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ABSTRACT
Free energy simulations that employ combined quantum mechanical and molecular mechanical (QM/MM) potentials at ab initio QM (AI)
levels are computationally highly demanding. Here, we present a machine-learning-facilitated approach for obtaining AI/MM-quality free
energy profiles at the cost of efficient semiempirical QM/MM (SE/MM) methods. Specifically, we use Gaussian process regression (GPR) to
learn the potential energy corrections needed for an SE/MM level to match an AI/MM target along the minimum free energy path (MFEP).
Force modification using gradients of the GPR potential allows us to improve configurational sampling and update the MFEP. To adaptively
train our model, we further employ the sparse variational GP (SVGP) and streaming sparse GPR (SSGPR) methods, which efficiently incor-
porate previous sample information without significantly increasing the training data size. We applied the QM-(SS)GPR/MM method to the
solution-phase SN2 Menshutkin reaction, NH3 + CH3Cl→ CH3NH+3 + Cl−, using AM1/MM and B3LYP/6-31+G(d,p)/MM as the base and
target levels, respectively. For 4000 configurations sampled along the MFEP, the iteratively optimized AM1-SSGPR-4/MM model reduces
the energy error in AM1/MM from 18.2 to 4.4 kcal/mol. Although not explicitly fitting forces, our method also reduces the key internal force
errors from 25.5 to 11.1 kcal/mol/Å and from 30.2 to 10.3 kcal/mol/Å for the N–C and C–Cl bonds, respectively. Compared to the uncorrected
simulations, the AM1-SSGPR-4/MM method lowers the predicted free energy barrier from 28.7 to 11.7 kcal/mol and decreases the reaction
free energy from −12.4 to −41.9 kcal/mol, bringing these results into closer agreement with their AI/MM and experimental benchmarks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156327

I. INTRODUCTION

Accurate free energy profile simulation, which is critical for
understanding many chemical and biochemical processes,1 requires
proper descriptions of the potential energy surfaces (PESs) of the
system. Classical (nonreactive) force fields cannot be directly used
to model chemical reactions because they lack proper PES descrip-
tions of bond dissociation/formation processes, for which quan-
tum mechanical methods are needed to characterize the associated
changes in electronic structures. In condensed phases, these pro-
cesses are often simulated by combined quantum mechanical and
molecular mechanical (QM/MM) methods,2–7 with which a small-
sized, electronically reactive subsystem is modeled using quantum

mechanics, whereas the surrounding nonreactive environment is
modeled using molecular mechanics. High-quality, ab initio (AI)
PES descriptions of the QM region are generally accurate and reli-
able, but they are usually computationally too time-consuming to
obtain. This puts a limitation on the use of AI/MM methods in
molecular dynamics (MD)-based free energy simulations, for which
significant amounts of phase space sampling are needed to obtain
statistically robust free energy profile along the reaction coordi-
nate. By contrast, semiempirical (SE) methods, including molecular
orbital (MO) methods based on the neglect of diatomic differen-
tial overlap (NDDO) approximation, such as MNDO,8 AM1,9 and
PM3,10 and approximate density functional theory (DFT) methods
such as the self-consistent-charge density-functional tight-binding
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(SCC-DFTB) method,11–13 offer efficient PES alternatives to render
sufficient sampling affordable, but they usually sacrifice accuracy for
speed.

How to combine the accuracy of AI/MM methods and the
efficiency of SE/MM methods has therefore posed a significant
challenge (and opportunity) in QM/MM free energy simulations.
One way to accomplish this is through indirect free energy simu-
lations. Specifically, one carries out free energy perturbation (FEP),
in which a correction term is applied to the SE/MM-generated
free energy profile using Zwanzig’s exponential average formula
based on the single-point energy differences calculated at the respec-
tive levels of theory.14 In practice, the accuracy of this treatment,
however, strongly depends on the degree of phase-space overlap
between the SE/MM and AI/MM Hamiltonians involved. A poor
overlap of the two Hamiltonians would hinder the numerical con-
vergence of FEP calculations and limit the accuracy of computed free
energies.15,16

An alternative dual-level QM/MM free energy simulation strat-
egy is the reaction path force matching (RP-FM) method.17–19

Through using force as the central bridging quantity, RP-FM
and related methods forge direct links between the SE/MM and
AI/MM levels by connecting their dynamics, free energies, and
phase-space distributions.17–20 RP-FM has previously been used
to improve QM/MM free energy results by either fitting Carte-
sian forces through optimization of SE parameters17 or by fitting
reactive internal forces in collective variables (CVs).18 Combined
with the weighted thermodynamics perturbation (wTP) method,
RP-FM-based SE potential recalibration has proved to be effec-
tive in improving the phase-space overlap for dual-level QM/MM
FEP calculations.19 A common theme in these FM developments is
that they all fit high-level potentials (although implicitly) through
some physics-based quantities such as electronic-structure para-
meters and free energy mean force, whose connections to the
potential energy function can be computationally inconvenient to
handle. As the complexity of the system increases, a general-purpose
mathematics-function-based potential fitting tool may become more
desirable.

To this end, several groups have employed delta (Δ) machine
learning (ML) potentials, primarily based on neural networks (NN),
as a means to directly correct SE/MM potential energy for improved
QM/MM simulations.21–25 Despite the overall similarity in the Δ-
learning theme following the work of Ramakrishan et al.,26 these
works differ in their choice of base levels, NN potentials’ descriptors
and topological features, and loss function construction. Building
on their earlier work using NN potentials for free energy per-
turbation,27 Yang and co-workers have developed a method for
training artificial neural networks (ANN) to correct DFTB/MM to
the DFT/MM level using energy-only-based loss functions during
MD simulations.21 Although forces are not directly used in training,
the nuclear gradients associated with the NN-predicted energy cor-
rections are incorporated to obtain modified molecular dynamics.21

