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Functional status analysis of RNH1 
in bladder cancer for predicting 
immunotherapy response
Sen Chen 1, Jun Ran 1, Zhouqian Fan 1, Mingyou Liu 1, Liang Wu 1, Qiude Li 1*, Jian Peng 1* & 
Zuquan Hu 1,2*

Bladder cancer (BLCA) typically has a poor prognosis due to high rates of relapse and metastasis. 
Although the emergence of immunotherapy brings hope for patients with BLCA, not all patients will 
benefit from it. Identifying some markers to predict treatment response is particularly important. 
Here, we aimed to determine the clinical value of the ribonuclease/angiogenin inhibitor 1 (RNH1) in 
BLCA therapy based on functional status analysis. First, we found that RNH1 is aberrantly expressed 
in multiple cancers but is associated with prognosis in only a few types of cancer. Next, we determined 
that low RNH1 expression was significantly associated with enhanced invasion and metastasis of 
BLCA by assessing the relationship between RNH1 and 17 functional states. Moreover, we identified 
95 hub genes associated with invasion and metastasis among RNH1-related genes. Enrichment 
analysis revealed that these hub genes were also significantly linked with immune activation. 
Consistently, BLCA can be divided into two molecular subtypes based on these hub genes, and the 
differentially expressed genes between the two subtypes are also significantly enriched in immune-
related pathways. This indicates that the expression of RNH1 is also related to the tumour immune 
response. Subsequently, we confirmed that RNH1 shapes an inflammatory tumour microenvironment 
(TME), promotes activation of the immune response cycle steps, and has the potential to predict the 
immune checkpoint blockade (ICB) treatment response. Finally, we demonstrated that high RNH1 
expression was significantly associated with multiple therapeutic signalling pathways and drug 
targets in BLCA. In conclusion, our study revealed that RNH1 could provide new insights into the 
invasion of BLCA and predict the immunotherapy response in patients with BLCA.

Bladder cancer (BLCA) is one of the most common malignancies of the urinary system1. BLCA can be classi-
fied according to pathological and clinical manifestations as non-muscle invasive BLCA (NMIBC) and muscle 
invasive BLCA (MIBC)2. Transurethral resection of the bladder tumour (TURBT) is the mainstay therapy of 
those with NMIBC3, but they almost always recur and may progress to invasive BLCA. Radical cystectomy 
is the standard therapy for patients with MIBC4. However, because MIBC can rapidly metastasize to lymph 
nodes, liver, lungs, bone, and brain, approximately 50% of patients eventually develop distant disease due to 
disseminated micrometastases5–7. Although the combinations of radiotherapy, immunotherapy, and chemo-
therapy have improved survival8,9, most patients still experience relapse and metastasis, which leads to a poor 
prognosis. An important reason is the high functional heterogeneity of cancer cells. This underscores the urgent 
need to develop a method to decode the functional state of cancer cells and to identify some markers that affect 
specific functional states for predicting treatment response. In addition, it is vital to find a key molecule that can 
remodel the noninflamed tumour microenvironment (TME) into an inflamed TME and has the potential to be 
a combination therapy target10.

Ribonuclease/angiogenin inhibitor 1 (RNH1), a ribonuclease inhibitor (RI), is a ubiquitously expressed 
protein in the cytoplasm, nucleus, mitochondria as well as on endoplasmic reticulum11. RNH1 interacts with 
angiopoietin (ANG) to inhibit its ribonuclease activity, and can also bind to the 40S ribosome and control 
translation12. For example, RNH1 binds to ribosomes and regulates erythropoiesis by controlling specific trans-
lation of the erythroid transcription factor GATA113. Additionally, several studies have identified that RNH1 is 
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involved in various functional states such as cell differentiation, proliferation, invasion, migration, apoptosis, 
autophagy, and the cell cycle, apart from its ribonuclease inhibitor function. Rnh1 promotes differentiation and 
myelination via RhoA in oligodendrocytes in Rattus norvegicus14. RNH1 is essential for adult haematopoietic 
stem cell function and cell cycle regulation15. In cancer, RNH1 inhibits the proliferation of mouse melanoma16; 
overexpression of RNH1 in colorectal cancer cells HT29 resulted in increased autophagy17. Studies have also 
found that the upregulation of RNH1 inhibits cell proliferation, migration and invasion in BLCA, alters cell 
morphology and adhesion and leads to rearrangement of the cytoskeleton in vitro18. However, the application 
value of RNH1 in BLCA therapy has not been described and its role in immunotherapy is unclear.

