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Abstract  Dementia refers to a particular group of 
symptoms characterized by difficulties with memory, 
language, problem-solving, and other thinking skills 
that affect a person’s ability to perform everyday 
activities. Alzheimer’s disease (AD) is the most com-
mon form of dementia, affecting about 6.2 million 
Americans aged 65 years and older. Likewise, car-
diovascular diseases (CVDs) are a major cause of dis-
ability and premature death, impacting 126.9 million 
adults in the USA, a number that increases with age. 
Consequently, CVDs and cardiovascular risk factors 
are associated with an increased risk of AD and cog-
nitive impairment. They share important age-related 
cardiometabolic and lifestyle risk factors, that make 
them among the leading causes of death. Addition-
ally, there are several premises and hypotheses about 
the mechanisms underlying the association between 

AD and CVD. Although AD and CVD may be con-
sidered deleterious to health, the study of their combi-
nation constitutes a clinical challenge, and investiga-
tions to understand the mechanistic pathways for the 
cause-effect and/or shared pathology between these 
two disease constellations remains an active area of 
research. AD pathology is propagated by the amyloid 
β  (Aβ) peptides. These peptides give rise to small, 
toxic, and soluble Aβ oligomers (SPOs) that are non-
fibrillar, and it is their levels that show a robust cor-
relation with the extent of cognitive impairment. This 
review will elucidate the interplay between the effects 
of accumulating SPOs in AD and CVDs, the result-
ing ER stress response, and their role in vascular dys-
function. We will also address the potential underly-
ing mechanisms, including the possibility that SPOs 
are among the causes of vascular injury in CVD asso-
ciated with cognitive decline. By revealing common 
mechanistic underpinnings of AD and CVD, we hope 
that novel experimental therapeutics can be designed 
to reduce the burden of these devastating diseases.
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Introduction

Alzheimer’s disease (AD) is the most common form 
of dementia with 6.2 million Americans aged 65 years 
and older living with AD in 2021 [1]. Additionally, 
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the U.S Census and the Chicago Health and Aging 
Project (CHAP) observed that 1 in 10 people are liv-
ing with AD in 2020 [2], and it is the sixth-leading 
cause of death in USA [3]. Furthermore, epidemio-
logical studies suggest that cardiovascular diseases 
(CVDs) and cardiovascular risk factors are associ-
ated with an increased risk of AD and mild cognitive 
impairment, which is its clinical stage precursor [4]. 
They are a major cause of disability and premature 
death worldwide [5], and in the USA, they affected 
126.9 million adults in 2018, a number that increases 
with age in both males and females [6]. It is thus evi-
dent that AD and CVD pose a major global burden 
of disease with high-cost implications on the govern-
ment and the health sector.

There are several premises and hypotheses about 
the mechanisms underlying the association between 
AD and CVD, the main ones being hypoperfusion, 
emboli, atherosclerosis, and the fact that in both the 
heart and brain of AD patients, amyloid deposits may 
be present, thus causing damage to these organs [7]. 
The “amyloid cascade hypothesis” implies that the 
two major hallmarks of the pathology of AD are the 
extracellular accumulation of Aβ peptides into senile 
plaques, and the intracellular hyperphosphorylation 
of tau proteins into neurofibrillary tangles, resulting 
in vascular damage, cell loss, dementia, and the pro-
gression of AD pathology [8, 9]. However, the pres-
ence of senile plaques in a particular region of the 
AD brain shows a relatively weak correlation with the 
severity of dementia [10]. To this end, recent studies 
have shown that the Aβ peptides give rise to small, 
toxic, and soluble Aβ oligomers (SPOs) that are 
nonfibrillar, and it is their levels that show a strong 
correlation with the extent of cognitive impairment 
rather than the amyloid plaques containing insoluble 
Aβ fibrils [11, 12]. The main isoforms of the neu-
rotoxic Aβ peptides include Aβ1-40 and Aβ1-42, and 
they are byproducts of the metabolism of the paren-
tal amyloid precursor protein (APP) [11, 13] found 
in the endoplasmic reticulum (ER) and Golgi/trans-
Golgi network (TGN) and endosomal, lysosomal, and 
mitochondrial membranes [11, 14]. Since the ER is 
responsible for the proper folding and processing of 
nascent proteins and Ca2+ homeostasis [15], the accu-
mulation of these toxic insoluble and SPOs induces 
ER stress, leading to cell death in several diseases, 
such as AD [16], diabetes, sepsis, and hyperten-
sion [9, 17]. ER stress in turn activates the unfolded 

protein response (UPR) in a bid to reduce protein syn-
thesis and increase their degradation. However, fail-
ure of this response to restore homeostasis can result 
in oxidative stress due to increased reactive oxygen 
species (ROS) and eventually cell death [18].

The accumulation of Aβ peptides in vascular 
disease

Evidence that Aβ peptides have powerful vascular 
effects suggests a link between AD, vascular dis-
eases [19], and endothelial dysfunction as found in 
hypertension and diabetes [20]. Aβ peptides are 
toxic to the brain and peripheral endothelial cells 
and cause cellular damage, enhance vasoconstric-
tion, and impair endothelium-dependent vasodilation 
hence promoting atherosclerosis and vascular disease 
[21]. In addition, the inflammatory nature of both 
CVD and AD involves multiple common cellular 
and molecular mechanisms [22]. Aβ1-42, being more 
hydrophobic and fibrillogenic, is the main peptide 
found in parenchymal lesions of AD while Aβ1-40 
is involved in the pathogenesis of cerebral amyloid 
angiopathy [23]. Normally, an equilibrium exists 
between Aβ peptides production and removal in dif-
ferent compartments in the central nervous system 
[24]. However, any imbalance results in the accumu-
lation of Aβ1-40 in the blood, vascular wall, and heart 
tissue as seen in CVDs [22]. Activation of the amy-
loidogenic pathway impairs the vasodilatory nature 
of arterioles by enhancing endothelin-1 expression 
[25], reduces endothelium-dependent vasodilation 
by reducing endothelial nitric oxide synthase (eNOS) 
activity, induces oxidative stress [26], and increases 
responsiveness to vasoconstrictors [27]. In addi-
tion, Aβ peptides inhibit telomerase activity lead-
ing to vascular aging as a result of telomere short-
ening [28]. Amyloid deposition in the vessels [29] 
can cause arterial stiffness by structural or cellular 
changes [30], and this is a frequent finding in patients 
with CVD and a risk factor for cognitive decline later 
in life. It causes structural changes in the brain such 
as white matter lesions, cortical infarcts, and cortical 
brain atrophy [31]. Aβ peptides deposition in arte-
rial vessel walls impedes perivascular drainage of 
Aβ peptides due to AD pathology leading to intrac-
erebral hemorrhage and increased Aβ peptides [32]. 
These morphological changes are easily observed in 
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patients with AD who show changes in retinal micro-
vasculature [33], which have been postulated to pre-
cede the majority of neurodegeneration that charac-
terizes AD progression [34]. When inferring to the 
causal nature of the occurrence of AD and CVD, 
literature shows a synergistic interaction between 
vascular and neurodegenerative processes early in 
disease pathogenesis [35]. There is a reciprocal rela-
tionship between Aβ accumulation and cerebrovas-
cular insult, such that Aβ peptides deposition pro-
vokes vascular changes [32]. Furthermore, in a study 
using mice fed a high-salt diet (HSD) by Faraco and 
colleagues, a causal link was observed between the 
HSD, endothelial dysfunction, and tau pathology. 
The cognitive impairment produced by HSD was 
also linked to an altered immune response originat-
ing in the gut [36, 37]. HSD leads to a gut-initiated 
adaptive immune response mediated by Th17 lym-
phocytes and an increase in circulating IL17. This 
leads to the inhibition of eNOS and reduced vascular 
nitric oxide (NO) production, which, in turn, impairs 
endothelial vasoactivity and lowers cerebral blood 
flow [36]. However, it is not just the cerebral hypop-
erfusion that contributes to the cognitive impairment 
induced by HSD, but rather the excessive phospho-
rylation and accumulation of insoluble tau aggre-
gates [38] which mediate neuronal and endothelial 
dysfunction hence contributing to neurodegenerative 
pathologies like dementia and AD [37, 39, 40].

By the same token, in the peripheral vasculature, 
the abnormal deposition of free cholesterol in coro-
nary arteries is toxic to many different vascular cell 
types, including macrophages, endothelial cells, and 
smooth muscle cells [41]. This toxicity directs these 
vascular cells to apoptosis and eventually vascu-
lar dysfunction [41, 42]. Although there is evidence 
that peripheral vascular and cerebrovascular disease 
pathology can accelerate the progression of AD, the 
relationship between them is complex, and further 
research is necessary to discern the exact nature of 
these relationships at different stages of disease pro-
gression [35].