Since force matching (FM) can greatly improve the phase-space
overlap involved and therefore the quality of dynamics,17,19 it is
generally desirable to include forces directly in the loss function
when training the NN potentials.22–25 For example, Böselt et al.22

used symmetry-function descriptors as input features to train their
high-dimensional neural network potentials (HDNNP), based on
both energy and forces, for predicting corrections for DFTB/MM

in simulating stable and transition-state species in solution. Pan
et al. used FM-recalibrated SE method to ensure that the train-
ing configurations are sampled in the relevant phase space.23 Based
on the DeepPot-SE28 and the DeepMD framework,29,30 their ML
model uses an embedding network to encode input features and
incorporates both energy and force differences into the loss func-
tion to ensure accurate dynamics for MD-based free energy sim-
ulations of solution-phase and enzyme reactions.23 Other recent
QM/MM developments utilizing DeepPot and local environment
descriptors include the range-corrected deep learning scheme of
Zeng et al.24 and the DFTB/MM-based ML model of Gomez-Flores
et al.25 One notable issue with conventional NN potentials is that
they generally do not provide a metric to assess the uncertainties
in energy and force predictions. For MD-based QM/MM simu-
lations, in particular, free energy path simulations, this poses a
question on how to maintain the robustness of NN models when
the trajectories sampled on the NN-predicted PES deviate from
the original training configuration space. Although active-learning-
based models can be used to adaptively expand the training set,21

the lack of uncertainty analysis capability makes the identification of
underrepresented training regions a challenging task without actu-
ally encountering a failure of simulation. On the other hand, the
novel use of committee-based multiple-NN strategy,31–34 Bayesian
NN,35,36 or dropout NN37 can help detect untrustable predictions
on the fly during MD simulations, but it can increase the inference
cost.

As an alternative ML approach to NN, Gaussian process
regression (GPR) can produce well-calibrated prediction uncer-
tainty through predictive variance.38,39 GPR models have been
used in computational chemistry for various applications, includ-
ing generating force fields,40–42 enabling fast and accurate geome-
try optimization,43–47 improving weighted free energy perturbation
results,48 obtaining AI-quality potential energy landscapes,49–51 and
making improvements to dynamics.49 GPR-produced PESs have
been demonstrated to outperform those constructed using ANNs.52

Additionally, GPR models outperform NN variants in uncertain
estimates for predicting adsorption energies.53 However, there are
few cases of QM/MM implementation that enable GPR to be used
directly for MD-based free energy simulations, which is the focus of
the present study.

In this work, we match the SE/MM potential of the system with
the target AI/MM potential using a GPR-predicted molecular energy
correction term. While several studies utilize Δ-ML potentials as
atom-based energy corrections,21,23,25,32 thereby preserving permu-
tational invariance, the objective of this work is to train and deploy
a system-specific model for condensed-phase QM/MM simulations
along a well-defined free energy path. In this scenario, molecu-
lar configurations involving permutations of identical atoms are of
lesser concern; therefore, permutational invariance is not strictly
enforced here. We have found that the direct prediction of molecu-
lar energy corrections is sufficient for the purpose of this work. The
training of the GPR models is done based on ensembles of dynam-
ical configurations sampled initially along the SE/MM free energy
path and later along the GPR-corrected ones. Specifically, we use the
string method in collective variables54,55 (see Ref. 55 for the details of
our string implementation) to determine the minimum free energy
path (MFEP) through iterative path updates. Incorporation of the
GPR-associated nuclear gradients on the geometric input features
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enables us to perform MD simulations for updating free energy
sampling and obtaining the GPR-modified MFEP. Since GPR by
nature has a predictive uncertainty, the relationship of the sample
input space to the training set can be assessed, which is a signifi-
cant benefit for dynamics simulations as the configurations sampled
along the updated MFEP may differ significantly from the ones used
for training the original model. To accommodate the possible shift
in MFEP during this learning–relearning process, we employ two
sparse GPR models to efficiently incorporate the previous training
data when updating our model iteratively for predictions in the new
input space.

To demonstrate its effectiveness, we applied the QM-GPR/MM
method to free energy simulations of the Menshutkin reaction in
aqueous solution. The rest of the paper is organized as follows: In
Sec. II, we briefly describe the GPR model and its sparse variants as
well as the associated gradient formalism. The computational details
of the simulations are provided in Sec. III. We present the results in
Sec. IV. The outlook of the method is further discussed in Sec. V.
Concluding remarks are given in Sec. VI.

II. METHODS
A. Gaussian process regression

GPR defines a distribution of functions relating a set of input
space X, composed of n input vectors x, to a set of n observations
y. Any observation y in the set y occurring at the input vector x,
composed of m input features [x1, . . ., xm], in set X can be linked
to the input space through an underlying function, f (x), where
y = f (x) + ε, and ε is an observational noise that separates the func-
tion value from the observation. The values of ε follow a Gaussian
distribution centered at zero whose variance is determined by a
noise parameter σ2

n, i.e., ε ∼ N (0, σ2
n). The prior distribution of the

underlying functions, denoted f(X), follows a Gaussian distribution,

f(X) ∼ N (0, K̃(X, X)), (1)

where 0 is the mean of the functions and K̃ is the covariance ker-
nel matrix of the training dataset based on a given covariance kernel
function k that defines the similarity between the two input vectors
involved,39

K̃(X, X) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
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. (2)

In this study, a radial basis function (RBF) is used as the covariance
kernel function k,

k(xi, x j) = σ2
f exp [−

d(xi, x j)
2

2l2 ], (3)

where σ2
f is the vertical variation parameter, l is the length parameter,

and d(xi, xj) is the Euclidean distance between the two input vectors
xi and xj. To account for noise in the observations, the noise para-
meter in the form of σ2

nI is added to the covariance kernel matrix of
the training data, which modifies the covariance kernel matrix to

K = K̃(X, X) + σ2
nI, (4)

where I is the identity matrix.39 Here, σ2
f , l, and σ2

n collectively form
a set of hyperparameters, θ, that are optimized by maximizing the
log marginal likelihood of the data,

log p(y∣X, θ) = −1
2

yTK−1y −
1
2

log ∣K∣ −
n
2

log 2π, (5)

where p(y∣X, θ) is the probability of y given X and θ. The GP prior
distribution can then be used to make a set of predictions, f∗, given
a set of new input vectors, X∗, following the joint distribution,
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, (6)

where K∗∗ = K(X∗, X∗), K∗ = K(X∗,X), and KT
∗ is the transpose of

K∗, and it is thus K(X, X∗). The posterior predictive distribution is
then given by

p(f∗∣X∗, X, y) ∼ N (μ∗, V∗). (7)

