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Microduplications involving the MYTIL gene have mostly been described in series of patients with isolated schizophrenia. However,
few reports have been published, and the phenotype has still not been well characterized. We sought to further characterize the
phenotypic spectrum of this condition by describing the clinical features of patients with a pure 2p25.3 microduplication that
includes all or part of MYT1L. We assessed 16 new patients with pure 2p25.3 microduplications recruited through a French national
collaboration (n = 15) and the DECIPHER database (n = 1). We also reviewed 27 patients reported in the literature. For each case, we
recorded clinical data, the microduplication size, and the inheritance pattern. The clinical features were variable and included
developmental and speech delays (33%), autism spectrum disorder (ASD, 23%), mild-to-moderate intellectual disability (ID, 21%),
schizophrenia (23%), or behavioral disorders (16%). Eleven patients did not have an obvious neuropsychiatric disorder. The
microduplications ranged from 62.4 kb to 3.8 Mb in size and led to duplication of all or part of MYTIL; seven of these duplications
were intragenic. The inheritance pattern was available for 18 patients: the microduplication was inherited in 13 cases, and all
parents but one had normal phenotype. Our comprehensive review and expansion of the phenotypic spectrum associated with
2p25.3 microduplications involving MYTIL should help clinicians to better assess, counsel and manage affected individuals. MYTTL
microduplications are characterized by a spectrum of neuropsychiatric phenotypes with incomplete penetrance and variable

expressivity, which are probably due to as-yet unknown genetic and nongenetic modifiers.
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INTRODUCTION
Microdeletions and single nucleotide variants (SNVs) involving the
human MYTIL gene (coding for myelin transcription factor 1-like
(MYT1L) and located on chromosome 2 at 2p25.3) have recently
been linked to a syndromic presentation (OMIM#616521) consist-
ing of developmental delay (DD), intellectual disability (ID),
overweight/obesity, and several dysmorphic features [1, 2]. A
better understanding of the mechanism underlying this disorder
has prompted researchers to consider that MYTIL haploinsuffi-
ciency is responsible for the observed clinical phenotype [2-4].
MYTIL is a member of the neural-specific myelin transcription
factor 1 (MYT1) family, which is characterized by the presence of
two highly conserved clusters of C2HC zinc fingers [5]. In the
mouse, the Myt1l transcription factor helps to determine neuronal
fate by specifically repressing the expression of non-neuronal
genes and negative regulators of neurogenesis (including
members of the Notch signaling pathway, such as Hes1) [6, 7].

This role in promoting neuronal differentiation has been proven
in vitro by showing that in combination with other transcription
factors (Ascl1 and Pou3f2/Brn2), Myt1l can reprogram human and
mouse fibroblasts into functional neurons, [8, 9].

Although the phenotype associated with 2p25.3 microdeletions
and SNVs varies markedly from one patient to another, some
clinical features have been clearly established [2]. In contrast, the
published clinical data on individuals with microduplications are
often limited. Partial microduplications encompassing MYT1L were
first linked to schizophrenia [10] and have also been observed in
individuals presenting neuropsychiatric diseases, such as ID and
autism spectrum disorder (ASD) [4, 11-21]. A recent study
therefore concluded that MYTTL might act as a dosage-sensitive
gene involved in neurodevelopmental pathways common to both
ID and schizophrenia [22].

Predicting the clinical outcomes of a 2p25.3 microduplication is
very challenging - especially in a prenatal diagnostic setting. The
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high observed phenotypic variability underscores the need to
systematically characterize the clinical impact of these rearrange-
ments in large numbers of carriers. To further characterize this
phenotypic spectrum, we compared the 16 new patients with 27
previously reported individuals, all of whom presented 2p25.3
microduplications involving all or part of MYTIL.