Evidence of the association between AD and CVD

In addition to the information above, it is important 
to understand the consequences of pathology to the 
brain since it is an important target for hyperten-
sion and other CVDs that subsequently contribute 

to cognitive impairment [43]. The vasculature in the 
brain controls blood flow via autoregulation through 
myogenic, metabolic and neurogenic mechanisms, 
which maintain relatively constant blood flow during 
both increases and decreases in blood pressure [44]. 
There are large intracranial and extracranial arter-
ies that provide significant vascular resistance in the 
brain compared to peripheral organs which obtain 
vascular resistance from small arteries and arterioles 
[44]. The cerebral endothelium blood-brain barrier 
(BBB), has specialized tight junctions that do not 
allow ions to pass freely and ensure low hydraulic 
conductivity and transcellular transport. This com-
pares more to the epithelium than the endothelium in 
the periphery. It is therefore crucial for the brain to 
regulate water movement tightly to prevent increased 
intracranial pressure that would otherwise cause 
severe neurologic complications and death [44]. 
Normal brain function depends on receiving 20% 
of the cardiac output of oxygenated blood [45], and 
impaired cardiac function can lead to reduced intrac-
ranial blood flow and ischemia as observed in AD 
patients [46]. This leads to hypoperfusion and micro-
vascular damage and contributes to aggregation of 
blood products, impaired Aβ peptides clearance, and 
endothelial dysfunction [47]. Reduced cerebral blood 
flow can also be a result of decreased endothelial NO 
synthesis in AD [48], which otherwise prevents cer-
ebrovascular disease (CBVD) by preserving cerebral 
blood flow and preventing inflammation, thrombosis 
and apoptosis [49]. However, accumulated Aβ pep-
tides induce endothelial NO dysfunction through the 
reduction of eNOS activity. They alter the pattern of 
eNOS phosphorylation at Ser1177, Ser116, and Thr495 
in cerebral vessels [50, 51], making it a prominent 
component of not only CVD, but also neurodegen-
erative pathologies like AD [43]. Additionally, Aβ 
accumulation can contribute to the leakage of the 
BBB [52], contributing to higher oxidative damage 
and protease activity [32]. When found in the neu-
trophils and vessel walls, this accumulation leads to 
the activation of neuroinflammatory responses that 
disrupt the BBB [53]. Moreover, the resultant arte-
rial stiffness causes uncoupling of the neurovascular 
unit leading to brain dysfunction [54].

This is also corroborated by studies showing that 
atrial fibrillation increases the risk of AD by 1.5–2.5-
fold [55, 56]. Atrial fibrillation is a major risk factor 
for stroke, which is a major risk factor for vascular 
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dementia. It causes embolism through thrombus for-
mation in the heart, and this can cause cerebral infarc-
tion hence vascular dementia [55]. Through cerebral 
hypoperfusion, atrial fibrillation can cause hypoper-
fusive vascular dementia and accelerate the formation 
of senile plaques, amyloid angiopathy, and neurofi-
brillary tangles as seen in AD. As a result, the role 
that atrial fibrillation plays in inducing dementia in 
cerebrovascular diseases and AD in the elderly shows 
that its management can be crucial in the prevention 
of these dementias [55].

Inflammatory markers have been established as 
important predictors of CVD, and there is extensive 
evidence that inflammation may play a role in the 
development of AD pathology [4]. Studies show that 
measuring C-reactive protein (CRP) and IL-6 could 
predict myocardial infarction and stroke, and they are 
strong independent predictors of all causes of CVD 
and related mortalities [57]. Furthermore, CRP and 
other systemic inflammatory markers are associated 
with the onset of AD, and through formation of white 
matter lesions, they can accelerate the progression of 
AD [58]. Microglia in neurodegenerative disorders and 
macrophages in CVDs play a pivotal role in inflam-
mation [59]. Activated microglia express pattern rec-
ognition receptors (PRRs) including Toll-like recep-
tors (TLRs), particularly TLR-4 and TLR-6 which are 
co-expressed with cell surface co-receptors CD36 and 
CD14 [60, 61]. They trigger multiple innate immune 
signaling pathways including IL-1β, IL-2, IL-6, IL-8, 
tumor necrosis factor (TNFα), and chemokines which 
activate nuclear factor κB (NF-κB) signaling [62–65]. 
The TLR4-TLR6-CD36 complex has different ligands 
including fibrillar or soluble Aβ, cholesterol crystals, 
and oxidized low-density lipoproteins (oxLDL) which 
increase the production of pro-inflammatory mediators 
[66, 67]. Further, these molecules activate the NOD-
LRR- and pyrin domain-containing 3 (NLRP3) inflam-
masome [68], and through phosphorylated caspase-1, 
they stimulate the secretion of active IL-1 β or IL-18 
[62]. Similarly, in atherosclerotic CVD, the inflam-
masome is activated by directly binding oxLDL with 
CD36, TLR or through NOD-like receptors (NLR) [65, 
69]. Studies with NLRP3 inflammasome and caspase-1 
knockout mice show that their inhibition can be benefi-
cial to attenuate vascular and brain inflammation and 
may be a good target for therapeutic interventions [59].

Although a majority of heart failure cases are 
known to result from ischemia, those without 

causative events are termed as idiopathic dilated 
cardiomyopathy (iDCM), and recent evidence has 
classified them as misfolding diseases, similar to 
neurodegenerative diseases like AD [70]. A study 
demonstrated that in humans, protein misfolding 
is implicated in the etiology and pathogenesis of 
iDCM [70]. Intermediate oligomers similar to those 
observed in the brains of patients with AD were 
observed in the myocardium of the patients with 
iDCM. In addition, missense mutations in the Pre-
senilin  (PSEN1 and PSEN2) genes alter presenilin 
expression and its interaction with proteins involved 
in excitation-contraction coupling, and they are also 
known to catalyze the cleavage and release of Aβ 
peptides from the amyloid precursor protein (APP). 
Furthermore, oligomers increase cytosolic Ca2+ 
which in failing hearts is coupled with Ca2+ depletion 
that favors protein misfolding [70]. These new patho-
genic mechanisms, if well exploited, can be an impor-
tant basis for the advancement of novel strategies for 
early diagnosis and treatment of iDCM.

Sex specificity during AD and CVD pathology

Over and above, there is a significant role played 
by sex differences in the initiation, progression, and 
clinical manifestation of AD [71]. This has been illus-
trated in studies showing that in most incidences of 
AD, almost 66% are women [72]. Further, reports 
show that after the age of 65, the cases of AD are 
16.7% (1 in 6) for women and 9.1% (1 in 11) for men 
[73]. One major explanation for this difference can 
be inferred to the sex hormones, whereby in women 
with menopause, estrogen deficiency has been tightly 
linked with AD pathology [74]. Estrogen is regulated 
by the nuclear receptors, estrogen receptor alpha 
(ERα) and estrogen receptor beta (ERβ) [75], which 
are broadly distributed in the CNS [76] and bind to 
the estrogen response element thus imparting neuro-
protection [77]. ERα acts like an agonist and is more 
effective in the induction of transcription coupled 
to the hormone response element compared to ERβ, 
which acts like an antagonist in some cases [78]. 
However, 17β-estradiol also mediates rapid signal-
ing events via pathways that involve transmembrane 
ERs, such as G-protein-coupled ER 1, (GPER, for-
merly known as GPR30) [79]. In the past 20 years, 
dysregulation of GPER signaling has been implicated 
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in several cardiovascular diseases. However, its role 
in dementia and AD is still unclear.

In AD, estrogen plays several neuroprotective 
roles, among them decreasing Aβ toxicity by inducing 
the breakdown of APP into the non-amyloidogenic 
pathway [80], improving synaptic plasticity, dimin-
ishing brain inflammation [81], and reducing tau 
protein hyperphosphorylation [81, 82]. This clarifies 
why reduced expression of ERα has been observed in 
hippocampal neurons of AD patients, and the reduced 
expression of ERβ in female AD patients has been 
associated with abnormal mitochondrial function and 
elevated markers of oxidative stress [81]. Conversely, 
in postmenopausal women, hormone replacement 
therapy may attenuate AD onset, demonstrating the 
importance of estrogen signaling in the progression 
of AD [81]. For this reason, therapeutic strategies can 
focus on developing drugs that have the potential to 
target different estrogen effects, estrogen-metaboliz-
ing enzyme expression, or estrogen receptors expres-
sion to treat neurodegenerative conditions [81].

