamic behavior

of edges cannot be ignored in the evolution analysis of cluster synchronization of nodes. (iii)

In general, the exact values of the edges’ state are not obtained without state observer or sensor,

which implies the state of edges is unavailable for controller u(t) and is not controlled directly.

Assumption 1. If function fi(xi(t)) (i = 1,2,� � �,N) is norm bounded, there are exist N known

bounded nonnegative continuous functions θi(xi(t),t) (i = 1,2,� � �,N) satisfy that

kfiðxiðtÞÞk � yiðxiðtÞ; tÞ.
Assumption 2. The coupled functions hj(xj(t)) (j = 1,2,� � �,N) are bounded.

Lemma 1 [33]. The following properties are true via Kronecker product:

1. ðA� BÞ þ ðA� CÞ ¼ A� ðBþ CÞ,

2. ðA� BÞðC � DÞ ¼ ðACÞ � ðBDÞ,

3. ðA� BÞT ¼ AT � BT ,

where A,B,C and D are matrices with appropriate dimensional.

Definition 1. Let {G1,G2,� � �,GM} be a partition of the set {1,2,� � �,N} into Mnonempty sub-

sets, that is, [
M

k¼1
Gk ¼ f1; 2; � � � ;Ng and Gk6¼;. If the limt!1 kxiðtÞ � xjðtÞk ¼ 0 for i,j2Gk, the

complex network with systems (3) and (4) is said to achieve the cluster synchronization.

Control goal. Consider the CDNs with the edges system (3) and nodes system (4), design

the appropriate nodes controller u(t) and dynamics of edges ϕij(�) such that the cluster syn-

chronization can be realized.

In order to clarify the control architecture of this paper, the following diagram is given in

Fig 2.
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Main results

In this section, we propose two dynamics of edges to explore the cluster synchronization of

CDNs, respectively.

We suppose N nodes achieve M-cluster synchronization and the whole nodes splits into M
clusters. Without loss of generality, the sets of subscripts of these clusters are

G1 ¼ f1; 2; � � � ;N1g,

G2 ¼ fN1 þ 1;N2 þ 2; � � � ;N1 þ N2g; � � � ;GM ¼ fN1 þ � � � þ NM� 1 þ 1; � � � ;Ng. Define syn-

chronous errors in cluster Gj (j = 1,2,� � �,M), ej;kj
ðtÞ ¼ xsj

ðtÞ � xsjþ1ðtÞ (kj ¼ 1; 2; � � � ;Nj � 1),

ej;Nj
ðtÞ ¼ xlj

ðtÞ � x1þlj� 1
ðtÞ, where sj ¼ ð1þ lj� 1Þ þ ð2þ lj� 1Þ þ � � � þ ðlj � 1Þ, lj ¼

Xj

j¼1

Nj (N0

= 0). Next, we introduce the following constant matrix Λj (j = 1,2,� � �,M)

Lj ¼

1 � 1 0 � � � 0 0

0 1 � 1 � � � 0 0

0 0 1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 1 � 1

� 1 0 0 � � � 0 1

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

2 RNj�Nj : ð5Þ

Remark 2. (i) Let XðtÞ ¼ ½x1ðtÞ; x2ðtÞ; � � � ; xNðtÞ�
T
, EjðtÞ ¼ ½eðtÞj;1; � � � ; eðtÞj;Nj

� (1�j�M),

EðtÞ ¼ ½E1ðtÞ; E2ðtÞ; � � � ;EMðtÞ�
T
,L ¼ diagfL1; L2; � � � ;LMg, it can derive that E(t) = ΛX(t).

Matrix Λ is singular which implies limt!1 XðtÞ ¼ 0 cannot be obtained directly from

limt!1 EðtÞ ¼ 0, thus, the cluster synchronization is non-trivial. (ii) Especially, if M = 1 the

cluster synchronization will be complete synchronization.

Theorem 1. Consider the fully connected complex dynamical network with dynamics (3)

and (4). If the Assumptions 1, 2 are held, the cluster synchronization of nodes system can be

achieved via the proposed controller (6) and the dynamics of edges (7).

uðtÞ ¼ ½ðbIN þ gL
þ
LÞ � In�xðtÞ � kyðxðtÞÞksgðLa

TLaxðtÞÞ; ð6Þ

_aiðtÞ ¼ PiaiðtÞ � cD½aið0Þ� � HTðxðtÞÞXTðtÞLT
ðL

T
Þi

T; i ¼ 1; 2; � � � ;N; ð7Þ

where, β and γ are adjustable scalar that satisfy β+γ<0. Pi2RN×N satisfies Pi þ PT
i < 0, Λ+ is the

Moore-Penrose inverse matrix of Λ, Λα = Λ�In, (ΛT)i is the i-th row of ΛT,

Fig 2. The control diagram of the two intercoupling systems.

https://doi.org/10.1371/journal.pone.0288657.g002
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sgðxðtÞÞ ¼
xðtÞ
kxðtÞk

; xðtÞ 6¼ 0

0; xðtÞ ¼ 0

8
><

>:
, D½aið0Þ� ¼ ½dij�n�1

, if aij(0)6¼1 then dij = 1, otherwise dij = 0. If

node j is not directly connected to node i, aij(0) = 0, the j-th row of Pi is zero.