In the present study, RNH1 was found to be abnormally expressed in various cancers based on pancancer 
analysis. Based on the CRDscore algorithm developed by He et al.19, we developed the R package FUNscore to 
assess tumour functional status and revealed that low expression of RNH1 was significantly associated with 
enhanced invasion in BLCA. In addition, this invasive effect is associated with immune activation and molecular 
subtypes of BLCA. Importantly, RNH1 can serve as a marker of invasion and has the potential to predict the 
therapeutic response to immunotherapy in BLCA.

Materials and methods
Data retrieval and download.  The Cancer Genome Atlas (TCGA) data: the HTSeq–Counts data and 
the corresponding survival and clinicopathological information of cancer patients were downloaded from the 
TCGA data portal using the software package TCGAbiolinks (v2.20.0)20 in R (https://​www.r-​proje​ct.​org/, v4.1.0) 
(accessed on 1 August 2021). For cancer types with no normal samples, or with less than ten normal sample 
number, we downloaded standardized data from the UCSC Xena data portal integrating the Genotype-Tissue 
Expression (GTEx) dataset. The abbreviations for various cancer types are given in Table S1.

Gene Expression Omnibus (GEO): Six BLCA GEO cohort datasets, namely GSE31684, GSE5287, GSE48057, 
GSE48277, GSE13507, and GSE69795, were downloaded using the software package GEOquery (v2.64.2) in R. 
Detailed information on these datasets is available in Table S2.

Based on the Creative Commons 3.0 Licence, the complete expression data and detailed clinical information 
of a BLCA immunotherapy related IMvigor210 cohort (patients treated with atezolizumab) were obtained from 
the R data package IMvigor21021.

Expression, genetic alteration and methylation analysis of RNH1.  The expression of the RNH1 
gene in normal and tumour tissues was analysed in R software. To assess the expression of RNH1 protein in dif-
ferent cancers, we used data from Clinical Proteomic Tumor Analysis Consortium (CPTAC) in the UALCAN 
web service for analysis22,23. We also used UALCAN to analyze the promoter methylation level of RNH1. We 
utilized the cBioPortal web service24,25 for analysis the genetic alteration status of RNH1 based on the TCGA 
cohorts.

Survival and prognosis analysis.  For the prognostic analysis of RNH1 expression in across cancers, we 
used the GEPIA2 tool to perform overall survival (OS) and relapse-free survival (RFS) analyses. In the ‘Survival 
Analysis’ module on the GEPIA2 web server26, samples were stratified into high and low expression groups 
according to the median expression of the RNH1 gene in each cancer type, and OS and RFS analyses were per-
formed. Similarly, we used cBioPortal to analyse the correlation between the genetic alteration status of RNH1 
and disease-free survival (DFS) across cancers27. In addition, we used the survival package in R software to per-
form OS analysis for other specific groups.

Calculation of functional status score.  We downloaded 14 functional gene signatures (FUNGs) from 
the cancerSEA database28. Additionally, the collection of autophagy-related and ferroptosis-related genes was 
obtained from the HADb29 and FerrDb30 databases, respectively. A study identified gene signatures associated 
with tumour immune escape in mice31, and we converted these gene signatures to human orthologues. A total of 
17 collected FUNGs (Table S3) were used to assess the functional status score ( FUNscore).

He et al.19 developed an algorithm that accounted for variation in the signal‐to‐noise ratio across genes and 
cells based on the expression profiles of circadian‐related genes to assess the level of circadian rhythm disrup-
tion. Here, we extend the algorithm to a broader field for assessing the functional status of tumour samples or 
cells. The specific steps were as follows:

First, for a given normalized expression matrix C of bulk RNAseq, microarray, or TPM for scRNA‐seq, we 
define the average expression Ei of gene i across N samples or cells as:

Next, a random sampling strategy was employed. All genes were divided into 50 expression bins according 
to their average expression Ei, and the frequency of FUNGs in each bin was counted and designated BFUNGs. 
The signature genes K were randomly selected with the same number of FUNGs in each bin and iterated 1000 
times. Subsequently, we define a centred gene expression matrix that can be interpreted as the data without an 
excessive migration signal:
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where Xi,j represents the central expression of gene i in the sample or cell j.
Finally, a random score, Srandom , as the mean of K × 1000 random signatures sampled above and the FUNGs 

score, SFUNGs , as the mean of K FUNGs using the centred expression data of each sample or cell were used to 
quantify the abundance of FUNGs. The FUNscore which was normal or a mixture of normal distributions, was 
calculated as follows:

A cut-off of 75% based on quartiles was used as the threshold for FUNscore in single cells, while the median 
was used for bulk RNAseq. This tool was implemented as an R package that is documented and freely available 
at https://​github.​com/​BioIn​foNote/​FUNsc​ore.