In the same breath, CVDs have also been shown 
to contribute to cognitive decline in a sex-dependent 
manner. A recent study demonstrated that women 
with CVD were 1.5 times more likely to experience 
AD than men [83]. Women with heart failure and 
coronary heart disease were 1.3 and 1.6 times more 
likely to develop AD  than men with the same con-
dition [83]. In another study, cognitive performance 
was shown to be worse in hypertensive menopausal 
women compared to normotensive and postmenopau-
sal women, and this had a negative impact on corti-
cal functions or semantic memory [84]. This is fur-
ther supported by findings that show blood pressure 
is typically lower in women before menopause than in 
age-matched men, but after menopause the incidence 
of hypertension in women increases dramatically 
[85].

Another study demonstrated how psychologi-
cal stress leads to the development of hypertension 
by showing the interplay between the CNS and the 
neuroendocrine system [85]. In postmenopausal 
women, psychological stress causes greater pres-
sor responses than in premenopausal women [86], 
and this effect is attenuated by estrogen hormone 
replacement [87, 88]. In reference to psychologi-
cal stress, the amygdala, which is part of the limbic 
system, is functionally implicated in memory and 
sensory integration, reaction to stress, heart rate 

and blood pressure control, reproduction, and social 
behavior [89]. To this end, it has recently been 
shown that increased neural activities in the medial 
amygdala (MeA) mediate stress-induced pressor 
responses in animals and humans [90], and the MeA 
neurons express abundant ERα [91]. Using a knock-
out model for ERα in female mice, the study demon-
strated that estrogen acts on the ERα expressed by 
MeA neurons to prevent the stress-induced pressor 
responses through inhibition of MeA neuron firing 
during stress [85]. Furthermore, treatment of control 
mice with 17β-estradiol prevented the stress induced 
increases in both blood pressure and heart rate, and 
this effect was blunted in ER knockout mice indicat-
ing that ERα expressed by MeA neurons is a key 
site for the antihypertensive effects of 17β-estradiol 
during stress. Consequently, ERα expressed by MeA 
can be a potential therapeutic target for hyperten-
sion, particularly in postmenopausal women [85].

Moreover, a sex-specific association between 
diabetes and brain structure abnormalities and func-
tion has been shown whereby diabetes increases the 
risk of having lacunes and brain atrophy in women 
than in men and is further associated with decreased 
executive function, processing speed and language 
showing increased and impaired cognitive function 
in women but not in men [92].

Although there have been many research studies 
on AD, its root cause remains unknown, and pre-
ventive treatment through the study of its risk fac-
tors may be the best strategy for clinicians to slow 
down its progression [59]. Furthermore, the well-
known cardiovascular risk factors for AD pathology 
include hypertension, diabetes mellitus, smoking, 
apolipoprotein E (ApoE) e4 allele, hypercholes-
terolemia, homocysteinemia, and age [43, 93, 94]. 
Indeed, studies show a strong and likely causal asso-
ciation between CVD and their risk factors with the 
incidence of cognitive decline and AD [7] through 
their shared genetic and biochemical profiles and 
common triggers [95]. This therefore reveals a 
potential opportunity to prevent dementia through 
the management and treatment of CVDs and their 
risk factors either by pharmacological therapy or 
lifestyle modification [96]. Although CVDs include 
a diverse set of diseases, this review will focus on 
the association of AD and two major CVDs, hyper-
tension [35] and diabetes [97] (Table 1).
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Association between AD and hypertension

Epidemiology of hypertension and cognitive 
impairment

Although there has been tremendous progress in 
the prevention and treatment of hypertension, it still 
remains a major cause of morbidity and mortality 
worldwide [122]. Based on the 2017 guideline from 
the American College of Cardiology (ACC) and 
American Heart Association (AHA), blood pressure 
categories are (1) normal (< 120 systolic and < 80 
mmHg diastolic), (2) elevated (120–129 systolic 
and < 80 mmHg diastolic), (3) stage 1 hypertension 
(130–139 systolic or 80–89 mmHg diastolic), and (4) 
stage 2 hypertension (≥ 140 systolic or ≥ 90 mmHg 
diastolic) [123]. Due to these changes, almost half of 
American adults have high blood pressure, and this 
scenario worsens with aging. Hypertension is thus 
categorized as a disease of aging [124] and is a risk 
factor for stroke, ischemic white matter lesions, silent 
infarcts, general atherosclerosis, myocardial infarc-
tion, and cardiovascular morbidity and mortality 
[125]. In addition, studies done at the end of the nine-
teenth century (1960s and 1970s) by Spieth [126] and 
Wilkie and Eisdorfer [98] show evidence that high 
blood pressure imparts deleterious effects on cogni-
tive function by impairing various domains of cogni-
tion [127, 128]. In fact, many epidemiological studies 
demonstrate a causal relationship between blood pres-
sure and the incidence of vascular cognitive impair-
ment (VCI) and AD [129–131], most of which will 
not be focused on in this review, but we will highlight 
two major longitudinal studies that were carried out 
in the 1960s to illustrate this phenomenon. Prospec-
tive longitudinal studies offer the best methodology 

for examining a causal relationship between blood 
pressure and the incidence of dementia [98, 131]. 
This is potentially due to the long lag phase between 
the presence of hypertension and the onset of demen-
tia in the longitudinal studies compared to the short-
term cross-sectional studies, which miss this associa-
tion [98, 131].

Be that as it may, hypertension’s impact on late-
life cognitive outcomes appears the greatest when 
considered in middle age [131]. This was demon-
strated in the Honolulu-Asia aging study (HAAS), a 
longitudinal study where 3735 participants were fol-
lowed up from 1968 to 1970, 1971 to 1974 and 1991 
to 1993. The study showed that in subjects who were 
never treated for hypertension, higher blood pressure 
was associated with a significantly increased risk of 
dementia, owing to VCI and AD [129]. Compared 
with normotensive individuals, patients with hyper-
tension (Systolic blood pressure, SBP ≥ 160 mmHg) 
had a 4.8-fold higher risk of dementia and an odds 
ratios of 3.8 for diastolic blood pressure (DBP 90–94 
mmHg and 4.3 for DBP ≥ 95 mmHg compared with 
DBP 80–89 mmHg) [124, 129]. Autopsy analyses of 
these patients revealed that those with SBP ≥ 160 
mmHg had lower brain weights and greater numbers 
of Aβ plaques in both the neocortex and hippocam-
pus, while those with DBP ≥ 95 mmHg had greater 
numbers of neurofibrillary tangles in the hippocam-
pus [99, 130]. This demonstrated that Mid-life SBP 
is a significant predictor of reduced cognitive func-
tion in later life, and early control of SBP levels may 
reduce the risk for cognitive impairment in old age 
[129].

In the same breath, the Swedish Göteborg H-70 
study, which started in 1971 [107], analyzed the rela-
tion between blood pressure and the development of 

Table 1   Association 
between AD pathology and 
CVDs

Hypertension Contribution to cognitive decline/dementia [98–101]
Promotes development of microhemorrhages [102–104]
Promotes accumulation of Aβ peptides [99, 100, 103, 105–107]
Contributes to white matter lesions [101, 108, 109]

Diabetes Reduced expression of insulin receptors [110, 111]
Hyperglycemia and ROS generation [97, 112–116]
Insulin-induced production of pro-inflammatory 

cytokines
[117–121]

Inflammation Production of CRP and IL-6 [57]
Formation of white matter lesions [58]
Activation of the innate immune system [60–65]
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dementia in those non-demented at age 70. The par-
ticipants were followed up for 15 years at age inter-
vals 70–75, 75–79, and 79–85 years. They demon-
strated that participants who developed dementia at 
age 79–85 years had significantly higher SBP (mean 
178 vs. 164 mmHg) and higher DBP (mean 101 vs. 
92 mmHg) at age 70 than those who did not develop 
dementia [107, 124]. Since hypertension is known to 
induce white matter lesions, which are also common 
in dementias of old age [100, 132, 133], the study 
postulated that the lesions arise from hypertension, 
which causes hyalinization of the vessel walls [101], 
resulting in hypoperfusion and ischemia in the deep 
white matter supplied by long penetrating end-
arteries [101]. The resulting demyelination leads to 
dementia through disconnection of subcortical-cor-
tical association pathways [107].

Although these studies show the effect of high 
blood pressure on cognitive decline in elderly adults, 
there are several studies that suggest worse outcomes 
in older individuals with low BP [131]. For instance, 
a study that combined data from the Rotterdam study 
and the Swedish Göteborg H-70 study with a 2.1 
years follow up [100] documented that hypertension 
in the elderly adults appeared protective but only 
among those who were taking antihypertensive medi-
cation. They showed an inverse association between 
BP and dementia, with a reduced relative risk for 
dementia of 0.93 (95%, CI 0.88–0.99) per 10 mmHg 
higher SBP and 0.89 (95%, CI 0.79–1.00) per 10 
mmHg DBP [100, 128]. This study demonstrates that 
in these elderly adults, either higher blood pressure 
levels are needed to maintain an adequate cerebral 
perfusion, or the lower blood pressure are second-
ary to brain lesions in preclinical stages of dementia 
[100].