The mean, μ∗, and variance, V∗, of the posterior predictive
distribution of X∗ are found as follows:

μ∗ = K∗K−1y, (8)

V∗ = K∗∗ −K∗K−1KT
∗. (9)

B. Model implementation
Let UAI/MM and USE/MM denote the potential energies for a

given configuration determined at the AI/MM and SE/MM levels,
respectively; in practice, they are shifted with respect to the corre-
sponding zero of energy at each level for numerical convenience.
Then, the energy gap ΔU between the two levels can be written as

ΔU = UAI/MM −USE/MM. (10)

In our GPR model, a collection of ΔU obtained for n configurations
forms the training set of observations y,

y = [ΔU1, . . . , ΔUn]
T
= [y1, . . . , yn]

T. (11)

A similar collection of m-dimensional input feature vectors
x = [x1, . . . , xm] for each of the n configurations forms the GPR
input space in the matrix form X = [x1, . . . , xn]

T. In the present
study, we focus on the input features that are specifically based on
the interatomic distances within the solute. To convert the inter-
atomic distances to a generic form for GPR input, a preprocessing
normalization step is first applied,

x j,k =
r j,k − r̄ j

s j
, (12)

where xj,k represents the standardized unitless input feature j for
configuration k, and rj,k is the jth distance for configuration k; r̄ j
and sj are the average and standard deviation, respectively, of the jth
distances for all n configurations in the training set.
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C. GPR gradient
During MD simulations, our GPR model is used to predict ΔU

based on the configuration of the solute in the form of x∗. The mean
of the predictive distribution, μ∗, is added to USE/MM. To be consis-
tent with the updated energy during dynamics, the force applied to
each atom, expressed as the negative gradient of the potential energy
with respect to the atomic coordinates, must be updated accordingly.
For each input feature of GPR, the associated force modification on
atom c in the Cartesian direction q is given by

Fc,q = −
∂μ∗
∂x∗, j

dx∗, j

dr j

∂r j

∂qc
, (13)

where x∗,j is the jth input feature of x∗, rj is the jth interatomic dis-
tance, and qc is the Cartesian variable x, y, or z onto which the force
correction to atom c is applied. The first partial derivative term in
Eq. (13), ∂μ∗

∂x∗, j
, is obtained by differentiating Eq. (8),

∂μ∗
∂x∗, j

=
∂K∗
∂x∗, j

K−1y, (14)

where

∂K∗
∂x∗, j

=
1
l2 x̃∗, jIK∗, (15)

Where x̃∗, j = [xI, j − x∗, j , . . . , xn, j − x∗, j] and I is a n × n unit matrix.
The second term in Eq. (13) can be obtained by differentiating
Eq. (12),

dx∗, j

dr j
=

1
s j

. (16)

The third partial derivative term in Eq. (13) concerns the depen-
dence of interatomic distances on the atomic Cartesian coordinates
involved, which can be obtained in a straightforward manner,

∂r j

∂qc
=

qc − qd

r j
, (17)

where qc and qd are the atomic Cartesian involved in the interatomic
distance rj.

D. Sparse GPR variants for adaptive
MFEP optimization

With the GPR gradient available, the QM-GPR/MM model can
be used in MD-based free energy path simulations to update the
MFEP. When the configurations sampled along the GPR-modified
MFEP significantly differ from the ones used to train the original
model, the GPR model itself needs to be updated adaptively to incor-
porate information learned from the new samples. Although this
can be done intuitively by merging the old and new samples into an
expanded training set and then retraining the GPR model, the scal-
ability of the GPR algorithm with respect to data size makes such a
brute-force treatment quickly out of reach.

To achieve a data-efficient relearning process for adaptive
MFEP optimization, we employ two sparse variants of the GPR
model. First, we reduce the training data size for learning along a
single MFEP by introducing a set of inducing points using the sparse

variational GP (SVGP) model (Appendix A). Second, for retraining
the model using sample information from multiple MFEPs, we use
the streaming sparse GPR (SSGPR) model (Appendix B), a variant
based on SVGP, to enable adaptive model update in the combined
input space without significantly increasing the training data size.
For the interested readers, the technical details of these sparse GPR
variants as well as the necessary modifications for implementing
their nuclear gradients can be found in Appendixes A and B.

III. COMPUTATIONAL DETAILS
To test the performance of the QM-GPR/MM method,

we applied it to free energy simulations of the solution-phase
Menshutkin reaction (NH3 + CH3Cl→ CH3NH+3 + Cl−),56 which
involves a nucleophilic attack of ammonia on methyl chloride fol-
lowing an associative SN2 mechanism (Fig. 1). This reaction has
served as an important paradigm for developing accurate and effi-
cient potential energy methods and solvation models (see our recent
work18 and references therein for a brief review of the QM/MM
methods developed for simulating this system).

At the SE/MM level, we treat the solute molecules by AM19

using the MNDO97 package57 incorporated in Chemistry at HAR-
vard Macromolecular Mechanics (CHARMM),58 whereas the sol-
vent environment is modeled by a 40 × 40 × 40 Å3 box of modified
TIP3P59 water molecules under periodic boundary conditions. The
nonbonded QM/MM van der Waals (vdW) parameters were ini-
tially assigned based on the related atom types in the CHARMM22
force field60 during setup and later replaced by the pair-specific
vdW parameters optimized by Gao and Xia61 in the actual sim-
ulations. Long-range electrostatics is treated by the particle mesh
Ewald (PME)62 and QM/MM-Ewald63 methods for the MM-MM
and QM-MM interactions, respectively. The MFEPs and associated
free energy profiles were determined by using the string method in
CVs.54 For the Menshutkin reaction, we represent the MFEP by two
CVs: the forming bond distance, rN−C, and the breaking bond dis-
tance, rC−Cl. The initial string path and configurations along it were
obtained from a potential energy scan along the one-dimensional
reaction coordinate rC−Cl–rN−C at the AM1/MM level. The MFEPs
were optimized iteratively by the string method for 10 cycles, in each
of which 20 ps MD sampling was used for evaluating the free energy
mean forces on the CVs in each of 20 images evenly spaced along
the string. For additional details of the MD simulations and string
optimization protocols, see our previously published work.18,55