Weighted gene coexpression network analysis (WGCNA).  First, we obtained an expression data 
profile containing only genes encoding proteins significantly correlated with RNH1 expression (|R|> 0.2 and p 
value < 0.01, Table S4). The WGCNA package32in R software was employed to execute the WGCNA analysis. In 
the process, we set the minimum module size (minClusterSize = 30) and soft-thresholding power (power = 6) 
for network construction. Subsequently, we calculated the correlation of each module with 17 FUNscore . In 
WGCNA, GS is defined as the correlation between a gene and a phenotype, and MM is defined as the measure of 
the importance of a gene in a module according to the formula MM(i) = cor (xi, ME). In this study, a gene with 
GS > 0.6 and MM > 0.8 was defined as a hub gene among the candidate gene modules.

Differential gene expression and gene enrichment analysis.  Differential expression analysis of 
RNA was performed using the DESeq233 package in R. Genes with the parameters of FDR < 0.01 and |fold 
change|≥ 1.5 were considered differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis 
was performed using the clusterProfiler package (v4.0.2)34 in R.

Molecular subtypes and consensus clustering of BLCA.  We used the R package consensusMIBC2 to 
infer the consensus subtype of BLCA, which included a combined consensus subtype and six published molecu-
lar classifications (University of North Carolina (UNC), Baylor, Cancer Genome Atlas (TCGA), MD Anderson 
Cancer Center (MDA), Lund and Cartes d’Identité des Tumeurs (CIT)). Additionally, we inferred consensus 
clusters based on the 95 hub gene signatures using the R package ConsensusClusterPlus35. The optimal cluster 
number k was chosen depending on the elbow and CDF curve. Principal component analysis (PCA) was per-
formed to evaluate the difference between the clusters. Molecular subtype information is available in Table S5.

Calculation of the T‑cell inflammation score.  Ayers et al.36 developed and validated a pancancer T-cell-
inflamed score, which could define preexisting cancer immunity, and predict the clinical response of immune 
checkpoint blockade (ICB) therapy. Here, we used a model to calculate the T-cell inflammation score. The cal-
culation formula was as follows:

where βi is the coefficient of gene i obtained from the above model, Ei is the expression of gene i, and information 
on genes and coefficients is available in Table S6.

Immune cell infiltration analysis.  Single-sample gene set enrichment analysis (ssGSEA)37–39 was used to 
evaluate the fractions of 28 tumour-infiltrating immune cell (TIIC) phenotypes in the tumour microenviron-
ment. To avoid computational errors caused by a single algorithm and different sets of marker genes for TILs, 
we downloaded immune infiltrate data evaluated using the CIBERSORT40, CIBERSORT-ABS41, EPIC42, MCP-
counter43, quantTIseq44, xCell45, TIMER46 and TIDE algorithms for the 33 cancer types from the TCGA database 
using the TIMER2 web server47.

Enrichment analysis of various therapeutic signatures.  Gene signatures of several potential thera-
peutic pathways were collected from the study by Hu et al.48 (Table S7). Twelve BLCA signatures that are specific 
to different molecular subtypes were collected from the study performed by the Bladder Cancer Molecular Tax-
onomy Group2 (Table S8). ssGSEA was employed to calculate the ssGSEA score according these gene signatures. 
The immunotherapy response data for the IMvigor210 cohort were used to evaluate RNH1 expression in the PR/
CR group. Additionally, we further used the data of BLCA-related drug target genes (Table S9) obtained from 
the DrugBank database (https://​go.​drugb​ank.​com/) to compare their expression in RNH1 groups and BLCA 
subtypes.