Cognitive domains targeted by hypertension

The majority of early studies assessed cognitive func-
tion in individuals with hypertension by using tests 
like the Mini-Mental Status Examination (MMSE), 
which measures global cognitive outcomes, or com-
posite measures of several composite tests [131]. 
However, subsequent studies show that hyperten-
sion impairs cognitive function by targeting specific 
cognitive domains [131]. On this account, the spe-
cific cognitive domains that are negatively affected 
by hypertension include executive function [108], 

memory, and attention/speed of processing [109]. 
They are considered to be involved with subcorti-
cal diseases, such as typical vascular disease or pure 
vascular dementia [134], and have been used to prove 
that increased blood pressure is associated with cog-
nitive impairment.

For instance, the Tromso study [135] used the 
more specific Digital Symbol Substitution Test, 
which tests for speed of processing. This study dem-
onstrated that in adult men (45–55 years), higher SBP 
and DBP was associated with poorer cognition, while 
at older ages (65 years), they had better cognition. 
The women, however, showed a weaker and opposite 
correlation than the men whereby a higher SBP was 
associated with better cognition at a younger age and 
higher SBP poorer cognition at older ages [135].

Another 10-year follow-up study used the Digit 
Symbol Substitution Test and MMSE to investigate 
the association between midlife SBP and late-life 
cognitive decline in elderly men (68–79 years) [136]. 
Participants with high SBP in midlife experienced 
a greater decline in cognitive performance and had 
larger white matter hyperintensity (WMH) volumes 
than those with low SBP in midlife [136]. Overall, the 
declining speed of processing and executive function 
are the most common cognitive changes associated 
with hypertension [131]. Furthermore, the pattern of 
cognitive impairment associated with hypertension is 
often distinguished from the pattern associated with 
neurodegenerative dementias such as AD by the lack 
of consistent findings for an impact of hypertension 
on memory function, a defining characteristic of clin-
ically diagnosed AD [131].

Association between hypertension and cognitive 
decline

Hypertension-related cognitive decline is a conse-
quence of the interplay between the reorganization 
of functional blood flow and vascular damage in 
the brain [137]. In both humans and animal models, 
hypertension causes pathological alterations to the 
cerebral microvessels (small vessel disease) through 
endothelial damage [138], phenotypic changes of the 
vascular smooth muscle cells, fibrinoid necrosis, peri-
cyte injury, pathological remodeling of the extracellu-
lar matrix and activation of matrix metalloproteinases 
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[139], enlargement of perivascular spaces, perivascu-
lar edema [140], and inflammation [138].

As a result of these disturbances in blood flow, 
there is microvascular rupture, rarefaction, impaired 
vasodilation and BBB dysfunction, which results in 
brain ischemia and neuroinflammation [124]. Subse-
quently, the damage is observed as lesions affecting 
both the gray and white matter, which manifest as 
complete and incomplete microinfarcts, microhem-
orrhages and white matter hyperintensities (WMHs) 
[124, 137]. These detrimental effects are important 
determinants of cognitive impairment [128]. For 
instance, microinfarcts and infarcts are strategically 
placed in the brain regions involved in cognition 
including the hippocampus, medial thalamus, and 
frontal lobe [39, 141] where they cause cognitive 
dysfunction. In addition, microinfarcts induce last-
ing functional impairments that extend well beyond 
their core [142]. White matter lesions affect cogni-
tive function by impairing the connectivity between 
the anterior thalamus to the frontal cortex [39]. These 
correlate with a reduction in processing speed, which 
is a typical feature of cognitive impairment [143].

Direct link between hypertension and AD

Although the impact of hypertension on cogni-
tive function is well-established, a few studies have 
shown that hypertension-induced lesions and AD 
may have an additive or synergistic effect and pro-
duce a more severe cognitive impairment than either 
process alone [144].

Hypertension promotes atherosclerosis in both 
the extracranial and intracranial arteries feeding the 
brain [145] whereby it leads to the thickening of ves-
sel walls, reduced vessel elasticity, and the narrow-
ing of the lumen in small vessels [146]. This reduces 
cerebral blood flow, which is a prominent step in 
the pathophysiology of both AD and CVD. In addi-
tion, arterial stenosis causes hypoperfusion, which 
activates β-secretase activity and increases Aβ pep-
tides production [147] thus promoting atherosclero-
sis by inducing inflammation, endothelial dysfunc-
tion, and oxidative stress [148]. In addition, more 
atherosclerosis in cerebral vessels has been reported 
in the brains of AD and hypertensive patients due to 
increased amyloid plaques and neurofibrillary tangles 
[149, 150]. Further evidence shows that hypertension 
and aging exacerbate the progression of AD through 

oxidative microvascular damage and brain inflamma-
tion [151, 152] whereby they promote the activation 
of NADPH oxidase in the cerebral vasculature and in 
turn promote AD pathogenesis [153, 154]. Further-
more, an interaction between vascular and genetic 
factors has been shown whereby hypertension inter-
acts with Apoε4 to promote amyloid deposition in 
healthy individuals, increasing the susceptibility to 
AD [150].

Most studies use animal models that mimic the 
early onset genetic AD, but these constitute only a 
small fraction of the majority of AD cases and beg 
the question whether they represent what happens 
in the natural evolution of the human AD pathology 
[155]. To this end, a study developed an animal model 
of hypertension-related “Alzheimer-like” pathology 
to determine the influence of hypertension on late-
onset AD. They showed that hypertension itself trig-
gers neuroinflammation before Aβ peptides deposi-
tion, suggesting that stimulating inflammation in the 
appropriate time window may represent a promising 
strategy to limit vascular-triggered AD  pathology 
[155].

Furthermore, hypertension induced by angioten-
sin II administration showed increased β-secretase 
activity and the rate of cleavage of the APP protein 
in mice [156], while the genetic deletion of angioten-
sin 1 receptor (AT1R) or administration of the renin-
angiotensin system blockers ameliorates amyloid 
deposition and behavioral dysfunction in APP-over-
expressing mice [157, 158]. Another study induced 
hypertension in the Tg2576 mouse model of AD to 
determine if hypertension exacerbates the progres-
sion of cognitive decline in AD patients by promot-
ing the development of cerebral microhemorrhages 
(CMHs) [102]. The majority of AD patients have 
cerebral amyloid angiopathy (CAA) which is a com-
mon age-related cerebrovascular pathology caused by 
the deposition of Aβ peptides in the cerebral arteries, 
arterioles, and capillaries [102]. This makes them 
fragile and vulnerable to pressure-induced rupture 
both in humans and mice [103, 104]. Consequently, 
this study showed that amyloid pathologies exacer-
bate the effects of hypertension, thus promoting the 
development of CMHs, which contribute to their del-
eterious effects on cognitive function [102]. There-
fore, therapeutic strategies that prevent CMHs, reduce 
blood pressure and preserve microvascular integrity 
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can exert neuroprotective effects in high-risk elderly 
AD patients [102].

Several studies have shown that anti-hypertensive 
drugs can delay and possibly prevent the pathogen-
esis of AD [159–161]. Clinical trials and experimen-
tal studies suggest that antihypertensive medications, 
including ACE inhibitors, AT1R blockers, and diuret-
ics may improve AD biomarkers such as Aβ neuropa-
thology, cerebral blood flow, and inflammatory mark-
ers, and reduce the incidence of AD [162]. Although 
there are previous controlled clinical trials that failed 
to show the outcome benefits of antihypertensive 
drugs on cognitive performance in AD patients [59], 
it has been shown that methods that effectively lower 
blood pressure in midlife can retain or improve cogni-
tive function by reducing the risk of AD and/or CVD 
[35, 163]. In addition, there are various protective 
factors that have been demonstrated to have positive 
effects on cognition and may play a role in AD pre-
vention. Among them, physical activity [164], having 
a higher education/occupation, and greater engage-
ment in cognitive activities have been shown to pro-
vide a higher reserve against AD [165].