Based on the configurations sampled along the AM1/MM
MFEP, AI/MM single-point energy calculations were performed at
the B3LYP64–66/6-31+G(d,p)67/MM level using the Gaussian16 pro-
gram68 interfaced with CHARMM. To generate our testing set, we
collected configurations every 100 fs from 20 ps of MD trajectories
for each of the 20 images along the MFEP, which gives a training
set of 4000 configurations. For GPR training, we draw one in every
five of these configurations (i.e., 1 configuration every 500 fs) to
build a training set of 800 configurations. For the same set of con-
figurations, AM1/MM single-point energies were retrieved from the
MNDO97/CHARMM interface. These single-point energies were
then used to determine the energy gaps between the two levels
involved, i.e., ΔU = UB3LYP/6−31+G(d,p)/MM −UAM1/MM, as defined in
Eq. (10) and used in Eq. (11), for which the training sample size
n = 800.
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FIG. 1. Menshutkin reaction between ammonia and methyl chloride.

The GPR model was generated and optimized using the Scikit-
learn package.69 The SVGP model was generated using the SGPR
module in the GPflow 2.0 package.70 The SSGPR models were con-
structed using the code from the work of Bui et al.,71 updated for
compatibility with GPflow 2.042 and TensorFlow 2.0.72,73 Conve-
niently, Bui and colleagues recently updated their code for com-
patibility with the updated version of GPflow and TensorFlow,
accessible to the reader at Ref. 74. The SVGP and SSGPR mod-
els were optimized with respect to their hyperparameters using the
ADAM optimizer75 implemented in TensorFlow 2.0.

The optimized GPR, SVGP, and SSGPR models were imple-
mented in CHARMM through its USER module, which enables
predictions of energy corrections along MD simulations. The mean
of the predictive distribution of ΔU for a given MD configuration
was added to the SE/MM energy to acquire the total energy for
SE-GPR/MM as well as for its sparse variants. The nuclear gradi-
ents were modified by distributing the associated force corrections
according to Eq. (13) or its sparse versions based on Eqs. (A5) and
(B4).

IV. RESULTS
A. AM1/MM free energy profile

Using the AM1/MM Hamiltonian, we obtained a free energy
profile that gives a reaction free energy of −12.4 kcal/mol and
a free energy barrier of 28.7 kcal/mol for the Menshutkin reac-
tion (Fig. 2). Compared with the experimentally derived reaction
free energy of −34 ± 10 kcal/mol reported by Gao76 or −36 ± 6
kcal/mol reported in the work of Su et al.,77 AM1/MM underes-
timates the exergonicity of the Menshutkin reaction by 21.6–23.6
kcal/mol. Although no experimental barrier is available for this reac-
tion, the reaction between NH3 + CH3I, which gives a free energy
barrier of 23.5 kcal/mol,78 has been previously used as a point of
comparison.76,79,80 Compared with this best experimental estimate,
AM1/MM overestimates the free energy barrier by 5.2 kcal/mol.

B. Potential energy gap
Since the AM1/MM free energy profile displays significant

discrepancies from experiment, we performed free energy pertur-
bation (FEP) calculations along the AM1/MM free energy path to
see if indirect DFT/MM calculations can help improve the results.
Unfortunately, FEP on its own, based on the potential energy differ-
ences between the AM1/MM and B3LYP/6-31+G(d,p)/MM levels,
does not produce a high-quality free energy profile; instead, it gen-
erates a free energy barrier of 12.2 kcal/mol and a reaction free
energy of −50.7 kcal/mol, both too low compared with experi-
ment (Fig. 2). The modest performance of a simple FEP correction

FIG. 2. AM1/MM and indirect B3LYP/MM free energy profiles for the Menshutkin
reaction. The AM1/MM free energy profile was obtained along the string MFEP
determined at the same level (with α = 0 for reactant and 1 for product). The indi-
rect free energy profile was obtained by free energy perturbation (FEP) from the
AM1/MM to the B3LYP/6-31+G(d,p)/MM level based on the configurations sam-
pled along the AM1/MM MFEP. Even with AI/MM-based free energy corrections,
the indirect FEP results still do not adequately reproduce the experimental results.
Details on the calculations of the error bars can be found in the supplementary
material, Sec. S4.

in this case is likely caused by a slow convergence of the results
when using inadequate sample size81,82 as well as possible system-
atic biases linked to poor overlap between the important phase space
sampled at the base and target levels.83–85 At the limited sampling
performed at AM1/MM, the average standard deviation of the rel-
ative energy difference distribution is 3.7 kcal/mol, well exceeding
the recommended limits of 1.7 kcal/mol82 for fine results or 2.4
kcal/mol86 for crude results. Furthermore, the failure for our samples
to meet the bias metric criterion of Π > 0.5 introduced by Wu and
Kofke84,85,87 suggests significant differences in the configurations
sampled on the AM1/MM and B3LYP/6-31+G(d,p)/MM PESs; see
the supplementary material, Sec. S1. Although indirect FEP calcu-
lations can be accelerated when combined with ML approaches,27,88

the issues we identified here collectively highlight the need for a free
energy method that directly samples the AI/MM-quality PES.

