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Objective: Human leucocyte antigen (HLA) class I alleles are the main host genetic
factors involved in controlling HIV-1 viral load (VL). Nevertheless, HLA diversity has
proven a significant challenge in association studies. We assessed how accounting for
binding affinities of HLA class I alleles to HIV-1 peptides facilitate association testing of
HLA with HIV-1 VL in a heterogeneous cohort.

Design: Cohort from the Strategic Timing of AntiRetroviral Treatment (START) study.

Methods: We imputed HLA class I alleles from host genetic data (2546 HIVþ parti-
cipants) and sampled immunopeptidomes from 2079 host-paired viral genomes (tar-
geted amplicon sequencing). We predicted HLA class I binding affinities to HIV-1 and
unspecific peptides, grouping alleles into functional clusters through consensus clus-
tering. These functional HLA class I clusters were used to test associations with HIV VL.

Results: We identified four clades totaling 30 HLA alleles accounting for 11.4%
variability in VL. We highlight HLA-B�57:01 and B�57:03 as functionally similar
but yet overrepresented in distinct ethnic groups, showing when combined a protective
association with HIVþ VL (log, b �0.25; adj. P-value < 0.05). We further demonstrate
only a slight power reduction when using unspecific immunopeptidomes, facilitating
the use of the inferred functional HLA groups in other studies

Conclusion: The outlined computational approach provides a robust and efficient way
to incorporate HLA function and peptide diversity, aiding clinical association studies in
heterogeneous cohorts. To facilitate access to the proposed methods and results we
provide an interactive application for exploring data.
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Introduction
The human leucocyte antigen (HLA) is a critical
component of the host immune response. HLA Class I
alleles mediate the antiviral response through the
presentation of intracellular viral peptides for recognition
by cytotoxic T cells. This mechanism is critical to the
host’s defense against diverse pathogens, which is why it is
among the most genetically diverse regions in the human
genome as evidenced by its association with our variable
response to infectious disease [1]. In the context of HIV,
HLA alleles are the canonical host genetic factors
associated with viral load (VL) [2], altogether contribut-
ing up to 12% of its variability [3]. Viral diversity, on the
other hand, is thought to explain two to four times as
much (20�46%) [4]. The combined relevance of both
host and viral genomics suggests the necessity for the
simultaneous analysis of both in the context of infectious
disease [5]. Different approaches have been used to study
this interaction such as genome-to-genome [6] or
peptidome-wide associations [7]. In addition, when
considering the interplay between host HLA alleles and
viral peptides, their association could be explained
functionally in terms of epitope binding and presentation.

Analysis of genetic variance within the HLA region and
its associations with clinical outcomes is challenged by
population-dependent distributions and the diversity of
HLA haplotypes. Reaching statistical power within this
region is difficult and while accounting for the effects of
this important immunological region is necessary, it is
often ignored altogether. Yet, the function of HLA is
conserved as a core component of the immune response
[8,9]. This suggests there may be shared functional
features within and between populations, even in the
presence of genotypic plasticity. Understanding the
structure of this mutual information could prove relevant
for the study of host�pathogen interactions where high
mutation rates are observed such as in HIV [10].

Immunopeptidomes have been used to estimate functional
similarities between HLA alleles in what was initially
denominated HLA supertypes [11]. These functional
groups are based on the propensity of various alleles to
bind similar sets of peptides. The algorithms used to estimate
these binding profiles have gradually improved over time
[12,13]. However, the consideration of HLA functional
groups in the context of Genome-Wide Association Studies
(GWAS) has largely been overlooked [14].