Statistical analysis.  Correlations between variables were explored using Spearman or Pearson coefficients. 
Continuous variables that conformed to the normal distribution were compared using independent t-tests for 
comparisons between binary groups, while continuous variables with skewed distributions were compared with 
the Mann–Whitney U test. Survival curves for categorical variable prognostic analyses were generated using the 
Kaplan–Meier method, while the log-rank test was used to estimate statistical significance. The significance level 
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was set at p < 0.05, and all statistical tests were two-sided. All statistical data analyses were performed using the R 
software or online analysis tools described in the relevant Materials and Methods subsections.

Ethical approval.  Our study did not require an ethical board approval because this article does not contain 
any studies with human participants or animals performed by any of the authors.

Results
Pancancer expression pattern and prognostic significance of RNH1.  First, we explored the expres-
sion of RNH1 in human cancers based on the TCGA, GTEx, and CPTAC databases. We found that the mRNA 
expression level of RNH1 was low in tissues of 15 cancer types (BLCA, KICH, LUAD, LUSC, PCPG, PRAD, 
UCEC, ACC, CESC, LAML, OV, SKCM, TGCT, THCA, and UCS) compared with normal tissues (Fig. 1A,B). 
In contrast, we observed that RNH1 mRNA was highly expressed in tissues of 11 cancer types (CHOL, COAD, 
ESCA, LIHC, READ, SARC, DLBC, GBM, LGG, PAAD, and SKCM) (Fig. 1A,B). In addition, DNA methylation 
is an important factor in the regulation of gene expression. Therefore, we explored the promoter methylation 
level of RNH1. We found a significant increase in the promoter methylation level of RNH1 in tissues of 15 cancer 
types (BLCA, BRCA, CESC, COAD, ESCA, HNSC, KIRC, KIRP, LUAD, LUSC, SARC, PRAD, THCA, PAAD, 
and THCA) compared to normal tissues (Fig. 1C). This may be related to the low RNH1 expression in multiple 
cancer types. Consistently, RNH1 protein levels were low in tissues of multiple cancer types compared with 
healthy tissue (Fig. 1D).

Next, we used the cBioPortal tool to analyse the genetic alteration status of RNH1 in different cancer types 
from the TCGA cohorts. We observed the highest RNH1 alteration frequency among patients with seminoma, 
followed by glioma (Fig. 1E). Notably, the RNH1 alterations in both seminoma and adrenocortical carcinoma 
were all identified as ‘deep deletion’ (Fig. 1E). ’Deep deletion’ is the predominant alteration type in most cancers. 
Additionally, we found that the frequency of arginine to valine mutations at position 128 in the RNH1 protein 
was the highest among all mutations (Fig. 1F). Moreover, mutations occurred in almost all exons (Fig. 1F).

The aberrant expression pattern of RNH1 in human cancers prompted us to explore its prognostic value. 
Therefore, we performed a pancancer survival analysis concerning OS and RFS. We found that RNH1 expression 
was significantly associated with OS or RFS in several cancer types. As shown in Fig. 1G, high RNH1 expression 
was associated with good OS in patients with KIRC, KIRP and LAML, and with good RFS in patients with OV 
and THYM. Conversely, high RNH1 expression was associated with poor RFS and OS in patients with ACC 
(Fig. 1G). Similarly, we also used the cBioPortal analysis tool to determine the relationship between prognosis 
and RNH1 genetic alteration status across cancers. Regrettably, we discovered no significant correlation between 
altered RNH1 and OS, or DFS (Fig. 1H,I).

Taken together, we determined that RNH1 is aberrantly expressed in multiple cancers but is associated with 
prognosis in only a few types of cancer. The relationship between this aberrant expression and human cancers 
requires further exploration.

RNH1 affects multiple functional states in BLCA.  Pancancer analyses were performed to explore 
whether there are commonalities in the function of RNH1 in human cancers and to explore its functional role. 
Therefore, we evaluated the 17 functional status scores for each tumour sample. We found that the effect of 
RNH1 on the functional status of most cancers was not significant (Fig. S1). Notably, RNH1 exhibited a sig-
nificant association with multiple functional states in BLCA and LIHC (Fig. S1). Fifteen functional states were 
affected by the expression of RNH1 in BLCA (Fig. 2A). To avoid possible misinterpretation because of con-
founding factors in the single dataset analysis, we performed the same evaluation on additional independent 
GEO datasets of BLCA. Although there was a shift in the evaluation results of different datasets, it is possible to 
be certain that EMT and invasion have coincident results in these BLCA datasets (Fig. 2B–F). The FUN score for 
EMT and invasion was lower in the high RNH1 expression group (Fig. 2B–F). In addition, we also observed a 
higher FUN score for both invasion and EMT in BLCA compared to normal bladder mucosae (NBM) or blad-
der mucosae surrounding cancer (BMSC) (Fig. 2G,H). Consistently, we found that RNH1 was downregulated 
in BLCA compared to NBM or BMSC (Fig. 2I). This evidence suggested that high RNH1 expression was not 
conducive to the migration and invasion of BLCA. Indeed, high expression of RNH1 in MIBC was associated 
with lower FUN score for EMT, invasion, and metastasis (Fig. 2J).