The energy corrections predicted by our GPR model are com-
pared with their reference values in Fig. 3. The root-mean-square
errors (RMSEs) of the GPR-predicted energy gaps are 3.1 and 3.7
kcal/mol for the training and testing sets, respectively (Table I). Con-
sidering the magnitude of the energy gap as well as its nonuniform
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FIG. 3. The GPR-predicted energy corrections (ΔUpred) plotted against the
reference energy differences (ΔUref) between the AM1/MM and B3LYP/6-
31+G(d,p)/MM levels for configurations sampled along the AM/MM MFEP. The
color scale shows the number of configurations found in each region.

distribution along the reaction coordinate, we found this perfor-
mance acceptable and comparable to that of other machine learning
models; see the supplementary material, Sec. S2. As we mentioned
earlier in the indirect FEP results, the reference energy gaps along
the AM1/MM MFEP display a significant average standard devi-
ation of 3.7 kcal/mol, which suggests that the data are inherently
noisy and therefore susceptible to prediction error. The mean of pre-
dictive variance, or equivalently the lower bound of the expected
mean squared error,38,89,90 is 2.3 and 1.9 (kcal/mol)2 for the train-
ing and testing set, respectively. As explained in the supplementary
material, Sec. S3, the predictive variance is used to calculate the 95%
confidence interval as a measure of the uncertainty of prediction.
The average 95% confidence intervals for energy predictions on the
testing and training sets are 2.9 and 2.6 kcal/mol, respectively.

Sampling the GPR-corrected potential (AM1-GPR/MM), the
free energy path is updated. Because the new path evolves away
from the AM1/MM path used for previous training, the GPR model
becomes less accurate on the newly sampled configurations, with the
RMSE in energy prediction increasing to 11.6 kcal/mol. The average
predictive variance along the AM1-GPR/MM MFEP, which offers
an assessment of prediction uncertainty in GPR, also increases to
2.3 (kcal/mol)2. Both of these results suggest changes in the sampled
phase space and the necessity of retraining the model. Interest-
ingly, the model seems to be more tolerant to such changes in
terms of predictive variance than predictive error. Further anal-
ysis shows that the newly sampled configurations may not differ
too much from those used for training the original model in the
input feature space to perturb the prediction distribution (see Sec.
S5 in the supplementary material), but the greater baseline errors in
AM1/MM for the new samples can quickly worsen the overall RMSE
of the GPR-corrected method in energy prediction. Nevertheless, we
decided to retrain the model iteratively when updating MFEPs to
prevent possible model deterioration.

Due to the matrix inversions involved, GPR does not scale
well with training data size. Therefore, a simple retraining strat-
egy by adding new data to the existing dataset could quickly
become unmanageable. However, omission of previous samples in
the retraining processes could result in model oscillations and diver-
gent free energy results; see the supplementary material, Sec. S6.

To address this problem, we first use the sparse variational GP
(SVGP) method (Appendix A) to summarize the training set into
a set of inducing points using an approximate kernel, which also
reduces the memory requirement. The streaming sparse (SSGPR)
method (Appendix B) is then used to further allow us to train a
“synthesized” model on multiple sets of data from different MFEPs
without significantly increasing the kernel’s dimensionality. By sub-
stituting the original GPR model with an SVGP model containing
50 inducing points, the RMSEs in energy prediction on the train-
ing and testing sets along AM1/MM MFEP increase slightly to 3.2
and 3.8 kcal/mol, respectively (Table I). Using the SVGP model
(also referred to as SSGRP-0) as a starting point, the SSGPR-i (i
= 1–4) models were trained iteratively until the MFEPs determined
in successive iterations converge. Although unnecessary, in practice
it can be advantageous to use more inducing points as the sampled
input space evolves. For example, we found that increasing the num-
ber of inducing points to 200 yields improvements to the RMSE of
the entire set of configurations (see, Sec. S7 in the supplementary
material). To balance efficiency and accuracy, we added 50 more
inducing points every iteration, which results in a use of 250 induc-
ing points in the SSGPR-4 model. This procedure allows us to
make predictions and evaluate uncertainties with greater confidence
across all the relevant phase space sampled when the MFEP is grad-
ually improved from the AM1/MM toward the DFT/MM level. The
RMSE of the SSGPR-4 model in energy predictions for the original
AM1/MM testing set is 4.8 kcal/mol. For the configurations sampled
along the AM1-SSGPR-3/MM MFEP, based on which the SSGPR-
4 model is trained, the RMSE of the model in energy prediction is
reduced to 3.4 and 3.8 kcal/mol for the training and testing sets,
respectively.

C. AM1-(SS)GPR/MM methods improve
free energy profiles and MFEPs

For the Menshutkin reaction, the free energy profile simulated
with the AM1-GPR/MM method produces a free energy barrier
of 14.3 kcal/mol and a reaction free energy of −44.9 kcal/mol
(Fig. 4). The AM1-SVGP/MM method (i.e., AM1-SSGPR-0/MM)
yields comparable results with a free energy barrier of 17.1 kcal/mol
and a reaction free energy of −41.8 kcal/mol. The free energy pro-
files obtained by the AM1-SSGPR-i/MM methods converge to a
reaction free energy of −41.9 kcal/mol and a free energy barrier
of 11.7 kcal/mol (Fig. 5). Compared to a significant overestimate
of −12.4 kcal/mol at the AM1/MM level, the reaction free energies
predicted by these GPR-corrected methods are greatly improved to
close agreements with the experimental values of −34 ± 1076 and
−36 ± 6 kcal/mol.77 Although the simulated free energy barriers are
still significantly lower than the best experimental estimate of 23.5
kcal/mol,78 the goal of our GPR-corrected methods is to repro-
duce the target-level AI/MM results. The B3LYP functional used
here is known to underestimate the free energy barrier for the
Menshutkin reaction, based on previous implicit solvation79 and
multilevel QM/MM calculations.18,19 From this perspective, the free
energy barrier of 14.3 kcal/mol from our AM1-GPR/MM simula-
tions agrees well with the DFT/MM benchmark value of 15.3 ± 0.1
kcal/mol established in the work of Pan et al.19 from umbrella sam-
pling simulations at the B3LYP/6-31G(d)/MM level and a value
of 14.7 kcal/mol obtained in the work of Kim et al.18 through
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TABLE I. Cross validations of the AM1-(SS)GPR/MM models in energy prediction.a