Association between AD and diabetes

The link between diabetes and AD goes beyond the 
epidemiological association whereby the brains of 
AD patients show evidence of reduced expression 
of insulin and neuronal insulin receptors [110]. This 
leads to insulin resistance and the breakdown of the 
entire insulin signaling pathway, brain metabolism 
and cognitive function, making it one of the best doc-
umented abnormalities in AD [111]. AD is therefore 
described as a neuroendocrine disorder resembling 
type 2 diabetes mellitus (T2DM) and some studies 
have coined the term “type 3 diabetes” to account 
for the abnormalities that are specifically associated 
with the concurrent AD-type neurodegeneration and 
diabetes [166]. Insulin resistance reduces the ability 
of cells to take up glucose resulting in hyperglycemia 
[97] which can increase neuronal susceptibility to 
stress-induced effects [167]. This leads to accumula-
tion of advanced glycation end products (AGEs) [112] 
hence excessive production of ROS [113, 114], which 
stimulate downstream pathways related to APP pro-
cessing and markedly accelerate Aβ peptides produc-
tion and aggregation [115, 116]. Further, insulin can 
independently contribute to peripheral inflammatory 

responses thus promoting AD pathogenesis [168]. For 
instance, proinflammatory cytokines (IL-6, TNF-α) 
are shown to correlate with decreased levels of the 
insulin degrading enzyme (IDE) which is responsible 
for the degradation of intracellular insulin [117], and 
proinflammatory cytokines are also able to cross the 
BBB and induce central nervous system inflammation 
[118]. Neuronal insulin homeostasis is an important 
factor in amyloid-related neurodegeneration [169, 
170], since it mediates the regulation of Aβ metabo-
lism [171]. Insulin and Aβ are both degraded by IDE 
[172]. Since insulin regulates IDE expression through 
the insulin-PI3K-Akt mechanism in the brain [119], 
failure of this mechanism leads to down-regulation of 
IDE [120]. However, since it has higher affinity for 
insulin than for Aβ, the increased amounts of insulin 
deprives Aβ of its principal degradation mechanism 
leading to its accumulation [121]. Finally, as with 
other CVD risk factors, treatment for diabetes has 
been shown to alter the risk of AD, and several drugs 
have been studied in clinical trials for this purpose 
including metformin [173], pioglitazone [174], and 
the use of intranasal insulin to enhance memory per-
formance in AD patients [175].

There are many other lifestyle, environmental, and 
behavioral risk factors of CVDs including obesity, 
dyslipidemia, and metabolic syndrome [176, 177] that 
have been shown to increase inflammation and the 
risk for AD [177]. However, they have been discussed 
in detail in other review articles [4, 35, 59, 97], hence 
this review will not delve into their mechanisms.

Aβ peptide generation during AD pathology

As described above, Aβ peptides accumulation and 
subsequent formation of senile plaques as well as the 
intracellular hyperphosphorylation of tau proteins 
into neurofibrillary tangles are signatures of AD [8, 
9]. Aβ peptides are byproducts of the metabolism of 
the parental APP, which is a larger precursor mol-
ecule widely produced by brain neurons, vascular 
and blood cells (including platelets), and, to a lesser 
extent, astrocytes [178]. The APP can be processed 
through two enzymatic pathways; the non-amyloido-
genic pathway which depends on its location on the 
plasma membrane, the site of its processing (mem-
brane or endosome) and the environmental pH [179], 
and the amyloidogenic pathway [180] (Fig. 1).
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In the non-amyloidogenic pathway, the α-secretase 
cleaves the APP within the ectodomain, which cor-
responds to the Aβ fragment, thus producing big-
ger soluble fragments and avoiding the formation 
of the Aβ peptides [180]. Subsequently, this process 
releases the secreted/soluble APP (sαAPP), which 
possesses different neurotrophic and neuroprotec-
tive properties. In addition, the C-terminal fragment 
of APP that remains anchored to the membrane is 
once again proteolyzed by the γ-secretase produc-
ing fragments which have low-potency cellular toxic 
properties. Simultaneously, the APP intracellular 
domain (AICD), which has neuroprotective prop-
erties is released inside the cell [180, 181]. In the 
amyloidogenic pathway, the APP is first proteolyzed 
by the β-secretase, or BACE1, which generates a 
soluble fragment from the N-terminal domain called 
sAPPβ and a carboxyterminal fragment β (CTFβ) that 
remains attached to the membrane and is proteolyzed 
by the γ-secretase to produce the Aβ peptide [182]. 

The cleavage site by γ-secretase depends on the loca-
tion of processing (endosomes or Golgi network) 
and generates either Aβ1-40, which is mostly found in 
vascular lesions, and Aβ1-42, which is mainly found 
in AD-associated brain lesions [22]. Although their 
processing is a normal physiological process, genetic 
studies of AD have shown that mutations in the APP 
gene results in the excessive production of Aβ pep-
tides [183], which initially accumulate in the cerebral 
regions with neuronal populations at high metabolic 
bio-energetic activity rates, spread to brainstem, and 
eventually reach the cerebellum [184]. The imbalance 
between neuronal production of Aβ peptides and their 
extracellular clearance enhances their accumulation 
extracellularly or intracellularly [185]. It represents 
the upstream event of Aβ peptide dyshomeostasis 
associated with protein misfolding, aggregation, and 
incipient extracellular accumulation in plaques [186, 
187]. Further, Aβ peptides can be detected in plasma, 
in cerebrospinal fluid (CSF), and in cell culture media 

Fig. 1   The amyloid precursor protein (APP) is processed 
through the (A) non-amyloidogenic enzymatic pathway; 
α-secretase cleaves the APP producing a large soluble frag-
ment (sαAPP), and the C-terminal fragment of APP that 
remains anchored to the membrane is proteolyzed by the 
γ-secretase enzymatic pathway, releasing the APP intracellular 

domain into the cell. In the (B) amyloidogenic enzymatic path-
way, β-secretase cleaves the APP producing sAPPβ and a car-
boxyterminal fragment β (CTFβ) that remains attached to the 
membrane and is proteolyzed by the γ-secretase to produce the 
Aβ peptide. Image created with BioRe​nder.​com

http://biorender.com
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[188, 189]. They impart their toxicity through several 
mechanisms including oxidative stress through gen-
eration of free radicals; membrane permeabilization 
through pore formation; excitotoxicity through inter-
action with some neurotransmitter receptors; mito-
chondrial dysfunction and alteration of cell signaling 
pathways [11, 181, 185]. 

Genetic linkage analysis followed by positional 
cloning in humans identified two major forms of 
AD [190]. The first is the autosomal dominant type 
also called the familial AD (FAD) that is commonly 
linked with an early onset AD (EOAD) pathol-
ogy (< 65 years). It is estimated that pathogenic 
mutations in the genes encoding APP [191] and 
the γ-secretase-complex components, PSEN1 and 
PSEN2 [192, 193], are responsible for up to 71% of 
early-onset AD cases, but can only explain 1% of 
all AD cases [181]. APP mutations can affect the 
total amount of Aβ peptides produced; if they occur 
at the β-secretase cleavage site, they increase Aβ 
peptides  production, whereas if they occur at the 
γ-secretase cleavage site, they influence the rela-
tive amount of Aβ1-42:Aβ1-40 peptides ratio [194, 
195] and/or the amyloidogenic potential of the Aβ 
peptides [196]. Mutations in PSEN1 or PSEN2 that 
form the active core of γ-secretase complex affect 
the catalytic activity of γ-secretase (endopepti-
dase- or carboxy-peptidase-like) activity. They shift 
the production of Aβ1-42 and Aβ1-40 to a longer and 
more neurotoxic species (Aβ1-43), and a genetically 
driven loss of function of γ-secretase [197] shows 
a dramatic reduction in Aβ peptides  production 
[198]. Therefore, the toxic dysfunction mechanism 
is used to describe AD-related genetic changes in 
γ-secretase [196, 198]. Despite this, all mutations 
associated with familial type of AD (APP, PSEN1, 
and PSEN2) in one way or another increase Aβ pep-
tides production or modify its production rate [181, 
182]. The other form of AD is the sporadic form, 
characterized by a late onset (80–90 years of age), 
also called Late-Onset AD (LOAD) [189]. At pre-
sent, no causal (autosomal dominant or recessive) 
genetic mutations are known in association with 
LOAD [199]. However, it has been hypothesized to 
be a multifactorial disease with more than 50 sus-
ceptibility genes/loci associated with its risk [199] 
and linked to Aβ peptides homeostasis through 
its expression, trafficking, and degradation [200]. 
In addition, several genes related to LOAD play a 