Identification of hub genes affecting functional status.  To further uncover the most representative 
and correlated hub genes affecting functional status, we performed WGCNA based on an expression profile 
containing only 3416 genes encoding proteins significantly correlated with RNH1 expression to find modules 
of genes highly correlated with functional status. Eight gene modules were obtained using the dynamic tree 
cut algorithm, and the RNH1-related genes were determined to predominantly link the brown, turquoise, and 
blue modules (Fig. 3A). Subsequently, a sample dendrogram and 17 functional statuses trait heatmap were con-
structed (Fig. 3B), and the correlation between each module and FUNscore of 17 functional status was assessed. 
We note that only the brown module is significantly linked to multiple functional states, including EMT, inva-
sion, and differentiation (Fig.  3C). This is consistent with our determination above that RNH1 is associated 
with invasion and metastasis of BLCA. Next, we obtained 95, 96, and 111 hub genes from the brown module 
that were significantly associated with EMT, invasion, and differentiation, respectively (Table S10). Interestingly, 
95 of these genes were all significantly associated with these functional states (Fig. 3D). Finally, we identified 
significant BP, CC, and MF ontology terms for these 95 genes. For the BP category of the GO analysis, immune 
response-related processes, such as negative regulation of immune system process, T cell activation, and activa-
tion of immune response, were mainly enriched (Fig. 3E). For the CC category, secretory granule membrane, 
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Figure 1.   Pancancer expression pattern and prognostic significance of RNH1. (A) RNH1 expression levels 
in 19 cancer types based on the TCGA database. (B) RNH1 expression levels in 13 cancer types based on the 
TCGA and GTEx database. (C) The promoter methylation level of RNH1 in 15 cancer types based on TCGA 
cohorts of UALCAN database. (D) Total RNH1 protein expression levels in normal and primary tumour based 
on the CPTAC dataset from UALCAN. (E) The frequency of different RNH1 genetic alterations in different 
tumour types based on TCGA cohorts of cBioPortal. (F) Statistics associated with RNH1 mutation sites in 
different tumour types based on TCGA cohorts of cBioPortal. (G) Correlation between RNH1 gene expression 
and overall survival/disease-free survival in different tumour types in TCGA, assessed using GEPIA2. (H–I) 
Potential correlation between RNH1 alteration status and overall, and disease-free survival in pancancer, as 
analysed using the cBioPortal tool. ns no significant difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 2.   RNH1 affects functional states in BLCA. (A–F) The differences in FUN scores between groups with 
high and low RNH1 expression based on TCGA (A), GSE31684 (B), GSE5287(C), GSE48057 (D), GSE48277 
(E), and GSE69795 (F) datasets. (G–I)The expression of RNH1 (G), and the FUN score of both EMT (H) 
and invasion (I) were evaluated in different tissues based on GSE13507 datasets. (J) The differences in FUN 
scores between groups with high and low RNH1 expression based on the GSE13507 dataset. ns no significant 
difference; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 3.   Identification of hub genes affecting functional status. (A) The clustering dendrogram of the 
WGCNA. (B) Sample dendrogram and 17 functional status trait heatmap. (C) Module-trait relationships. Each 
row represents a colour module and every column represents a functional status trait. Each cell contains the 
corresponding correlation and p value. Red represents a positive correlation and blue represents a negative 
correlation. (D) UpSet plot of overlapping hub genes of EMT, invasion, and differentiation traits. (E) For the 
overlapping 95 hub genes in the diagram (D), the associated BP, CC, and MF were investigated using GO 
enrichment analysis.
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external side of plasma membrane, and ficolin-1-rich granule were significantly enriched, whereas immune 
receptor activity accounted for the most abundant groups in the MF category (Fig. 3E). This result implied that 
RNH1 might be associated with immune activation. Moreover, it suggested that this immune activation effect 
was closely related to EMT and invasion in BLCA.