Samples AM1/MM GPR SSGPR-0b SSGPR-1 SSGPR-2 SSGPR-3 SSGPR-4

AM1/MM 18.2 3.7 ± 2.9 (3.1 ± 2.6) 3.8 ± 3.4 (3.2 ± 3.3) 3.9 ± 4.2 4.1 ± 4.7 4.4 ± 5.2 4.8 ± 5.8
GPR 18.2 11.6 ± 4.2 11.7 ± 3.4 12.1 ± 4.2 12.5 ± 4.7 12.8 ± 5.2 13.0 ± 5.8
SSGPR-0 21.8 7.6 ± 3.7 7.1 ± 4.8 3.9 ± 3.6 (3.5 ± 3.5) 3.9 ± 3.9 4.0 ± 4.3 4.3 ± 4.9
SSGPR-1 22.9 4.9 ± 3.6 4.9 ± 4.3 4.9 ± 4.4 4.1 ± 3.7 (3.7 ± 3.6) 4.0 ± 3.9 4.1 ± 4.4
SSGPR-2 23.9 5.2 ± 3.6 5.3 ± 4.1 4.4 ± 4.0 4.5 ± 3.9 3.7 ± 3.7 (3.1 ± 3.6) 3.8 ± 4.1
SSGPR-3 23.5 5.6 ± 3.5 5.8 ± 4.0 4.6 ± 4.1 4.3 ± 4.1 4.6 ± 4.1 3.8 ± 4.1 (3.4 ± 4.0)
SSGPR-4 24.1 5.2 ± 2.9 5.4 ± 3.9 4.3 ± 4.0 4.0 ± 3.9 4.0 ± 4.0 4.4 ± 4.3
aRoot-mean-square errors (RMSEs) in energy prediction (in kcal/mol) are compared against the B3LYP/6-31+G(d,p)/MM benchmark; results for both the testing set and the training
set (data in parenthesis) are given when applicable; values following ± correspond to the average 95% confidence interval of energy predictions.
bThe SVGP model is labeled as SSGPR-0.

internal-force-matched RP-FM-CV simulations at the B3LYP/6-
31+G(d,p):AM1/MM level. On the other hand, the free energy
barrier of 11.7 kcal/mol converged from the iteratively optimized
AM1-SSGPR-i/MM methods may represent a slight underestimate

FIG. 4. (a) The AM1/MM and AM1-GPR/MM MFEPs. (b) The AM1/MM and AM1-
GPR/MM free energy profiles.

of the target value. Free energy perturbation was further performed
on the AM1-SSGPR-4/MM free energy profile and no statistically
significant changes were observed; see the supplementary material,
Sec. S8.

FIG. 5. (a) The AM1/MM and AM1-SSGPR/MM MFEPs. (b) The AM1/MM and
AM1-SSGPR/MM free energy profiles.
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The GPR-corrected methods also improve the free energy paths
consistently by moving the original AM1/MM MFEP toward the
concave side (Figs. 4 and 5). The free energy transition states deter-
mined at the AM1-GPR/MM and AM1-SSGPR/MM levels are looser
than that obtained at the AM1/MM level. These results are in agree-
ment with our observations in a previous RP-FM-CV study when
the AI/MM-level internal forces were directly targeted.18

D. AM1-(SS)GPR/MM methods improve forces
The free energy forces used for string path optimization and

the calculations of the free energy profile are estimated based on
the fluctuations of the collective variables (CVs) under a set of har-
monic restraints.54 For a restrained system whose statistics follows
the Boltzmann–Gibbs distribution, such fluctuations are ultimately
governed by the system’s potential energy.54 This indicates that cor-
recting the potential energy of the system (e.g., with a GPR model)
to the reference level of theory would improve both the string MFEP
and the free energy profile accordingly. Using a different strategy,
we recently showed that the high-level free energy profile can be
restored through force matching (FM) on the CV degrees of free-
dom along the reaction path (RP-FM-CV),18 which is equivalent
to fitting free energy mean force on the reaction coordinate. As
both the SE-GPR/MM and RP-FM-CV approaches are able to repro-
duce the AI/MM-quality free energy profile, the connection between
them needs to be established. Although SE-GPR/MM also modi-
fies forces through nuclear gradients of the GPR energy correction
term, it is unclear how these force modifications are distributed
to various internal degrees of freedom that eventually lead to an
improved MFEP. To examine whether forces are also improved
along the reaction coordinate, we monitored the internal forces on
the CVs before and after applying the GPR corrections, employ-
ing the redundant internal coordinate transformation framework we
recently developed for RP-FM-CV.18

In Fig. 6, we compare the CV internal force errors of using
AM1/MM and AM1-SSGPR-4/MM along the converged AM1-
SSGPR-4/MM MFEP, with respect to the B3LYP/6-31+G(d,p)/MM
benchmark. Unsurprisingly, the AM1-SSGPR-4/MM method based
on the converged SSGPR-4 model offers an improved force descrip-
tion of the C–Cl bond nearly across the entire reaction coordinate.
The RMSE in C–Cl force decreases from 30.2 to 10.3 kcal/mol/Å
after the SSGPR-4 corrections are applied to AM1/MM. Similar
trends are found for the N–C bond, where the GPR corrections result
in a near perfect description of its force in the reactant and tran-
sition state regions, and they significantly improve the AM1/MM
description of the bond in the product region. The overall descrip-
tion of the N–C bond improves with an RMSE in force reduced
from 25.5 to 11.1 kcal/mol/Å. The RMSE of Cartesian forces among
all solute atoms drops from 14.6 to 12.1 kcal/mol/Å; for the atoms
involved in the CVs, the Cartesian force error drops from 19.4 to
14.6 kcal/mol/Å; see the supplementary material, Sec. S9. These force
results offer a possible explanation for the improved free energy
profile. The greater force correction found on the C–Cl bond sug-
gests its dominant role in improving the free energy profile. With
the C–Cl force description improved, the AM1-SSGPR-4/MM free
energy profile shows enhanced agreement with the AI/MM result.
We performed a similar comparison for the AM1-GPR/MM method
(see Sec. S10 in the supplementary material) but found that along

FIG. 6. Internal force differences between the B3LYP/6-31+G(d,p)/MM and AM1-
SSGPR-4/MM levels; the force differences on the C–Cl bond (a) and N–C bond
(b) were evaluated based on configurations sampled along the AM1-SSGPR-4/MM
MFEP.

the AM1-GPR/MM MFEP, the quality of both the internal and
Cartesian forces deteriorates significantly, which highlights the need
for an adaptive model. Regardless of the sampled path and model,
the underlying shape of the force differences remains the same.
The persistence of these trends in the force differences between the
SE/MM and SE-GPR/MM models suggests certain limitations in the
energy-based GPR model in terms of distributing the desired force
corrections, perhaps due to the selected input features.