In this study, we considered the ability of HLA proteins to
functionally bind peptides leveraging the cost-effective-
ness of high-throughput genotyping as opposed to
directly assaying HLA function. We provide a framework
based on state-of-the-art computational methods for the
study of predicted immunopeptidomes and functional
HLA groups in the context of HIV-1 infection. In doing
so, we demonstrate the increased statistical power that is
gained by moving away from a purely genetic approach to
a functional one with implications for studying the
immune response either directly or as a confounder. We
processed HIV immunopeptidomes that incorporate
intra-host viral diversity and imputed HLA alleles from
the same geographically diverse cohort of people with
HIV (PWH) and antiretroviral therapy (ART) naı̈ve
participants from the Strategic Timing of AntiRetroviral
Treatment (START) trial [15]. Interactive results of this
work and complementary data are available via a web
application (https://persimune-health-informatics.shi-
nyapps.io/PAW2022Zucco__HLA_HIV_INSIGHT/).
Methods

Ethics
Host and viral samples in this study were extracted and
analyzed from participants in the START clinical trial
(NCT00867048) [15], conducted by the International
Network for Strategic Initiatives in Global HIV Trials
(INSIGHT) and the Community Programs for Clinical
Research on AIDS (CPCRA). Written consent for the
study and genetic analyses were obtained from the
participants and approved by participants’ site ethics
review committees.

Human leucocyte antigen class I alleles
Imputation of HLA class I alleles (HLA-A, HLA-B and
HLA-C) for 2546 genotyped ART-naive, HIVþ parti-
cipants was performed with HIBAG at 4-digit resolution
[16]. Full details of the imputation process and quality
control are described in previous publications [2,17]. A
multiethnic pre-trained model was used for imputation
with a minimum out-of-bag accuracy of over 90% for all
loci. HLA diversity was measured by the inverse Simpson
index based on the HLA allele frequencies per locus and
country. This index represents the complement of the
probability that two participants would have the same
HLA allele for a selected locus in a country.

Immunopeptidomes and binding affinity
prediction
Plasma samples were obtained for a subset of 2079 ART-
naı̈ve, HIVþ participants from 21 countries enrolled in
the START study. Viral RNAwas sequenced, paired-end,
using Illumina MiSeq and covered two amplicons in the
HXB2 genome positioned 1485–5058 and 5967–9517.
The sample preparation, library preparation, sequencing
procedure, and detailed quality controls have been
described previously [18]. Raw reads were fragmented
into 27-mers using KAT [19] and those with a count
higher than 1 were translated into peptide sequences of
nine amino acids length to fit the mean length of HLA
Class I epitopes. Peptides were mapped to 10 major HIV
proteins (Asp, Gag-Pol, Nef, Vpr, Vpu, gp160, Vif, Pr55,
Rev, Tat) from NCBI RefSeq NC001802.1 (Supple-
mentary file 1, http://links.lww.com/QAD/C849) using
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Table 1. Demographic characteristics of the START cohort at study
entry.

Characteristics Genotyped participants
(n¼2546)

Median age (IQR) (years) 36 (29–45)
Sex [n (%)]

Female 511 (20.1)
Male 2035 (79.9)

Race/ethnic group [n (%)]
Black 577 (22.7)
Hispanic 498 (19.6)
Asian 26 (1.0)
White 1404 (55.2)
Other 41 (1.6)

Geographical region [n (%)]
Africa 343 (13.5)
Asia 0 (0)
Australia and New Zealand 96 (3.8)
Europe and Israel 1148 (45.1)
Latin America 499 (19.6)
United States and Canada 460 (18.1)

Mode of HIV-infection [n (%)]
Sexual contact

MSM 1633 (64.1)
With a person of the opposite sex 751 (29.5)

Injection-drug use 45 (1.8)
Other 117 (4.6)

Median time since HIV diagnosis
(IQR) (years)

1 (0–3)

ART-naive [n (%)] 2546 (100)
Median CD4þ T-cell count (IQR)

(cells/ml)
651 (585–759)

Median HIV viral load (IQR)
(copies/ml)

14 833 (3503–46 000)

IQR, interquartile range; MSM, men who have sex with men; ART,
antiretroviral treatment.
BLAST 2.8.1 (blastp-short). Hits with an E-value
> 1E�05 were excluded to remove low-quality k-mers
by considering exact matches. To compare HIV
peptidomes with random sequences, a set of half-million
9-mers were generated by processing the same number of
random protein sequences from Uniprot. Binding
affinities for 268 class I HLA alleles to both HIV and
random peptidomes using NetMHCpan 4.0 [20]. Three
different immunopeptidome subsets were generated by
selecting peptides from the top 10% binding affinities, 10%
most variable peptides, and peptides that potentially bind
to at least 10% of the alleles using <500 nmol/l as general
threshold [12].