RNH1 predicts molecular subtypes of BLCA.  Molecular subtypes of BLCA have been constructed in 
several studies. Here, we wondered about the potential of RNH1 for predicting molecular subtypes. Consen-
susClusterPlus was used to perform consensus clustering on the samples according to the 95 FUN-related hub 
genes. The optimal number of clusters was determined based on the CDF. According to the CDF curve and 
delta area under the CDF curve (Fig. 4A,B), cluster number k = 2 was determined to classify BLCA into two 
clusters, designated Cluster 1 (C1) and Cluster 2 (C2) (Fig.  4C). Remarkably, principal component analysis 
separated the two clusters well (Fig. 4D). To assess whether the stratification determined by the FUN-related 
hub genes was associated with clinical outcomes, we evaluated the prognostic performance of the clusters with 

Figure 4.   Unsupervised clustering of BLCA using 95 hub gene expression profiles. (A,B) Consensus CDF curve 
(A) and area (B) under the CDF curve when k = 2–9. (C) Consensus clustering analysis of TCGA-BLCA samples 
when k = 2. (D) TCGA- BLCA populations identified after unsupervised clustering in panel (C). (E) Kaplan–
Meier survival plot of C1 and C2 groups. A log-rank test was conducted. (F) Expression of RNH1 in the C1 and 
C2 groups. (G) Volcano plot of DEGs based on C1 versus C2. (H) BP, CC, and MF of DEGs were investigated 
using GO enrichment analysis.
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respect to OS using Kaplan–Meier survival analysis. Survival analysis showed that C1 had better OS than C2 
in the TCGA-BLCA cohorts (Fig. 4E). In addition, we noticed that there was also a significant difference in the 
expression of RNH1 between the two subtypes, that is, the expression level of RNH1 in the C1 group was higher 
than that in the C2 group (Fig. 4F). These results suggest differences in expression patterns between the two 
subtypes. Therefore, we performed differential expression analysis to explore the changes in expression profiles 
between the two subtypes. A total of 306 DEGs were obtained based on C1 compared to C2, among which, 223 
were upregulated and 83 were downregulated (Fig. 4G). To explore the functional roles of these DEGs in the 
two subtypes of BLCA, GO enrichment analyses were performed using the clusterProfiler package. Figure 4H 
illustrates the top 10 most significantly enriched GO terms (BP, CC, MF) for these DEGs. There was significant 
enrichment of immune-related terms, such as T-cell activation, leukocyte mediated immunity and lymphocyte 
mediated immunity in BP, external side of plasma membrane and endocytic vesicle in CC; and receptor ligand 
activity, immune receptor activity, and signalling receptor activator activity in MF (Fig. 4H). It has been well 
demonstrated that immunologic activity alteration is a hallmark of the two subtypes. Taken together, these find-
ings demonstrate that by using FUN-related hub genes as probes, we can identify novel patient subtypes with 
significant clinical outcomes.

RNH1 promotes tumour associated immune cell infiltration and activates the cancer‑immu-
nity cycle.  Based on the above analysis, RNH1 might be associated with the immune response. Next, we 
further explored the immunological role of RNH1 in BLCA. We found that RNH1 was positively correlated 
with a majority of immunomodulators in BLCA based on TCGA data, but only a few in other cancer types 
(Fig. S2). This implies that RNH1 expression in BLCA may influence the TME and play a role in antitumour 
immunity. Therefore, we estimated the infiltration levels of TIICs based on the ssGSEA algorithm. We discov-
ered a significant positive correlation between RNH1 expression in BLCA and the infiltration levels of 28 TIICs, 
especially activated dendritic cells, central memory CD4 T cells, natural killer cells, natural killer (NK) T cells, 
plasmacytoid dendritic cells, regulatory T cells, T follicular helper cell, and macrophages (Fig. 5A). These cells 
are beneficial for antitumour immune responses. Similarly, RNH1 expression was also significantly positively 
correlated with the levels of most immune cell infiltrates in several cancer types (USC, SARC, TGCT, LAML, and 
UVM) (Fig. 5A). Importantly, seven independent immune evaluation algorithms also revealed that the expres-
sion of RNH1 in BLCA was positively correlated with the infiltration levels of multiple immune cells such as 
macrophages (Fig. S3A–G). Consistently, RNH1 was positively correlated with the effector genes of macrophage, 
CD8 T cells, dendritic cells, and NK T cells (Fig. 5B). This result was confirmed similarly in other independent 
GEO datasets (Fig. 5C–G). This evidence suggests that BLCA samples with high expression of RNH1 exhibit 
higher immune cell infiltration. This may contribute to the activation of the immune cell cycle. Therefore, we 
further evaluated the differences between RNH1 expression and the individual immune activation steps. We 
noted that samples with high RNH1 expression exhibited higher immune activation scores at multiple immune 
cycle steps (Fig. 5H,I). In addition, we note that some molecular subtypes are also consistent with the role of 
RNH1, such as the UNC subtypes (Fig. 5H). Importantly, we found that Group C1 also exhibited higher immune 
activation scores across multiple immune cycle steps (Fig. 5J). This was consistent with C1 having a better OS 
than C2. Taken together, these pieces of evidence suggest that RNH1 promotes the infiltration of TIICs and acti-
vates the immune cell cycle. In addition, RNH1 may play an important role in immunotherapy.