Proof. Define the cluster synchronization error vector

eðtÞ ¼ ½eT
1;1
ðtÞ; � � � ; eT

1;N1
ðtÞ; eT

2;1
ðtÞ; � � � ; eT

2;N2
ðtÞ; � � � ; eT

M;1
ðtÞ; eT

M;NM
ðtÞ�T . By the Vectorization

operator, it can derive eðtÞ ¼ vecðETðtÞÞ ¼ vecðXTðtÞLT
Þ ¼ LaxðtÞ. Via the controller (6), the

dynamical equation of cluster synchronization error e(t) can be expressed as follows

_eðtÞ ¼ La
_xðtÞ ¼ LafFðxðtÞÞ þ c½IN � ðG

~HðtÞÞ�~AðtÞ þ uðtÞg

¼ LaFðxðtÞÞ þ cðL� InÞ½IN � ðG
~HðtÞÞ�~AðtÞ

þ gðL� InÞððL
þ
LÞ � InÞxðtÞ

þ beðtÞ � kyðxðtÞÞkðL� InÞsgðLa
TLaxðtÞÞ

¼ LaFðxðtÞÞ þ c½L� ðG ~HðtÞÞ�~AðtÞ þ ðbþ gÞeðtÞ

� kyðxðtÞÞkðL� InÞsgðLa
TLaxðtÞÞ

ð8Þ

Let matrices Lb ¼ ½ðL
T
Þ

1
; ðL

T
Þ

2
; � � � ; ðL

T
ÞN �

T
, P ¼ diagfP1; P2; � � � ; PNg, the Equation is

rewritten as follows:

_~AðtÞ ¼ P~AðtÞ � c½D½~Að0Þ��T½IN � ð
~HTðtÞGTXTðtÞLT

Þ�Lb ð9Þ

Consider the following Lyapunov candidate function

V1ðtÞ ¼
1

2
½eTðtÞeðtÞ þ ~AðtÞT ~AðtÞ�: ð10Þ

The derivative of V1(t) along (8), (9) can be derived as

_V 1ðtÞ ¼ eTðtÞ _eðtÞ þ ~AðtÞT _~AðtÞ ¼ ðbþ gÞeTðtÞeðtÞ þ eTðtÞ½LaFðxðtÞÞ

� kyðxðtÞÞkLasgðLa
TLaxðtÞÞ� þ ceTðtÞ½L� G ~HðtÞ�~AðtÞ þ ~AðtÞTP~AðtÞ

� c~ATðtÞf½D½~Að0Þ��T � ½IN �
~HTðtÞGTXTðtÞLT

�Lbg;

ð11Þ

By the controller (6) and Assumption 1, one has that

eTðtÞ½LaFðxðtÞÞ � kyðxðtÞÞkLasgðLa
TLaxðtÞÞ�

¼ � kyðxðtÞÞkeTðtÞLasgðLa
TeðtÞÞ þ eTðtÞLaFðxðtÞÞ

� � kyðxðtÞÞk
eTðtÞLaLa

TeðtÞ
kLa

TeðtÞk
þ keTðtÞLakkFðxðtÞÞk

� keTðtÞLakðkFðxðtÞÞk � kyðxðtÞÞkÞ

� 0:

ð12Þ
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From the Lemma 1, we can obtain that

½IN � ð
~HTðtÞGTXTðtÞLT

Þ�Lb

¼ ½IN � ð
~HTðtÞGTETðtÞÞ�Lb

¼ vecð ~HTðtÞGTETðtÞ½ðLT
Þ

1
; ðL

T
Þ

2
; � � � ; ðL

T
ÞN �TÞ

¼ ½½ðL
T
Þ

1
; ðL

T
Þ

2
; � � � ; ðL

T
ÞN � � ð

~HTðtÞGTÞ�vecðETðtÞÞ

¼ ½L
T
� ð ~HTðtÞGTÞ�eðtÞ:

ð13Þ

Because the network is fully connected, D½~Að0Þ� ¼ 1 . . . 1 �
T�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
, it can derive that