E. Computational cost of AM1-SSGPR/MM methods
As mentioned in the Introduction, one objective of this work

is to obtain AI/MM-quality free energy profiles at the reduced cost
comparable to SE/MM simulations. In Table II, we present the wall
times for a single-point energy-force calculation, a single MD step,
and 20 ps MD sampling (at a timestep of 1 fs), using AM1/MM
as the baseline method with and without the SSGRP-predicted cor-
rections. We compare these times with the estimated cost required
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TABLE II. Wall time comparison of using the AM1/MM, AM1-SSGPR/MM, and direct DFT/MM methods for simulating the Menshutkin reaction.

Time per

Method CPUs
Energy and force

evaluation (s)
Single MD

step (s)
20 ps

MD (hr)
Total wall time
for MFEPa (hr)

AM1/MM 1 0.243 0.367 2.038 408
AM1-SSGPR/MM 1 0.253 0.378 2.100 420
DFT/MMb 1 26.037 39.056 216.975 43 395
DFT/MMb 24 11.888 17.832 99.069 19 814
aTotal wall time for one iteration of string MFEP optimization following the simulation procedures outlined in Sec. III.
bAt the B3LYP/6-31+G(d,p)/MM level.

for completing a single iteration of string MFEP optimization using
brute-force DFT/MM simulations. We found that, with only a mod-
est increase in the computational cost relative to AM1/MM, the
AM1-SSGPR/MM method can be used to efficiently perform free
energy sampling on a timescale comparable to AM1/MM, resulting
in a 100-fold speedup of the DFT/MM simulations at the B3LYP/6-
31+G(d,p)/MM level. Even when utilizing 24 central processing
units (CPUs), the parallel DFT/MM benchmark shown in Table II
remains about 50 times slower than a serial AM1-SSGPR/MM
calculation.

V. DISCUSSION
The accuracy of potential energy description plays a critical

role in the reliable determination of free energy profile. Motivated
by its connection to the free energy perturbation strategy, here we
have developed an energy-based GPR method that dynamically pre-
dicts the energy corrections needed for an SE/MM Hamiltonian to
match a desired AI/MM target. The availability of nuclear gradients
associated with the GPR energy correction also allows us to update
forces accordingly to achieve improved molecular dynamics and free
energy profiles.

An alternative approach would be to treat both energy and
force as the GPR observations during model training. It has been
suggested that including gradient information in training would
improve the performance of ML potentials.91 For ANN-based mod-
els, this can be conveniently done by including the force-fitting
errors in the loss functions. For GPR models, the gradient of the
energy (negative force) needs to be included consistently in an
extended set of observations. We have reported our force-extended
GPR approach in a separate work,92 where we use GPR with
derivative observations (GPRwDO) to simultaneously predict both
QM/MM energy and force corrections. Although the GPRwDO
approach significantly improves the description of Cartesian forces
compared to an energy-only model, it does increase the computa-
tional complexity of model training from O(n3

) to O(n3
(d + 1)3

)

and the memory complexity from O(n2
) to O(n2

(d + 1)2
), when

including d-dimensional derivative observations in each of the n
training samples. This poses additional constraints on the training
set size and the number of atoms to be considered for explicit force
training. For the large number of nonreactive atoms in a QM/MM
system, we may still need to rely on differentiating an energy-only
model to obtain the related force corrections. Nevertheless, there

are other ways to consider to alleviate this problem. For example,
Bartok et al.49 incorporated derivative observation into their sparse
GP models to improve algorithmic scaling. Alternatively, von Lilien-
feld and co-workers developed the kernel-based operator quantum
machine learning approach,93,94 which reduces both memory usage
and computational complexity. Finally, Meyer and Hausser demon-
strated a scheme where internal forces are fitted along with energy
for geometry optimization.44

Interestingly, our recent force matching work (RP-FM-CV)18

showed that similar improvements in free energy results can be
achieved by directly correcting the internal forces on the CVs with-
out explicit energy correction. Although potential energy dictates
the density of state, the dynamics of the system and its evolution
are nevertheless determined by the forces on the atoms. Moreover,
in the string free energy method we employed,54 potential energy
is neither directly used in the MFEP optimization nor used in the
determination of free energy profile. Under the RP-FM-CV frame-
work, we attributed the success of our method to an effective fitting
of the high-level free energy mean force, the integration of which
along the reaction coordinate allows the associated potential of mean
force to be faithfully reproduced.18

While direct learning in the force space is appealing, the use of
energy-based GPR may offer a few advantages. As previously men-
tioned, one metric for assessing the degree of phase-space overlap is
the distribution of relative energy differences between two levels of
theory.82,86 This will permit easy assessment of phase-space overlap
without the need for any AI/MM benchmark configurations. The
energy-based GPR scheme also reduces the dimensionality of the
output space, making prediction and evaluation of its quality less
complex. The use of a single molecular energy correction, instead
of atomic energies49 or atomic forces, would also reduce the risk of
placing disproportionate weights on correcting the fast degrees of
freedom, which may cause trajectory instability issues if not handled
properly.95 Further investigation is needed to determine if a force-
only-based GPR scheme would be sufficient and effective to achieve
similar improvements for QM/MM free energy simulations.