Consensus clustering
Hierarchical clustering was implemented using two
different linkage functions. Average linkage was used
for measuring relationships between HLA alleles repre-
sented by dissimilarity defined as cosine, correlation and
Euclidean distances. For clustering based onWard linkage,
cosine and correlation distances were corrected by the
square root to satisfy the triangular inequality necessary to
operate in Euclidean space [21]. To generate an ensemble
of clustering solutions, we employed consensus clustering
to mitigate bias from the subset, distance metric, or chosen
linkage function [22]. A consensus matrix (Cij) of size (n�
n) was built where each element is the number of times an
ith allele clustered together with a jth allele [23] at a
varying total number of clusters selected (3–160). The
consensus matrix was then processed by hierarchical
clustering with average linkage after transforming the
values into dissimilarity scores (1 – Cij). Clustering was
performed in Python 3.7.1 using the Scipy library [24].

Statistical analyses
Associations of log10-transformed HIV VL with each
node of the consensus tree were tested by linear regression
and adjusted by sex, self-reported race, and country
(Supplementary Table 1, http://links.lww.com/QAD/
C849). HIV VL was measured once at study entry [2] and
log10-transformed to approximate normality (Figure S3,
Supplemental Digital Content, http://links.lww.com/
QAD/C849). Tested HLA alleles had to be present in
more than 10% of the participants. Multiple testing was
controlled by a Benjamini–Hochberg procedure using a
q-value <0.05 to identify associations. Analyses were
performed in R v3.6.0 [25].

Data visualization and availability
Consensus clustering dendrograms and association coeffi-
cients were depicted using Interactive Tree of Life (iTOL)
[26] and tanglegrams, which were generated by the
dendextend R package [27]. We provide a flexible
visualization of peptide-to-HLA binding profiles across
viral proteins. Data downloads and access to supplementary
materials are made available through the app (https://
persimune-health-informatics.shinyapps.io/PAW2022-
Zucco__HLA_HIV_INSIGHT/).
Results

Baseline characteristics for the START cohort
We used baseline data and the genotypes of 2546
participants from the START trial. Next-generation
sequencing of HIV samples was retrieved for a subset of
2079 participants. All participants included in the trial
were asymptomatic HIVþ and ART-naive with two
CD4þ cell counts >500/ml at least 14 days apart within
60 days of enrollment in the trial. Baseline characteristics
for study participants can be found in Table 1.

Prediction of patient-derived HIV
immunopeptidomes
Our approach for immunopeptidome generation initially
yielded 9.88 � 107 peptide 9-mers. After filtering and
mapping with BLAST to 10 major HIV proteins, a total of
173 792 nine-mers were considered. This accounted for a
99.22% coverage across the reference proteome. Among
the final list, we observed 136 best-defined CTL/CD8þ

epitopes from Los Alamos (version 2019-11-20; Supple-
mentary file 2, http://links.lww.com/QAD/C849).

Data exploration
To facilitate the exploration of the results, a web
application was developed (Fig. 1) providing tools to
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Fig. 1. Web application demonstrating a subset of available data visualizations. Panels (a) and (b) illustrate the global diversity in
terms of Shannon entropy of imputed HLA alleles and HIV subtypes respectively. Darker (navy) colors indicate higher diversity.
Panel (c) showcases the interactive component to further examine specific HLA alleles, an HIV subtype and/or peptide frequencies
for the selected cohort with options to explore individual countries in detail. HLA, human leucocyte antigen.
interactively navigate the global and local diversity of
imputed HLA alleles, HIV subtype-derived peptides, and
their corresponding binding profiles. Shannon and
Simpson diversity indices can be directly visualized on
the world map highlighting the geographical diversity of
the cohort. This interactive tool facilitates the further
examination of specific HLA allele, HIV subtype, or
peptide frequencies for the entire cohort and options to
explore details at a country level.