role in the regulation of inflammatory and immune 
response pathways, endocytosis and cellular traf-
ficking, cholesterol transport and lipid metabolism, 
and post-translational modification including ubiq-
uitination, which is a crucial mechanism of cellular 
protein clearance [199]. LOAD therefore presents 
with the failure of the mechanisms of quality con-
trol [24] to clear the Aβ peptides from the inter-
stices of the brain [201] representing the key event 
in Aβ aggregation [24]. Individuals homozygous 
for the apolipoprotein E,  specifically the APOe4 
allele have an increased risk of developing the spo-
radic form of AD compared to those who do not 
carry the Apo e4 allele [181, 196]. Clinical and 
neuropathologic studies show a significant associa-
tion between ApoE genotype and Aβ metabolism 
and homeostasis [202]. ApoE e4 is correlated with 
increased intraneuronal accumulation of misfolded 
Aβ peptides, formation of neurotoxic Aβ species, 
and plaque accumulation in brain tissues from AD 
patients [203, 204]. The effect of APOe4 on Aβ 
metabolism, accumulation and aggregation appears 
to be most pronounced during the initial phase of 
Aβ dyshomeostasis [205], and increasing age exac-
erbates this effect. This indicates a potential syner-
gistic interaction between ApoE and aging-related 
metabolic changes [206]. A study showed that 
female carriers of the Apoe4 allele had significantly 
higher levels of Aβ peptides compared to the males 
[202], suggesting that changes in expression of the 
key secretases implicated in APP cleavage and the 
regions with an inferred influence by the e4 allele 
display distinct patterns of expression between 
sexes [202]. ApoE can physically interact with Aβ 
peptides, affect their physical/conformational prop-
erties, and enhance plaque formation [207]. For 
instance, in a mouse model of aging, ApoE e4 facil-
itates the formation of Aβ fibrils by accelerating the 
initial seeding or nucleation of Aβ peptide deposi-
tion thus increasing the brain Aβ peptides  half-
life [208]. Since the major receptors of ApoE are 
low-density lipoproteins (LDL) receptors (LDLRs) 
and LDL receptor-related protein 1 (LRP1) [209], 
it affects cellular uptake and the efficiency of Aβ 
peptides clearance through the BBB [210]. Through 
its association with circulating levels of cholesterol 
as well as atherosclerosis, it can also affect the risk 
of AD indirectly through the vascular component 
[189].
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Formation of soluble Aβ aggregates and their 
mechanisms of toxicity

After being generated as soluble monomers, Aβ pep-
tides form different intermediate aggregation states 
including dimers and trimers, soluble oligomers, 
protofibrils, and eventually fibrils that accumulate in 
plaques, the neuropathological hallmark of AD [187]. 
It is the longer, more hydrophobic Aβ1–42 and not 
the physiological Aβ1–40 [211] that is more likely to 
form toxic, soluble protein oligomeric intermediates 
(SPOs) before progressing to the insoluble plaque in 
AD brains [212]. The term “soluble” describes any 
form of Aβ assemblies that are soluble in aqueous 
buffer [11] and are not pelleted from physiological 
fluids by high-speed centrifugation [11, 213].

Understanding the process for SPO aggregation 
is exceedingly complex and involves a dynamic 
equilibrium including a diversity of sizes and con-
formations of aggregated Aβ peptides. The forma-
tion of these oligomeric aggregates, some of which 
are nuclei, is the rate-limiting step in the aggrega-
tion process. This rate limitation is evidenced by the 
presence of a lag during the aggregation process as 
well as the cessation of this lag upon the introduc-
tion of preformed seeding nuclei [214]. Addition-
ally, the nucleation-limited nature of the aggrega-
tion process indicates that the formation of a certain 
SPO species may be the necessary event triggering 
exponential growth of aggregates. For these reasons, 
recent work toward developing AD therapeutics has 
focused on identifying molecules that can inhibit 
the formation of Aβ oligomers [215]. This endeavor 
necessitates an understanding of the atomic struc-
ture of SPOs as well as the physics of their forma-
tion both in general and in the presence of inhibitors.

Current understanding of SPOs stems primarily 
from experimental techniques, molecular dynam-
ics and Monte Carlo simulations, and the  molecular 
theory [216]. These studies aim to clarify oligomer 
structures and kinetic pathways of SPO formation. 
Collectively, these works report a multitude of pro-
spective structural motifs for each mass of oligomer 
species and numerous potential kinetic schemes for 
oligomer formation. However, despite this increased 
interest in oligomers, the exact structures and phys-
ics of the aggregation process of these species have 
remained ambiguous [194]. Moreover, information 
regarding the relative propensity of various SPO 

species to form and their importance in the aggrega-
tion process is also still unclear and requires further 
study.

The toxic potential of SPOs is shown when low-
number oligomers (small, low-n Aβ oligomers) of nat-
urally secreted trimeric Aβ from human cells injected 
into wild-type mice hippocampus hinder modulation of 
synaptic plasticity by inhibiting long-term hippocampal 
potentiation (LTP) and enhancing long-term depres-
sion (LTD) leading to synaptic loss [217, 218]. This 
inhibition occurs at picomolar to nanomolar Aβ peptide 
concentrations in cell-derived Aβ oligomers, which is 
similar to the concentration found in human CSF [218, 
219]. This differs from the synthetic Aβ peptides which 
have a single defined length and are applied to neu-
rons at 2–4 orders of magnitude higher concentrations 
to achieve similar biological effects [218]. This shows 
that pure synthetic Aβ peptide may not closely mimic 
the natural aggregation states of the heterogenous Aβ 
peptides in vivo compared to the cell derived Aβ which 
contains multiple forms of various Aβ species [220]. 
Furthermore, it is the smaller and readily diffusible Aβ 
oligomers [221] and larger protofibril aggregates [222] 
that impart neurotoxicity but not the monomers and the 
highly insoluble amyloid plaque cores [221, 223]. Upon 
formation of SPOs, they are released extracellularly and 
impart their toxicity through different mechanisms [11]. 
They bind to different receptors including N-methyl-
d-aspartate NMDA-type glutamate receptor (NMDAR) 
which causes Ca2+ dyshomeostasis, and synaptic loss 
[224]; the insulin receptor leading to its loss and impair-
ment of LTP-associated kinase function [225]; the friz-
zled receptor (Fz) which results in tau phosphorylation 
and formation of neurofibrillary tangles[226]; the N-for-
myl peptide receptor-like 1 (FPRL1) [227–229] leading 
to the clearance of amyloid-β peptides and the activation 
of inflammation, NADPH oxidase, and superoxide radi-
cal production [230]; and the nerve growth factor (NGF) 
receptor which activates the apoptotic signals [231]. 
Further, they can form membrane pores which allow 
abnormal flow of Ca2+ ions hence cellular dysfunction 
[232], and they can also enter the cytosolic compartment 
and inhibit the proteasome [233]. SPOs have also been 
shown to accumulate intracellularly [234] since APP is 
localized in the membranes of the ER, Golgi network, 
endosomes, lysosomes, and mitochondria [235]. Aβ 
peptides are also produced in the secretory pathway of 
the ER and the trans-Golgi network and bind to the ER 
binding protein (ERAB) [236]. In addition, extracellular 
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Aβ peptides can be internalized and accumulated by 
cells into their intracellular pools through various recep-
tors including α7 nicotinic acetylcholine receptor 
(α7nAChR) which binds Aβ1-42 with high affinity [237, 
238], low-density lipoprotein receptor, FPRL1, and the 
scavenger receptor for advanced glycation end-products 
(RAGE) [11, 234].

The ER and protein quality control

The ER lumen constitutes a specialized environment 
for protein folding [239]. When misfolded proteins 
accumulate in the cytosol, they expose their buried 
hydrophobic amino acid residues, which are recog-
nized by different quality control chaperone systems 
that either repair or degrade them [240]. The repair 
process can be futile in cases where the proteins are 
irreversibly damaged, in which case they are directed 
toward rapid degradation. However, the accumula-
tion of misfolded proteins can overwhelm the cellular 
quality control system resulting in protein aggregates 
that are potentially toxic as is the case in AD. They 
inhibit the 26S proteasome activity [241] and instead 
get degraded by UPR activated-autophagy, which is a 
controlled self-degradation process that can promote 
cell survival by eliminating damaged cellular com-
ponents [242]. The ER lacks the UPS, hence luminal 
and membrane proteins are retro translocated to the 
cytosol in an ATP-dependent process to the 26S pro-
teasome. As the protein aggregates keep accumulat-
ing, they overwhelm the cells resulting in ER stress 
[241] which in turn activates the unfolded protein 
response (UPR) in a bid to reduce protein synthesis 
and increase their degradation. The UPR achieves this 
through activating the transcription of genes encod-
ing chaperones, folding enzymes, and other proteins 
involved in ER-associated degradation (ERAD); 
attenuating translation processes hence eliminating 
the synthesis of new proteins into the ER; and acti-
vating the apoptotic pathways if ER homeostasis can-
not be restored [243]. The ER stress sensors IRE1, 
PERK, and ATF6 normally remain bound to BiP/
Grp78, preventing their activation. However, during 
ER stress, the unfolded proteins sequester BiP/Grp78 
from the membrane, a process that initiates signals 
within the ER to reduce global protein synthesis, pro-
mote protein folding, and increase the degradation 
of misfolded proteins [244]. However, failure of this 

response to restore homeostasis can result in oxida-
tive stress and eventually apoptotic cell death [18].