½D½~Að0Þ��T � ½IN � ð
~HTðtÞGTXTðtÞLT

Þ�Lb ¼ ½IN � ð
~HTðtÞGTXTðtÞLT

Þ�Lb ð14Þ

Via the Eqs (12)–(14), one has

_V 1ðtÞ � ðbþ gÞeTðtÞeðtÞ þ
1

2
~AðtÞTðP þ PTÞ~AðtÞ þ ceTðtÞ½L� ðG ~HðtÞÞ�~AðtÞ

� c~ATðtÞ½IN � ð
~HTðtÞGTXTðtÞLT

Þ�Lbg

¼ ðbþ gÞeTðtÞeðtÞ þ
1

2
~AðtÞTðP þ PTÞ~AðtÞ þ ceTðtÞ½L� ðG ~HðtÞÞ�~AðtÞ

� c~ATðtÞ½LT
� ð ~HTðtÞGTÞ�eðtÞ

� ðbþ gÞeTðtÞeðtÞ þ
1

2
~AðtÞTðP þ PTÞ~AðtÞ < 0

ð15Þ

Therefore, the cluster synchronization error e(t) and edges’ state ~AðtÞ are asymptotic stabil-

ity via Lyapunov stability theory. This completes the proof of Theorem 1.

Remark 3: (i) The dynamics of edges (7) can be divided into two parts: one is the linear

term, the other is the coupling term about the nodes’ state. The matrix form of edges system is

proposed in [28–31] to discuss the tracking and synchronization control problem. In [31], a

more simplified and intuitive linear equation is proposed, but a strong correlation is set to the

reference targets between edges and nodes, meanwhile, the cluster synchronization is not con-

sidered. (ii) The result about the state of edges is asymptotic stability implies that the nodes

connect with weak strength, when the cluster synchronization is achieved. The outer-coupling

strength matrix (topology) are set to the every row-sum equal zero in the most existing results

about cluster synchronization of CDNs, these results are not conflict with the conclusion in

Theorem 1.

In the dynamics of edges (7), the network information, such as, matrix Γ, function ~HðtÞ
and coupling strength c are needed to know. In order to overcome this shortage, we propose

the adaptive dynamics of edges to explore the auxiliary role for nodes by using the state of

edges and nodes.

When the Assumption 1 is satisfied, there exists a positive constant ρ satisfying that

kc½L� G ~HðtÞ�k � r. The adaptive dynamics of edges is proposed as follows

_~AðtÞ ¼
� r̂ðtÞ

~AðtÞ
k~AðtÞk

kLaxðtÞk; k~AðtÞk 6¼ 0

0; k~AðtÞk ¼ 0

ð16Þ

8
><

>:

Where adaptive law _̂rðtÞ ¼ k~AðtÞkkLaxðtÞk.

N2
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Theorem 2: If the Assumptions 1 and 2 are held, the cluster synchronization of nodes systems

(3) can be realized via the nodes controller (6) and the coupling auxiliary role of edges system (16).

Proof: Consider the following Lyapunov candidate function

V2ðtÞ ¼
1

2
½eTðtÞeðtÞ þ ~AðtÞT ~AðtÞ þ ðr̂ðtÞ � rÞ2�: ð17Þ

The derivative of V2(t) can be derived as follows via the controller (6) and the dynamics of

edges (16)

_V2ðtÞ ¼ eTðtÞ_eðtÞ þ ~AðtÞT _~AðtÞ þ ðr̂ðtÞ � rÞ _̂rðtÞ

� ðbþ gÞeTðtÞeðtÞ þ ceTðtÞ½L� ðG ~HðtÞÞ�~AðtÞ

þ ~AðtÞT _~AðtÞ þ ðr̂ðtÞ � rÞ _̂rðtÞ

� ðbþ gÞeTðtÞeðtÞ þ rkeTðtÞk~AðtÞ � r̂ðtÞ
~AðtÞT ~AðtÞ
k~AðtÞk

keðtÞk

þ ðr̂ðtÞ � rÞk~AðtÞkkeðtÞk

¼ ðbþ gÞeTðtÞeðtÞ þ ðr � r̂ðtÞÞkeTðtÞkk~AðtÞk

þ ðr̂ðtÞ � rÞk~AðtÞkkeðtÞk

¼ ðbþ gÞeTðtÞeðtÞ

� 0:

ð18Þ

By the Lyapunov stability theory, the error e(t), the state of links ~AðtÞ and error r̂ðtÞ � r
are stable. Because _eðtÞ is bounded, the result about limt!1 eðtÞ ¼ 0 is derived by the Barbalat

lemma. This completes the proof of Theorem 2.

Remark 4. (i) The method of adaptive edge strategy is employed widely to help the realiza-

tion of cluster synchronization of nodes. However, the strength values of edge matrix are still

assumed to satisfy the dissipative condition (every row-sum equal zero), the coupling character-

istics between nodes and edges is not reflected in the existing methods, the proposed dynamics

of edges system (16) overcomes the defects. (ii) The results of Theorem 2 show that the state of

edges is stable via the dynamics (16), this means that the interconnect term in nodes’ dynamic

Eq (1) will not converge to zero when the cluster synchronization is achieved. This result is dif-

ferent from the most existing literatures, but the conclusion is more realistic, such as, the infor-

mation is still exchanging after the synchronization of populations is realized.