In this proof-of-concept work, we use simple geometric fea-
tures, such as pair-wise distances to describe the input space of the
GPR models. Although the GPR-facilitated free energy profile of
the Menshutkin reaction simulated in aqueous solution shows good
agreement with the AI/MM benchmarks and experimental results, it
could be more challenging to achieve similar performance for reac-
tions in a more complex environment, such as an enzymatic reaction
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treated by QM/MM. The heterogeneity of enzyme active site would
likely require additional descriptions of charge changes on the QM
atoms, especially when the accuracy in QM/MM interactions plays
a large role in the free energy profile. Since charge-dependent GPR
gradients may not be straightforward to implement, it may be advan-
tageous to use other features to represent the evolving QM/MM
interactions. Descriptors such as atom-centered symmetry functions
(ACSF),96 smooth overlap of atomic positions (SOAP),97 or density
encoded canonically aligned fingerprint (DECAF)40 may be more
applicable to modeling corrections in complex chemical environ-
ments. Notably, these atom-centered environment descriptors lend
themselves to permutationally invariant models that predict atomic
energy corrections. These advanced descriptors and an extension to
the SSGPR model to account for permutational invariance will be
examined in our future work.

VI. CONCLUDING REMARKS
In summary, we have presented a GPR-assisted dual-level

QM/MM method for cost-effective free energy simulations of
condensed-phase chemical reactions. Built upon an efficient SE/MM
Hamiltonian, this method boosts its PES accuracy to an AI/MM
quality by modeling the energy corrections needed through GPR-
enabled stochastic inference. Incorporation of the forces associated
with the GPR-predicted energy corrections allows for accurate deter-
mination and construction of MFEPs and free energy profiles from
MD-based QM/MM simulations. Two data-efficient sparse GPR
variants, i.e., SVGP and SSGPR, are further employed to facilitate
the iterative updates of our model when the sample space evolves
along with the MFEP that moves toward its AI/MM target. The great
improvements seen in the free energy results for the solution-phase
Menshutkin reaction demonstrate the effectiveness of this energy-
based QM-(SS)GPR/MM method and suggest its general usefulness
for studying reaction mechanisms in complex environments.

SUPPLEMENTARY MATERIAL

See the supplementary material for a description of the Wu
and Kofke bias metric for the Menshutkin reaction, illustration of
the reference and predicted energy gap along the reaction coordi-
nate and a comparison of GPR prediction performance with existing
ANN model in literature, comparison of predictive-variance-based
uncertainty estimates, description of FEP calculations and error
estimation of the string free energy profile, description of the dis-
crepancy between rising error and stagnant variance in new phase
space, demonstration of the model improvements with an increased
number of inducing variables, FEP calculations on the AM1-
SSGPR/MM converged MFEP, and Cartesian force improvements
through energy corrections with the evolving models.
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APPENDIX A: SPARSE VARIATIONAL GAUSSIAN
PROCESSES

One deficiency of GPR is its limited ability to scale to large
training datasets. Due to the matrix inversions involved, the com-
putational cost of GPR grows as O(n3

) with respect to the sample
size n. This can be particularly concerning for free energy path
simulations as the training data drawn from the sampled config-
urations evolve during path update and optimization. To reduce
the data requirements, we utilize sparse variational Gaussian pro-
cesses (SVGP), which summarize the full data X into a series of m
inducing points (XM) that maintain the model using an approxi-
mate posterior. The inducing variables are trained along with the
kernel’s hyperparameters by maximizing the lower bound of the
exact marginal likelihood.98 This is accomplished by minimizing
the Kullback–Leibler divergence between the exact and approximate
posteriors. Using this method, an approximate posterior distribu-
tion is used in place of the exact posterior distribution, for which the
mean and covariance functions are given by

μ∗ = K∗MK−1
MMμM, (A1)

V∗ = K∗∗ −K∗MK−1
MMKM∗ +K∗MBKM∗, (A2)

where B = K−1
MMAK−1

MM, and μM and A are the mean vector and
covariance matrix of the chosen variational Gaussian distribution

J. Chem. Phys. 159, 054107 (2023); doi: 10.1063/5.0156327 159, 054107-10

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

of the inducing point function values, respectively, calculated as
follows:98

μM = σ−2
n KMMΣKMXy, (A3)

A = KMMΣKMM, (A4)

where Σ = (KMM + σ−2
n KMXKXM)

−1. Under the SVGP model, the
gradient in Eq. (14) is updated to

∂μ∗
∂x∗, j

=
∂K∗M

∂x∗, j
K−1

MMμM. (A5)

APPENDIX B: STREAMING SPARSE GPR

As the sampled phase space evolves, the model may no longer
accurately predict the potential energy difference between the
AI/MM and SE/MM levels. It is therefore necessary to iteratively
update the model using data from the new configurations; however,
we cannot simply retrain the model on the new data without los-
ing the memory of the previous configurations. We therefore use
a streaming sparse GPR (SSGPR) method outlined in the work of
Bui et al.71 Here, we stream the new data as a batch and update the
model’s hyperparameters and inducing points by leveraging both the
old posterior approximation and the new data. Let Xb represent the
new inducing points and Xa the old inducing points, and then the
predictive mean and covariance for the SSGPR model are given as

μ∗ = K∗bL−T
b D−1L−1

b K−1
bf̂ Σ−1

ŷ ŷ, (B1)

V∗ = V∗∗ −K∗bK−1
bb Kb∗ +K∗bL−T

b D−1L−T
b Kb∗, (B2)

where D = I + L−1
b KbfΣ−1

y KfbL−T
b , Lb is a lower triangular matrix

obtained from the Cholesky decomposition of Kbb such that LbLT
b

= Kbb, Kbf̂ = [
Kfb

KXb
]

T
, where f is the latent function values at the newly

collected training points Xnew, hereon referred to as Xf for the use in

subscripts, ŷ = [ ynew

DaS−1
a μa
] and

Σŷ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ−2
n I + α diag (Kff −KfbK−1

bb Kbf) 0

0 Da + α(Kaa −KabK−1
bb Kba)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B3)

where ynew is the set of observations encountered at Xf, Da

= (S−1
a −K′−1

aa )
−1

, μa and Sa are the mean vector and covariance
matrix of the old approximate posterior distribution, respectively,
K′aa is the kernel operation of the old approximate posterior, α is the
order of the α-divergence used to generalize the Kullback–Leibler
divergence, and diag refers to the diagonal elements of the matrix
within the parentheses. Equation (A5) must then be updated to

∂μ∗
∂x∗, j

=
∂K∗b

∂x∗, j
L−T

b D−1L−1
b K−1

bf̂ Σ−1
ŷ ŷ. (B4)
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