ER stress, Ca2+ homeostasis, and the unfolded 
protein response

During the UPR, BiP/Grp78 dissociates from the 
three ER transmembrane protein sensors and promotes 
their activation via oligomerization. The first sensor is 
PERK, which upon activation through oligomerization 
and trans-phosphorylation [245] phosphorylates the 
α-subunit of eukaryotic translation initiation factor 2 
(eIF2α), which in turn reduces the ER folding load by 
suppressing global translation [246]. It also increases 
the translation of select messenger ribonucleic acids 
(mRNAs) including activating transcription factor-4 
(ATF4) which targets CCAAT/enhancer-binding pro-
tein homologous protein (CHOP), the master regula-
tor of UPR-mediated apoptosis [247]. Deletion of the 
CHOP gene protects against cell death induced by 
pharmacological ER stressors, mechanical stretching 
[248] and pressure overload [249]. The second sen-
sor is IRE1 which is activated through dimerization 
and transphosphorylation [245], resulting in endori-
bonuclease activity that splices the mRNA encoding 
the transcription factor X-box binding protein (Xbp1). 
Translation of the spliced Xbp1 transcript produces 
a transcription factor that induces the expression of 
genes encoding molecular chaperones, protein folding 
enzymes, and components of ERAD [250]. The third 
UPR effector, ATF6, acts as a transcription factor, 
which upon activation is cleaved by site-1 and site-2 
proteases (S1P and S2P) in the Golgi apparatus. It then 
translocates to the nucleus and upregulates the expres-
sion of genes involved in protein folding and degrada-
tion [251].

After prolonged and severe activation of the UPR, 
the loss of cellular nutrients and energy leads to the loss 
of ER homeostasis, and Ca2+ signaling plays a role in 
recognizing the disrupted reticular homeostasis [252]. 
The ER senses and integrates many of its incoming 
signals, particularly changes in free and bound Ca2+ 
concentrations inside and outside of the ER compart-
ment and through its membrane, it modulates its own 
luminal Ca2+ dynamics, and generates appropriate sig-
nals to maintain balanced homeostasis [252]. In addi-
tion to the ER membrane, the Ca2+-binding protein 
BiP/Grp78 is important in sensing the accumulation 
of mis-folded proteins in the ER [253]. Furthermore, 
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depletion of the ER Ca2+ stores activates store-operated 
calcium entry (SOCE) which affects the availability of 
cytoplasmic Ca2+ for intercellular signaling, leading to 
a rapid accumulation of misfolded proteins [254]. Other 
ER luminal Ca2+ buffers also play a role in regulat-
ing the UPR. Calreticulin associates with ATF6 and, 
together with BiP, maintains ATF6 in an inactive state 
[255]. Upon ER stress, both BiP and calreticulin disso-
ciate from ATF6, promoting its trafficking to the Golgi 
apparatus where it is proteolytically processed [255]. 
Overall, these premises show the disruption of Ca2+ 
homeostasis in the ER leads to activation of ER stress 
coping responses including the UPR and its importance 
in providing the appropriate coping responses through 
integrated signaling mechanisms in response to cellular 
stresses [252].

Although the canonical UPR pathway uses sev-
eral short-term mechanisms to improve ER func-
tion, there is also longer-lasting enhancement of 
the ER folding environment through gene regu-
lation [256]. These processes involve some non-
canonical mechanisms emanating from the UPR 
signaling pathway which regulate genes involved 
in other cellular processes like metabolism, 
inflammation [257], transcription, and mRNA 
expression. However, these pathways go beyond 
the scope of this review and have been discussed 
at length in other reviews [256]. Moreover, there 
is an integrated stress response (ISR) that occurs 
with intracellular accumulation of misfolded pro-
teins in the ER. At the core of the stress stimuli 
that activates the ISR is the phosphorylation of 
the alpha subunit of eIF2α on serine 51 by PERK 
and other kinases [258]. This phosphorylation 
causes a reduction in global protein synthesis and 
allows for cell survival and recovery by activat-
ing the translation of ISR-specific mRNAs, such 
as ATF4 [259]. Once ER stress has been restored, 
the ISR is terminated through the dephosphoryla-
tion of eIF2α by growth arrest and DNA damage-
inducible protein (GADD34) phosphatase, thus 
restoring protein synthesis and normal cell func-
tioning [259]. However, when cellular homeostasis 
cannot be restored, eIF2α can allow the synthesis 
of death-inducing proteins, as well as those that 
accumulate in the cell and aggravate the proteo-
toxicity and oxidative stress [260] (Fig. 2).

ER stress in AD and CVD

ER stress in AD

The diseases that are caused by misfolded proteins 
are called “conformational or folding diseases” [261]. 
These include AD, Parkinson’s disease [262] and 
Huntington’s disease [263], and CVDs [261, 264]. 
In AD, an accumulation of Aβ peptides results in 
chronic activation of ER stress [265] with the proa-
poptotic phase of ER stress likely to predominate and 
contribute to neurodegeneration [266]. Further, in AD 
patients, the ER stress response is activated [265], 
and proteins involved in ER stress-induced apoptosis 
are upregulated [267, 268]. This shows a high possi-
bility that ER stress invoked by the accumulation of 
Aβ peptides is one of the key mechanisms involved 
in the onset of AD pathology [261]. To elaborate this 
further, the relationship between the accumulation of 
Aβ peptides and ER stress has been explored through 
many experimental models based on the culture of 
neuronal cells, cell lines, and brain slices [269, 270] 
to elucidate the connection between extracellular 
Aβ peptides accumulation and their intracellular ER 
effects.

The Ca2+ hypothesis of AD is the most widely 
suggested mechanism which attempts to explain how 
amyloid formation and accumulation might account 
for both the progressive decline in memory and 
increase in neuronal cell apoptosis [271]. It shows 
that the release and formation of Aβ1-42 peptides may 
enhance intracellular Ca2+ entry by binding to the 
cellular prion protein (PrPC), which functions as an 
Aβ peptides receptor [272]. Aβ1-42 peptides also func-
tion as channels or activate channels in the plasma 
membrane [273]. This leads to the altered expression 
of components such as the inositol 1,4,5-trisphos-
phate (IP3)-receptor (IP3R) [274], ryanodine receptor 
(RyR), the APP intracellular domain [275, 276], and 
the buffer calbindin which functions in learning and 
memory formation [277]. Eventually, this remodeling 
results in the upregulation of Ca2+ signaling and the 
disruption of synaptic mechanisms responsible for 
learning and memory and stimulates the mitochon-
dria to release cytochrome C, further triggering ER 
stress, increased ROS production, and resulting in 
cell death by activation of caspases [273].

Recent evidence purports the increased regula-
tion of gene expression of ATF4 in the cortex of AD 
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brains, whereby its protein levels are 1.9 times higher 
than in age-matched controls [278]. In the APP/PS1 
mice, which have synaptic and memory deficits due 
to Aβ overload, ATF4 is increased in the hippocam-
pus [278]. It binds the regulatory region of PS1 gene 
which stimulates γ-secretase activation, thus pro-
moting Aβ production [279]. Furthermore, it acts 
as an inhibitor of synaptic plasticity and long-term 
memory, showing that in AD, ATF4 not only acts as 
a downstream effector of Aβ peptides, but also as an 
upstream initiator for memory decline, and targeting 
it particularly through the eIF2α kinases can form a 
basis for novel therapeutic interventions [280].

The neuronal ER is a very specialized organ with 
different functional sub-compartments because its 

tubules and cisternae extend from the nuclear enve-
lope into dendrites and dendritic spines and also along 
axons as far as presynaptic terminals. For this reason, 
ER stress in neurons plays a crucial role in the patho-
genesis of AD [281]. Further evidence is shown in a 
study of brains from AD patients that describes the 
changes in neuronal UPR [282]. They observed that 
in AD, pPERK, peIF2α, and pIRE1α were increased 
in the hippocampal neurons associated with granu-
lovacuolar degeneration bodies (GVD) and pPERK 
was particularly abundant in the hippocampus and 
subiculum regions. GVD are large cytoplasmic vacu-
oles that are reminiscent of the autophagic vacuoles 
commonly observed in AD [283]. pPERK-positive 
neurons were also abundant in neurons that stained 

Fig. 2   Accumulation of misfolded proteins sequester Bip/
Grp78 from the ER membrane during ER stress leading to the 
activation of the unfolded protein response; ER stress sensor 
PERK is activated, and it phosphorylates eIF2α and ATF4, 
which targets CHOP resulting in apoptosis. IRE1 activation 
leads to splicing of Xbp1 whose translation activates compo-

nents of ERAD. ATF6 activation leads to its cleavage in the 
Golgi apparatus by S1P and S2P and its translocation into 
the nucleus to upregulate the expression of proteins involved 
in protein folding and degradation. Image created with BioRe​
nder.​com

http://biorender.com
http://biorender.com
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for phosphorylated tau protein and also had abundant 
staining for a tau kinase called glycogen synthase 
kinase-3β (GSK-3β), which shows it can enhance 
neurofibrillary tangle formation [284]. Another study 
in AD patients [285] also observed that activation of 
PERK, eIF2α, and p38 MAPK correlates with abnor-
mal tau levels. These studies demonstrate the role 
that prolonged neuron-specific activation of the UPR 
plays in both tau phosphorylation and neurodegenera-
tion in AD pathogenesis [281].