MATERIAL AND METHODS

Members of the Association des Cytogénéticiens de Langue Francaise
(www.eaclforg) and the AchroPuce networks  (https://acpa-
achropuce.com) were requested to provide all their clinical and genetic
data (including age, phenotype, reason for referral, upstream and
downstream breakpoints, and the inheritance pattern) on individuals with
a 2p25.3 microduplication involving MYT1L. Through this call for
collaboration, 15 new patients diagnosed between 2019 and 2022 (N1
to N15) were recruited. The microduplications were identified with
microarrays that differed in their format, resolution, and manufacturer: a
Human Genome CGH Microarray 60K, 150K, or 180K (Agilent Technol-
ogies, Santa Clara, CA, USA) or an lllumina OmniExpress SNP microarray
(llumina Inc, San Diego, CA, USA).

Microduplications were confirmed by fluorescence in situ hybridization
or qPCR. Genomic positions were relative to human genome GRCH37/hg19
Assembly. For all cases, parental blood samples were requested to
determine the inheritance pattern. Parental analyses were performed using
fluorescence in situ hybridization or chromosomal microarray analysis
(CMA). Genetic counseling was offered to the patients and affected
families. Prior to inclusion, all the patients provided their written, informed
consent to participation in the study.

Additional new cases of 2p25.3 microduplications were retrieved from
the Database of Chromosomal Imbalance and Phenotype in Humans using
Ensembl Resources (DECIPHER: https://www.deciphergenomics.org/). An
e-mail was sent to all the laboratories referenced in DECIPHER, requesting
the patients’ details and authorization to use this information. Only one
patient (D1, from whom consent was obtained) could be included in the
present study. We also searched the PubMed online database (https://
pubmed.ncbi.nlm.nih.gov) with the search terms “2p25.3 duplication” and
“MYTI1L duplication” and identified 27 previously published cases (P1-P27).

All novel variants were submitted to public databases. The variants
reported in patients N1-N5 were submitted to ClinVar (http://
www.ncbi.nlm.nih.gov/clinvar/), and those reported in patients N6-N15
were submitted to DECIPHER. Statistical analyses were performed using
the online tool BiostaTGV (https://biostatgv.sentiweb.fr/). Proportions were
compared using the Fisher-Freeman-Halton Exact test. All tests were two-
tailed, and the threshold for statistical significance was set to p < 0.05.

RESULTS

A total of 16 new cases were recruited into the study, and 27 cases
reported in the literature were reviewed. All harbored pure
interstitial microduplications overlapping the 2p25.3 region and
involving the MYTIL gene. In the new patients (N1 to N15, and
D1), the male:female ratio was 0.8 (7/9) and the age ranged from
6 months to 13 years (mean: 7 years). In the overall cohort, the
male:female ratio was 1.6 (20/12) and the mean (range) age at
diagnosis (n=28) was 14 years (6 months to 72 years). The
microduplication was diagnosed after the age of 3 years for 22 of
the 28 (78%) patients. Of the 16 newly reported patients, 14 were
unrelated and two (N9 and N10) were twins. The microduplication
was identified during the prenatal period in two cases (N11
and N15).

CMA results

The patients’ tracks are represented in Fig. 1, and the CMA results
are described in Table 1. The microduplications were located
within the region extending from 859,616 bp to 2,546,048 bp
(hg19/GRCh37). The microduplication size ranged from 62.4 Kb to
3.8 Mb, with a mean of 330Kb. The breakpoints involving the
2p25.3 region were highly variable. Only one large duplication
encompassed the entire MYTTL gene and ten adjacent genes. In
17 of the 43 cases (39%), the duplications involved only MYTIL.
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Seven of these 17 were intragenic, with both of the breakpoints
located within the MYTIL gene. The other ten microduplications
overlapped partially with the 5" or 3" end of MYTIL. In 20 of the 43
cases (46%), the microduplications involved both the MYTIL and
PXDN genes. In the largest microduplications (5 out 43, 12%),
additional genes were involved (those coding for thyroid
peroxidase (TPO) and syntrophin gamma 2 (SNTG2)).