Higher human leucocyte antigen-A diversity is
associated with a lower mean viral load per
country
The diversity of HLA Class I alleles measured in terms of
the inverse Simpson index was calculated using the HLA
allele frequencies per locus and country for comparison.
A negative univariate correlation (R¼�0.65,
P¼ 0.0018) between HLA-A diversity and mean HIV
log10(viral load) per country was found. This indicates
that countries in our cohort with a high diversity of HLA-
A alleles would show lower levels of HIV VL in the
population represented in terms of mean log10(VL). No
significant correlation was observed for HLA-B and
HLA-C, respectively (Fig. 2).

Consensus clustering of HIV-derived
immunopeptidomes improves statistical power
compared to random immunopeptidomes
Consensus trees were generated based on a half-million
random peptides from Uniprot and the predicted HIV
immunopeptidome under the same methodology. The
correlation between both trees was 0.985 indicating high
similarity. Minor differences were found in allele distances
(Figure S1, Supplemental Digital Content, http://links.
lww.com/QAD/C849) with only a few major structural
changes such as the displacement of B�35:20 from a
predominantly B�15 node (unspecific immunopepti-
dome) to one dominated by B�35 alleles (HIV
immunopeptidome). Another two examples are HLA-
B�15:13 and B�15:58 which moved from a node of
predominantly HLA-C alleles (unspecific immunopepti-
dome) to a node of HLA-B alleles (HIV immunopepti-
dome). These small differences, when combined, were
translated into an increase in statistical power (Figure S2,
Supplemental Digital Content, http://links.lww.com/
QAD/C849). Overall, when assessed in a multivariate
model including all HLA class I alleles as covariates the
combined percentage of explained variance accounted for
11.44% of the VL after adjustment for sex, self-reported
race, and country. Hence, our clusters of HLA function
accounted for HIV-VL variance to a similar degree as
reported by Bartha et al. [3] for genotypic evidence in a
comparatively pure European cohort. This highlights that
accounting for HLA function is sufficient to explain
variability in VL in heterogeneous populations compara-
ble to studies performed in homogeneous cohorts [3,7].

Human leucocyte antigen class I functional
nodes associations with HIV-viral load
Associations between the HLA functional nodes and
measurements of HIV-VL taken at study entry were tested
using linear regression. Four nodes with a consistent effect

http://links.lww.com/QAD/C849
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Fig. 2. Correlations between HIV viral load and HLA diver-
sity per country for three HLA loci.Mean log10(HIV-VL) was
depicted (y-axis) as dot plots against HLA diversity measured
in terms of Simpson index (x-axis) for three HLA class I loci
(HLA-A, -B, -C) in 21 countries. The noted R corresponds to a
Pearson correlation with its corresponding P-value. HLA,
human leucocyte antigen.
size were associated with HIV-VL (Fig. 3). These nodes
were composed of 30 HLA class I alleles of which 11 were
observed in participants with measurable VL at study
entry. Two functional nodes were associated with a lower
VL, one group composed of HLA-B�57:01, B�58:01,
B�57:02, and B�57:03 (b �0.25, q-value 7.02E�06) and
the second group composed of a pair of HLA-C�08
alleles, HLA-C�08:04 and C�08:01 (b�0.29, q-value
0.042). In contrast, two nodes showed an association with
higher VL, one cluster composed of six HLA-B�44 alleles,
B�44:05, B�44:08, B�44:04, B�44:03, B�44:02, B�44:27
(b 0.15, q-value 0.003) and a mixed group composed of 16
alleles: B�35:20, B�35:16, B�35:10, B�35:43, B�35:08,
B�35:19, B�35:41, B�35:01, B�35:17, B�35:05, B�44:06,
B�56:03, B�53:01, B�15:08 and B�15:11 (b 0.13, q-value
0.048). From these alleles, only two (HLA-B�57:01 and
B�57:03) were associated with HIV-VLwhen tested at the
individual allele level (Fig. 3).
Discussion