RNH1 shapes an inflamed TME and predicts immunotherapy response in BLCA.  High immune 
cell infiltration is linked to an immune-inflamed TME49. Therefore, we calculated the correlation between the 
expression of RNH1 and the inflammatory score using a pancancer T-cell inflammation score model developed 
and validated by Ayers et al.36. Consistently, RNH1 expression in BLCA was negatively correlated with T-cell 
inflammatory scores (Fig. 6A,B). Additionally, ICB therapies have been most effective in patients with expres-
sion of immune checkpoints and higher T-cell infiltration50. Thus, we further evaluated the correlation between 
the expression of RNH1 and 20 typical inhibitory immune checkpoints. As expected, RNH1 expression in BLCA 
was positively correlated with the expression of multiple immune checkpoints, such as PD-L1, CD80, CD86, 
HAVCR2, IDO1, LAG3, LAIR1, and PD-1 (Fig. 6C). In theory, patients with higher RNH1 expression should 
have a higher response to ICB because RNH1 defines an inflamed TME. Indeed, the expression of multiple 
immune checkpoints was higher in patients who had a complete response (CR) to ICB therapy than in patients 
who had a partial response (PR) in the IMvigor210 cohort (Fig. 6D). Consistently, the proportion of patients 
responding to ICB treatment in the RNH1 high expression group was higher than that in the low expression 
group (Fig. 6E). Additionally, the expression level of RNH1 was higher in inflamed tumours than in immune 
excluded and immune desert tumours (Fig.  6F). Taken together, these results suggest that RNH1 shapes an 
inflamed TME and has the potential to predict ICB treatment response.

RNH1 predicts treatment candidates in BLCA.  To further explore the potential of RNH1 for predict-
ing treatment candidates in BLCA, we first analysed the relationship between RNH1 expression and differ-
ent BLCA-related signalling pathways. Surprisingly, changes in RNH1 expression levels significantly affected 
BLCA-related signalling pathways (Fig. 7A). For example, interferon response, myofibroblasts, smooth mus-
cle, immune differentiation, and EMT differentiation were significantly enriched in the RNH1 high expression 
group (Fig. 7A). Next, we further explored the relationship between RNH1 expression and various therapeuti-
cally relevant signals. We found that RNH1 expression affected certain therapeutic signalling pathways (Fig. 7B), 
such as the spliceosome, FGFR3, KDM6B, and cell cycle pathways (Fig.  7C). These signalling pathways are 
involved in immunotherapy, ERBB therapy, chemotherapy, and radiotherapy. Therefore, we collected drug infor-
mation related to BLCA treatment from the DrugBank database. We then evaluated the relationship between the 
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Figure 5.   RNH1 promotes the infiltration of multiple immune cells. (A) Spearman correlation between RNH1 
and 28 TIICs based on RNAseq data of 33 cancer types from TCGA, as calculated using the ssGSEA algorithm. 
(B–G) Differences in the effector genes of the above tumour-associated immune cells between high- and low-
RNH1 groups from BLCA related datasets: (B) TCGA-BLCA, (C) GSE13507, (D) GSE5287, (E) GSE48057, (F) 
GSE48277, and (G) GSE69795. (H) Differences in various steps of the cancer immunity cycle between different 
BLCA molecular subtypes. (I) Differences in the various steps of the cancer immune cycle between groups with 
high and low RNH1 expression. (J) Differences in the various steps of the cancer immune cycle between groups 
in C1 and C2.
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targets of these drugs and RNH1 expression as well as different subtypes. We found that the targets of multiple 
drugs showed expression differences between the high and low RNH1 expression groups and different subtypes 
(Fig. 7D). Significantly, multiple targets of cetuximab were expressed at lower levels in the RNH1 low expression 
group (Fig. 7D). Taken together, these results show that ICB, chemotherapy, and ERBB therapy can be used, 
either alone or in combination, for the treatment of BLCA with high RNH1 expression.