Inheritance

Data on the inheritance pattern were available for 6 of the 16 new
patients. One microduplication was de novo, four were paternally
inherited, and one was maternally inherited. All parents with
available clinical data (n = 4) were phenotypically normal. Data on
the inheritance pattern were available for 12 of the 27 patients in
the literature cohort. When considering the 18 patients in the
overall cohort with a microduplication and inheritance data, the
latter was de novo in five cases (28%), paternally inherited in
seven cases, and maternally inherited for the six remaining cases.
In two previously reported patients, the microduplication had
been transmitted by a healthy mother via germline mosaicism.
Clinical data on the parents were available for 11 of the 13 cases
with inherited microduplications. In one family, P8 and P9 had
inherited the microduplications from their father (P7), who
presented with ID, DD, obesity, and behavioral disorders. Lastly,
the microduplications were inherited from clinically healthy
parents in the remaining nine cases (82%).

Clinical features of the patients

The clinical phenotypes are summarized in Table 2. For the two
prenatally diagnosed cases, an invasive procedure was triggered
by elevated levels of first trimester maternal serum markers and
increased nuchal translucency. For the other (postnatally diag-
nosed) patients, a routine ultrasound assessment in pregnancy did
not yield any specific findings, other than intra-uterine growth
restriction for N14.

Six of the 16 newly reported patients (37%) were referred for DD
and/or ID. Other prominent clinical findings were ASD in 4 of the
16 cases (25%), growth delay in twins (12%), and congenital
malformations in two cases (12%).

When combining our cohort with previously published indivi-
duals, the three most common features observed were (i) DD in 14
of the 43 cases (33%), with a significant speech delay and
language impairment, (ii) mild-to-moderate ID in 9 of the 43 cases
(21%), and (iii) schizophrenia in 10 of the 43 cases (23%), which
was the most common feature in patients aged 18 or over. Seven
of the 43 cases (16%) were diagnosed with or exhibited features
consistent with ASD (including stereotypical movements) in the
absence of ID. Three of the 43 cases (7%) had a combination of
ASD and ID. Behavioral disorders (including attention deficit and
hyperactivity disorder, aggressivity, anxiety, and mood disorders)
were reported in 7 of the 43 cases (16%). Other frequently
reported features were obesity in 6 of the 43 cases (14%) and
microcephaly in 4 (9%). The other features concerned one or two
patients only: for details, see Table 2. A neuropsychiatric
phenotype was absent in 11 patients (25%). Although most
patients had some dysmorphic features (including hypertelorism,
up-slanting or down-slanting palpebral fissures, strabismus,
bulbous nasal tip, large mouth with downturned oral commis-
sures, full cheeks, and abnormally hemmed ears), none appeared
to be specific or distinctive.

Genotype-phenotype correlations

As reported in the literature, microduplications associated to
schizophrenia covered a broad interval from intron 1 of PXDN
through to intron 21 of MYTIL (chr2:1,737,430-1,836,902, hg19;
Fig. 1). The same pattern was observed for microduplications
associated with isolated ASD; it covered the same region
(chr2:1,742,043-1,834,000, hg19) and disrupted the 3’end of
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Fig. 1

Mapping of the 2p25.3 duplications in the cohort, including new cases (N1-N15), patients described in the literature (P1-P27), and

the new case recruited through the DECIPHER database (D1). The genes present within this region are annotated and shown at the top. The
duplications are represented by horizontal bars labeled according to the associated clinical phenotype. The figure was generated using the

UCSC Genome Browser (https://genome.ucsc.edu/).

MYTIL (Fig. 1). In order to provide additional insights into
genotype—phenotype correlations, we analyzed each microdupli-
cation’s composition and position within MYTIL (Table 3). The
partial duplication of P4 was not included in this comparison
because we did not know which end of MYTIL had been affected.
Although microduplications occur throughout the MYTIL gene, a
significant correlation between the clinical phenotype and the
genomic position was found (Fisher-Freeman-Halton Exact test,
p = 0.003). In 26 of the 42 cases (62%), the microduplication was
multigenic and thus extended to neighboring genes. Clustering
within the 3’ end region of MYTIL was observed in 22 of the 42
cases (52%). In particular, schizophrenia was reported solely in
patients with multigenic duplications. Whilst microduplications in
probands with isolated ASD involved the MYT1L and PXDN genes,
those associated with both ASD and ID tended to be intragenic. In
contrast, the 11 microduplications associated with ID and/or DD
were randomly distributed throughout the region of interest
(chr2:1,617,873-2,546,048, hg19), although six of them (55%)
involved only the 5’ end of MYTTL.