Simulation example

In this section, we use MATLAB for simulation experiments. Consider a 3-D neuron as the

isolated node of network, whose dynamics is as follows

_xiðtÞ ¼ � xiðtÞ þ ðYþ YiÞGðxiðtÞÞ; ð19Þ

where xiðtÞ ¼ ½xi1ðtÞ; xi2ðtÞ; xi3ðtÞ�
T
2 R3 is the state vector, GðxiðtÞÞ ¼ ½gðxi1ðtÞÞ;

gðxi2ðtÞÞ; gðxi3ðtÞÞ�
T
, gðsðtÞÞ ¼ 0:5ðjsðtÞ þ 1j � jsðtÞ � 1jÞ, Yi ¼ 0:01∗randnð1; 1Þ∗onesð3; 3Þ,

and Y ¼

1:25 � 3:2 � 3:2

� 3:2 1:1 � 4:4

� 3:2 4:4 1

2

6
4

3

7
5.

Remark 5. “randn” and “ones” are functions in MATLAB, “randn(n,m)” generates a n×m matrix

of normal random distribution, “ones(n,m)” generates a n×m matrix with all elements are 1.
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Let functions fiðxiðtÞÞ ¼ � xiðtÞ þ ðYþ YiÞGðxiðtÞÞ, hiðxiðtÞÞ ¼ ½cosðxi1ðtÞxi2ðtÞÞ;
sinðxi2ðtÞxi3ðtÞÞ; tanðxi3ðtÞxi1ðtÞÞ�

T
(obviously, the Assumption 2 is satisfied), inner coupled

matrix Γ = randn(3), c = 1. In this simulation, we make kyðxðtÞÞk ¼ kFðxðtÞÞk. The number

of nodes is 20, i.e., N = 20, let M = 4, G1 = {1,2,3,4,5}, G2 = {6,7,8,9,10}, G3 = {11,12,13,14,15},

G4 = {16,17,18,19,20}, control gain β = −11, γ = 1, initial values xð0Þ ¼ randnð3N; 1Þ,
~Að0Þ ¼ 5∗randnðN2; 1Þ. The matrix Pi ¼ Pi3Pi1Pi3

T , in which Pi1 ¼ diagfpi1; pi2; pi3g,

Pi2 ¼ randnð3Þ, pi1,pi2,pi3 is arbitrary negative real number, Pi3 is the orthogonal matrix of Pi2,

r̂ð0Þ ¼ randnð1Þ.
The simulation results are shown in Figs 3–8. In Figs 3 and 4, we can see that the cluster

synchronization error is convergent, meanwhile, the state of edges is also asymptotically stable.

These results illustrate the effectiveness of cluster synchronization control law (6) and dynam-

ics (7). By using the dynamics of edges (15), the cluster synchronization of NS can be realized,

the boundedness of ~AðtÞ and r̂ðtÞ is guaranteed from Figs 5–7. It should be noted that the

state of links ~AðtÞ is not asymptotically stable, this means the information exchanges between

nodes still exist after the cluster synchronization is realized. Fig 8 shows the state of controller

u(t) is stable, this simulation result is consistent with the conclusion of theoretical analysis.

Conclusion

In this paper, two dynamics of edges are proposed to explore the cluster synchronization evo-

lution mechanism of continuous-time CDNs. By the auxiliary role of linear edge dynamics,

the cluster synchronization of the controlled nodes can be achieved, the state of edges is

asymptotic stable. Via the adaptive dynamics of edges, the information exchanges between

Fig 3. The response curves of error e(t) via the dynamics of edges (7).

https://doi.org/10.1371/journal.pone.0288657.g003
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Fig 4. The response curves of state ~A~ðtÞ of the dynamics of edges (7).

https://doi.org/10.1371/journal.pone.0288657.g004

Fig 5. The response curves of error e(t) via the dynamics of edges (15).

https://doi.org/10.1371/journal.pone.0288657.g005
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Fig 6. The response curves of state ~A~ðtÞ of the dynamics of edges (15).

https://doi.org/10.1371/journal.pone.0288657.g006

Fig 7. The response curves of ρ̂^ðtÞ.

https://doi.org/10.1371/journal.pone.0288657.g007
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nodes still exist after the cluster synchronization of controlled nodes is realized, this conclusion

is different from the most existing results, but it is more realistic. From the viewpoint large-

scale system, this paper mainly explores the auxiliary mechanism of dynamic edges for the

dynamical behaviors of nodes, meanwhile, provides a novel perspective for revealing the essen-

tial relation between structure and function in complex networks.
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