There is emerging evidence that several pathways 
associated with the UPR can trigger inflammatory 
responses and apoptotic cell death in AD pathology 
[281]. The innate immune response of the inflamma-
some and the cytokines and chemokines released in 
AD has been discussed above (evidence of the asso-
ciation between AD and CVD). Notwithstanding, ER 
stress induces several pathways which can activate 
NF-κB signaling, hence eliciting a myriad of immune 
responses [281]. In AD, NF-κB regulation of BACE1 
transcription may be altered due to chronic stress, and 
the functional NF-κB site in the BACE1 promoter is 
stimulatory in activated astrocytic and Aβ-exposed 
neuronal cells, and repressive in neuronal and non-
activated astrocytic cells [286]. This inefficient tran-
scriptional regulation of BACE1 by NF-κB accounts 
for increased BACE1 transcription and subsequent 
amyloidogenic APP processing in a cell type-specific 
manner [286]. In addition, the NF-κB signaling path-
way has been shown to be one of the major neuro-
protective pathways in AD [287] whereby neuronal 
cells treated with low concentrations of non-toxic Aβ 
peptide induce NF-κB activation [288], which leads 
to neuroprotection against subsequent treatment with 
highly toxic Aβ peptide concentrations. This explains 
the increased BACE1 expression and neurodegen-
eration due to the reduced NF-κB immunoreactivity 
around mature amyloid plaque stages in AD [289].

Inflammatory responses and apoptosis associ-
ated with ER stress can also be triggered by ER-res-
ident inflammatory caspases, including caspase-4 in 
humans and caspase-12 [281]. In the brains of AD 
mice, caspase-12 levels are strongly upregulated, and 
the enzyme colocalizes with Hip-2 protein, which 
modulates its activity through the ubiquitin/protea-
some system [290]. Cells exposed to Aβ peptides 
increase the expression of Hip-2, which not only 
stabilizes caspase-12 but also induces its proteolytic 
activation showing that Hip-2 is an essential upstream 

regulator of the expression and activation of cas-
pase-12 in ER stress-mediated Aβ neurotoxicity and 
cell death [290]. In postmortem samples from AD 
patients, increasing levels of caspase-4 were observed 
with progressive cognitive decline, and its increased 
expression is associated with neuritic plaque changes 
in AD [291]. Furthermore, there seems to be nega-
tive feedback for caspase-4 activation in AD whereby 
neurons prevent the prolonged Aβ-induced activation 
of caspase-4 and subsequent inflammatory and patho-
logical responses in AD [281].

Be that as it may, there are some therapeutic strate-
gies proposed to prevent neuronal degeneration. The 
ER-UPR could be a suitable target, whereby manipu-
lating ER-associated quality control mechanisms or 
the inhibition of the apoptotic pathways associated 
with the UPR can be beneficial to treat or prevent AD 
[292]. Alternatively, the selective activation of PERK 
pathway is an early event of Aβ peptides to induce ER 
stress. Therefore, inhibiting the PERK-eIF2α path-
way promotes the induction of ER chaperones and 
in turn confers resistance to aggregated protein tox-
icity in neuronal cells [293]. Therefore, the selection 
of compounds that act in the multiple branches of the 
UPR could represent a good strategy to prevent the 
abnormal processing of APP as well as the deleteri-
ous downstream events that characterize AD pathol-
ogy [293, 294].

ER stress in hypertension

One of the links that have been shown to exist 
between ER stress and hypertension is their shared 
cellular perturbations including oxidative stress and 
alterations in intracellular Ca2+ [295]. Ang II is one 
of the major circulating factors that signal the central 
effector systems to restore cardiovascular balance. 
Despite many regions of the brain being sensitive to 
Ang II, there are some unique BBB-deficient regions, 
called circumventricular organs (CVOs) that are pri-
mary sensors for this blood-borne signal [295]. Spe-
cifically, one study focused on the circumventricular 
subfornical organ (SFO) [296], which is crucial in 
Ang II-dependent hypertension and is influenced by 
alterations in Ca2+ and redox signaling which are piv-
otal ER modulators [295]. This study demonstrated 
that ER stress in the brain is functionally linked to 
elevations in arterial pressure and renal sympathetic 
nerve activity. Further, an increase in circulating Ang 
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II induces ER stress in the SFO, indicating the causa-
tive role it plays in the pathogenesis of hypertension 
[296].

Another study showed that in aorta from normo-
tensive rats, induction of ER stress elevates their 
blood pressure and activates fibrosis and collagen 
deposition. It also activates the apoptotic cellular 
signaling pathways thus contributing to aortic stiff-
ening and vascular dysfunction. However, inhibition 
of the ER stress in Ang II rat models of hypertension 
attenuates this effect [297], showing that the identifi-
cation of a signaling pathway linked to aortic apop-
tosis and fibrosis can be a potential therapeutic target 
to resolve CVDs [298]. In addition, ER stress con-
tributes to hypertension in spontaneously hyperten-
sive rats, and treatment with the molecular chaperone 
4-phenylbutyric acid (4-PBA) decreases the blood 
pressure in these rats, and also improves their nitric 
oxide-dependent resistance vessel vasodilation [18].

Further evidence emanates from a study that iden-
tified ATF4 as a hypertension-specific biomarker 
and a target gene for miR-1283, which regulates the 
PERK-eIF2α-ATF4 signaling pathway by downregu-
lating ATF4 mRNA [299]. The regulatory relation-
ship between miR-1283 and ATF4 is shown in human 
aortic endothelial cells (HAECs) where miR-1283 
overexpression downregulates ATF4 and miR-1283 
inhibition upregulates ATF4 [299]. In addition, miR-
1283 is associated with essential hypertension and 
gestational hypertension [300, 301]. Wild-type mice 
on a HSD became hypertensive and had elevated lev-
els of vasoactive substances and clotting factors that 
cause vascular injury and functional disturbances. 
However, knockout of the mouse miR-1283 target 
gene ATF4 stabilized the blood pressure and elevated 
NO levels, which is a protective factor in cells [302]. 
Furthermore, in the knockout HSD, the pro-apoptotic 
genes and proteins of ATF4, CHOP, BID, BIM, and 
caspase-3 were downregulated, while the anti-apop-
totic genes and proteins of BCL-X and BCL-2 were 
upregulated. This study elaborates the contribution 
of the miR-1283/ATF4 axis to ER stress and apopto-
sis by regulating the ATF4/CHOP signaling pathway 
in the development of hypertension, and poses as a 
potential target for the prevention and treatment of 
hypertension [302].

Furthermore, Nox, a family of enzymes that gen-
erate ROS [303], is increased during hypertension, 
leading to oxidative stress, alterations in vascular 

structure, and eventual vascular dysfunction. The 
imbalance caused by ROS resulting in vascular dys-
function converges with ER stress through the activa-
tion of NF-κB and transforming growth factor beta 1 
(TGFβ-1), and both processes contribute to hyperten-
sion development [17, 304].

ER stress in diabetes

ER stress may also contribute to diabetes. In a popu-
lation of Pima Indians, mutations in ATF6 correlate 
with increased susceptibility to T2DM [305], since its 
reduced efficacy decreases the induction of ER chap-
erones and protein disulfide isomerases, eventually 
impairing insulin folding [266]. In addition, mutation 
of PERK increases pancreatic β cell apoptosis leading 
to type 1 diabetes as is observed in Wolcott–Rallison 
syndrome [306]. Oxidative stress also acts upstream 
or downstream of the ER to induce ER stress, which 
results in pancreatic β cell dysfunction and eventually 
insulin resistance and diabetes [17].

Conclusion and future perspectives

Although there are many epidemiological studies that 
demonstrate the association of neurodegenerative dis-
eases and CVDs, not much has been shown on how 
the toxic effects of circulating SPOs impact periph-
eral vascular damage directly. Further studies are 
therefore necessary to build on the existing knowl-
edge and bridge the gap in understanding the com-
plex mechanisms involved during AD progression 
and the effects on peripheral cardiovascular diseases. 
This will further inform the development of novel 
therapeutic approaches to control the overall vascular 
function.
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