DISCUSSION
2p25.3 microduplications are rare, and only 27 cases had been
reported previously [16]. Here, we presented clinical and

European Journal of Human Genetics (2023) 31:895 - 904

molecular data on a new cohort of 16 individuals harboring a
microduplication in the 2p25.3 region, including a patient from
the DECIPHER database [23] whose clinical features had not
previously been reported. Hence, we were able to compare the
new patients’ data with those previously reported in the literature
(Tables 1 and 2). To the best of our knowledge, the present new
series is the largest yet reported.

The 27 previously published cases were reported to have a
clinical phenotype consisting of schizophrenia (37%), ID (18%) and
ASD (22%), although 26% of the cases did not have a marked
neuropsychiatric disorder [16]. The clinical description of our new
cases further expands the phenotypic spectrum associated with
2p25.3 microduplications. The resulting data highlighted a more
variable phenotypic outcome. The most frequent clinical features
in the 16 newly reported patients were DD and/or ID (37%).
Remarkably, developmental and language delays were more
common in our new cohort (37%) than in previously reported
patients (18%); this highlights the high prevalence of micro-
duplications in the DD/ID population. Some of our clinical findings
were consistent with the literature data. For instance, the
frequency of ASD in our new cohort was 25%, which supports
the putative association between MYTTL microduplications and
autism. Our results are in line with previous observations in which
psychiatric and neurodevelopmental disorders constituted the
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Inheritance

NA
NA

duplication®

Type of
Partial
Partial

Exons
22 to 25
20 to 25

Intragenic®

No
No

Genes
MYTIL
MYTIL

Plateform
NA
NA

Size (Kb)
62.46
85.48

Genomic coordinates
1,761,661-1,824,122
1,762,828-1,848,310

Database ID

continued

Patients
P26 - [15]
P27 - [13]

Table 1.

SPRINGER NATURE

?Both of the duplication’s breakpoints lie within the MYTIL gene.
PDuplication of all or part of the MYTIL gene sequence.

main phenotype [4, 10, 16, 21, 24]; however, the clinical feature
most frequently reported in the literature (schizophrenia) was not
observed in any of the 16 new cases [16]. This discrepancy might
be due to differences in the various studies’ inclusion criteria. Most
of the previous studies focusing on schizophrenia [10, 14, 19-21],
which explains why an association between microduplications
involving MYTIL and schizophrenia (odds ratio: 15.7; p=0.001)
was identified in large case-control studies of patients of all ages.
This association is reportedly stronger for childhood-onset
schizophrenia than for adult-onset schizophrenia (odds ratio:
16.6; p=0.01) [10].

When considering the nine MYTI1L-including 2p25.3 microdu-
plications that were inherited from a healthy parent, one can
hypothesize that the penetrance is variable. Furthermore, the
highly heterogeneous phenotype is suggestive of variable
expressivity. This might be due to differences in the breakpoints
and duplication sizes, although these genetic features did not
appear to be correlated with the clinical severity. For example,
patients P17 and P14 (harboring duplications of 110kb and
3.8 Mb, respectively) had much the same phenotype.