In this study, we implemented a computational approach
based on consensus clustering of HLA alleles using
predicted immunopeptidomes to explore associations of
functional HLA groups in a geographically diverse cohort
of PWH. We defined functional similarity as differences
in epitope binding profiles between HLA alleles and
performed HLA imputation on patients enrolled in the
START study. We combined the host genetic informa-
tion with viral genomics through the prediction of
immunopeptidomes. Viral sequences derived from a
subset of participants were processed into peptides to
predict binding affinities to 268 HLA class I alleles which
allowed us to generate distance matrices of HLA alleles.
Consensus clustering allowed us to agglomerate HLA
alleles into nodes by their functionality. Four nodes were
found to be associated with HIV-VL, implicating alleles
that could not be detected when performing independent
allele-specific tests alone. These four nodes accounted for
a total of 30 HLA alleles of which 11 were observed in
our cohort.

The effects differed among the four nodes associated with
HIV-VL. One node containing four well characterized
alleles HLA-B�57:01, B�58:01, B�57:02, and B�57:03
showed an association with lower HIV-VL indicating a
protective effect. This effect has been previously reported
on an individual allele level [28]; we confirmed and
observed shared binding affinity profiles that now indicate
their common mode of function. While having a similar
effect in HIV-VL, these four alleles are represented at
different frequencies between populations. For example,
HLA-B�57:01 carriers are of European descent com-
pared to B�57:03 which is predominant among those of
African descent [2]. The similarity in function was
captured by our analysis despite the differences in allele
frequencies. A second protective node contained two
alleles, HLA-C�08:04 and C�08:01, which have been
reported in an admixed population and detected after
adjusting for multiple factors such as CD4þ and CD8þ

counts [29]. We showed that such association could not
only be detected in our study but that functional
clustering provided a clear and simple method to do it
with greater mechanistic insight. We report a node of six
HLA-B�44 alleles, in this case, associated with a higher
VL. This finding contradicts a previous study in a cohort
of participants of Chinese descent [30] in which a few
alleles of the cluster were found to have a protective effect.
Given the large effect of viral diversity on VL, this could
be a result of regional adaptation that could not be
accounted for in our study due to the lack of participants
from the same region. While this suggests a weakness in
our study due to the underrepresentation of some
ethnicities, divergence in our results from studies on
homogeneous populations could be a useful tool to detect
localized effects. However, data from a cohort with
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Fig. 3. Dendrogram of 268 HLA class I alleles based on consensus clustering of predicted binding affinities to HIV peptides.
Predicted binding affinities to 173 792 HIV peptides were used to calculate the HLA allele distances used for consensus clustering
and represented as a dendrogram through hierarchical clustering. Associations with log10(HIV-VL) of each node (HLA functional
node) and leaves (HLA alleles) in the dendrogram were tested and adjusted by sex, self-reported race, and country. Associations
were defined by an adjusted P-value (Benjamini–Hochberg) <0.05 and are represented as thick branches for nodes and black
triangles for leaves. White triangles indicate HLA alleles detected in our cohort. The effect of the respective associations is color-
coded from protective effect (blue) to detrimental (red). On the outer ring, HLA allele counts are depicted as green bars. An
interactive version of the tree can be found in the provided web application. HLA, human leucocyte antigen.
sufficient Chinese representation is needed to confirm
the findings.

Defining discrete nodes of HLA alleles is challenging as
distances between alleles are based on predicted binding
affinities and measured continuously. Therefore, metrics
to define a fixed number of clusters failed to suggest a
robust threshold for cutting the trees obtained by
consensus clustering. For this reason, the final HIV-
associated groups of alleles were determined by assessing
the trees hierarchically from leaves (individual HLA
alleles) to roots (broad HLA nodes), thus optimizing
groups based on their association with VL when the
combination of alleles in all child nodes supported it. In
this way, the methodology implemented provides an
advantage to traditional HLA association studies by
adaptively increasing the signal of functional groups
allowing to uncover associations that could not be found
at the individual allele level due to the number of
statistical comparisons or sample size [14]. Grouping or
clustering of variables to increase statistical power and
limit multiple testing is common practice in epidemio-
logical studies. The functional clustering presented here,
however, is based on the assumption that the majority of
HLA functionality is mediated by peptide binding
affinities. This serves to facilitate study design by
simplifying decisions on the size and diversity of the
cohort while allowing a biological interpretation of the
results. For example, it enables the inference of the effect
of unobserved HLA alleles on HIV-VL given their
common function to those observed. These are notable
challenges across clinical studies attempting to measure
the effect on the immune response. Altogether, the
functional clustering approach presented is neither
specific to HIV nor VL and may be transferred to study
HLAs and outcomes in other host-pathogen interactions.
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Similar computational approaches were proposed to
explore HLA class I molecules and their role in HIV-1
infection: These studies mainly focused on genome-to-
genome approaches [6], techniques to find new epitopes
in European participants using a peptidome approach [7]
or to explore the interactions of HLA class I molecules to
other ligands [31]. In contrast, we focused on the host
factors, the HLA class I alleles, accounting for the high
diversity of the cohort and inclusion of a larger number of
viral sequences to predict immunopeptidomes and
expand on genome-to-genome analyses previously
performed in our same cohort [18]. While implementa-
tions of HLA clustering in the context of HIV-1 have
been developed based on a Bayesian framework [13] these
were limited by the diversity of their data and assumptions
of the clustering parameters. Extra considerations must be
taken when clustering predicted immunopeptidomes to
avoid bias introduced by predominantly low binding
affinity predictions, which can affect the reliability of the
computed distances between HLA alleles. To solve this,
we used consensus clustering by computing different
subsets of immunopeptidomes and avoiding bias from
non-binders when calculating distances between HLA
class I alleles under multiple linkage functions. The
ensemble of implemented techniques avoids bias due to
high dimensionality and has shown success when applied
to clustering of biological data [22].

We propose diverse methodological improvements in the
analysis of host-viral genetics. From the host genetics
perspective, we showed that imputed HLA class I alleles can
be used to calculate HLA diversity without requiring full
HLA sequences. We found an inverse correlation between
HLA diversity in terms of the Simpson index of HLA-A
alleles and HIV VL per country. Further assessment of these
results is necessary since the reported correlations could be
influenced by potential cofounders [32]. From the viral
genetics perspective, we incorporated viral sequences using
a fast k-mer approach to avoid generating a consensus
sequence, especially for pathogens of high genetic
variability and to take into account the intra-host viral
diversity [33]. When combining host and viral information
through predicted binding affinities, we showed that the
differences between clustering based on specific HIV and
random immunopeptidomes facilitate a slightly higher
resolution of the trees. We suggest that the unspecific HLA
clusters from the latter approach could be used for other
infectious phenotypes. This is likely due to the diversity of
viral genomes present in our dataset, and this may not be
the case for smaller, more homogeneous cohorts. However,
it suggests that our immunopeptidomes could work as a
proxy for other similarly diverse studies that do not have
access to paired viral genomes. Alternatively, new
immunopeptidomes may be proposed based entirely on
synthetic data at the risk of increased type-II error.

Although we demonstrate the utility of the implemented
methodology onHIV, there is also a clear road to extend it
to the analysis of other pathogens eliciting class-I immune
responses as well as the opportunity to analyze the
variation of HLA structure in populations and within the
context of multiple pathogens. Another possible applica-
tion could be as a screening tool for the most effective
peptides either for targeting populations carrying specific
allelic distributions or maximizing coverage of vaccines
across geographies. Finally, we propose that the focused
consideration of HLA function in terms of peptide
binding affinities provides a promising approach to
inform modern vaccine design. This would be relevant in
the advent of mRNA vaccines coming to fruition after
decades of research [34] as they take advantage of proper
peptide selection. As an example, the need for a new class
of tools that account for both variable immunogenic
coverage and clinically relevant mutations has been
highlighted during the recent SARS-CoV-2 pandemic
[35]. To facilitate open research, the results of this
work are made available for common use via a web
application (https://persimune-health-informatics.shi-
nyapps.io/PAW2022Zucco__HLA_HIV_INSIGHT/)
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