The microduplication size ranged from 62.4 kb to 3.8 Mb, and
involved all or part of the critical MYTIL gene [4, 22]. Haplo-
insufficiency of MYTIL is not tolerated in humans [25], and the
probability of loss of function intolerance score is 1. To date,
disease-causing variants in MYTIL have been reported in 62
patients; the phenotype is more homogeneous but the clinical
presentations resemble those seen in cases of microduplication
syndrome [1]. The most frequent clinical features are behavioral
disorders (seen in 98% of cases), DD with language delay (95%), ID
(70%), overweight or obesity (58%), and epilepsy (23%) [1].
Furthermore, gene expression profiling of a MYT1L knockout cell
line has shown that MYTIL haploinsufficiency can disrupt the
expression of critical genes during brain development — suggest-
ing that MYTIL regulates a network of genes involved in the
etiology of neurodevelopmental disorders [25]. Chen et al. (2021)
generated a Myt1/ haploinsufficiency mouse model that mimicked
common clinical phenotypes associated with loss-of-function
mutations in human MYTIL or 2p25.3 deletions, including obesity,
white-matter thinning, microcephaly, hyperactivity, muscle weak-
ness, and social alterations [3].

The phenotypic variability might be explained by a “two-hit”
model. The second hit might be another copy number variation, a
single-base-pair mutation disrupting a functionally related gene,
or even an environmental factor that affects the phenotype. This
second hit might be responsible for the development of more
severe neurological phenotypes, such as ID/DD, ASD, and
schizophrenia [26, 27].

Lastly, one can hypothesize that the phenotype is due to
duplication of another gene. However, when considering the 43
patients described in our study and in the literature, duplications in
candidate genes that could be responsible for specific clinical
findings in this syndrome were found in only 26 cases. Interestingly,
20 of the 43 duplications (particularly those associated with
schizophrenia) affected MYTIL and PXDN. This prompts us to
wonder whether PXDN is involved in schizophrenia susceptibility.
PXDN encodes an extracellular, matrix-associated peroxidase
thought to participate in peroxide-driven oxidations, phagocytosis,
and immune defense. Many studies have shown that oxidative
stress is part of the disease mechanism of schizophrenia [28].
However, there are no literature data on the potential involvement
of PXDN in schizophrenia or other neuropsychological features.
Some microduplications (n = 6) included additional proximal genes
(TPO and SNTG2). Thyroid peroxidase is a key enzyme in thyroid
hormone biosynthesis and was reportedly associated with ASD in a
study of the contribution of immune-related genes to the
pathogenesis of this disease [29]. Syntrophin gamma 2 is a
scaffolding protein that interacts with the neuroligins. It has been
suggested that SNTG2 is involved in neurodevelopmental disorders,
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Table 3.
Clinical phenotype

5" end
multiexon®

0% (0/10)

Intragenic*

Schizophrenia 0% (0/10)

ID/DD 9% (1/11) 55% (6/11)
ASD 37% (3/8) 0% (0/8)
No neuropsychiatric 27% (3/11) 9% (1/11)
phenotype

Prenatal cases 0% (0/2)
All 17% (7/42)

#Microduplications involving only MYTIL gene.
PMYTIL microduplications extending to neighboring genes.
“Significative p value.

0% (0/2)
17% (7/42)

as a partial SNTG2 deletion was identified in a patient with autistic
features [30]. However, there were no data on the neuropsychiatric
phenotype or the exact age at diagnosis for one of the four patients
with microduplications including SNTG2 (P22).

Regarding the mechanism underlying the duplication and given
the absence of recurrent breakpoints or flanking segmental
duplications, non-allelic homologous recombination can be ruled
out [10]. Hence, the involvement of other underlying mechanisms
(such as non-homologous end joining, fork stalling and template
switching, and microhomology-mediated break-induced replica-
tion) could be postulated.

Lastly, our findings reveal that MYTIL duplications are
associated with variable, unpredictable phenotypic outcomes.
Microduplications are often inherited from a phenotypically
normal parent, making it difficult to establish a direct pathogenic
effect. In this context, genetic counseling and a clinical prognosis
are major challenges for clinicians. The enrichment of this
microduplication in patients with neurodevelopmental disabilities
and the more frequent occurrence of a second copy number
variation in affected carriers suggest that 2p25.3 microduplica-
tions involving MYTTL can act as a susceptibility/risk locus for
neurodevelopmental impairments.
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