Discussion
BLCA is one of the most common malignant tumours of the urinary system. NMIBC patients often relapse 
after TURBT, whereas MIBC patients eventually develop distant disease due to disseminated micrometastases. 
This brings great challenges to the treatment of BLCA, and there is an urgent need to develop more accurate 
and effective treatment strategies. Identifying effective markers of therapeutic response is a viable strategy. It is 
generally known that RNH1 plays a role in tumorigenesis by affecting the functional status of tumours in terms 
of processes, such as cell differentiation, proliferation, invasion, migration, apoptosis, and cell cycle14–18. This 
suggests that multiple important roles of RNH1 in cancer deserve further exploration.

In this study, pancancer analysis indicated that RNH1 was aberrantly expressed in a variety of cancers. 
Nevertheless, the impact of RNH1 expression on OS and RFS varied depending on the cancer type. It is worth 
mentioning that our analysis revealed higher methylation levels of RNH1 in multiple cancer tissues than in 
normal tissues. Although DNA methylation is an important factor affecting mRNA transcription, we found 
that the methylation level of RNH1 is very low in various cancer tissues. Therefore, the methylation of RNH1 
affects its expression, but more experimental evidence is required to support this claim. Additionally, we found 
that RNH1 exhibits a high rate of deep deletion among genetic alterations in most cancers, but we noted that the 
total frequency of RNH1 alteration is not high in various cancers. This may be the reason why RNH1 alterations 
are not associated with OS or DFS.

The high functional heterogeneity of cancer cells presents a major challenge to cancer therapy. In this study, 
we quantified 17 functional states in tumours based on the CRDscore algorithm developed by He et al.19. We 
found that RNH1 affects multiple functional states in BLCA based on a pancancer analysis. The affected func-
tional status has been demonstrated in several studies. Additionally, we confirmed this finding based on other 
independent GEO datasets. Importantly, EMT and invasion have coincident results in several GEO datasets. 
This suggests that RNH1 plays an important role in BLCA by affecting EMT and invasion. Previous studies have 
shown that metastasis and invasion of bladder malignant tumours are important causes of death in patients51. 
Although studies have found that RNH1 inhibits the migration and invasion of BLCA cells, the underlying 

Figure 6.   RNH1 predicts the response to immunotherapy in BLCA. (A) Spearman correlation analysis of 
RNH1 and T-cell inflammatory scores in 33 cancer types. (B) Scatter plot of Spearman correlation for RNH1 
and T-cell inflammation score in BLCA. (C) Spearman correlation analysis of RNH1 and 20 typical inhibitory 
immune checkpoints in 33 cancer types. (D) Immune checkpoint expression heatmaps in PR and CR.CR: 
complete response; PR, partial response. (E) Fraction of patients between RNH1 and the clinical response of 
cancer immunotherapy in the IMvigor210 cohort. (F) Expression of RNH1 in inflamed, immune excluded and 
immune desert tumours from the IMvigor210 cohort. Ns no significant difference; * p < 0.05; ** p < 0.01.
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molecular mechanism has not been thoroughly studied18. Here, we found that RNH1 was downregulated in 
BLCA compared to NBM or BMSC. In addition, we also observed a higher FUN score for both invasion and 
EMT in BLCA. More importantly, high expression of RNH1 in MIBC was associated with higher FUN scores for 
EMT, invasion, and metastasis. These results confirm the reliability of the FUNscore method. This results also 
suggest that RNH1 may have significant clinical value in BLCA. Consistently, RNH1-related genes were found 
to be significantly associated with differentiation, invasion, and EMT based on WGCNA. We obtained 95 hub 
genes related to EMT, invasion, and differentiation. Interestingly, GO enrichment analysis revealed that these 
genes were significantly enriched in immune activation related pathways. This finding links RNH1 implicated 
EMT, invasion, and metastasis to immune activation.

In this study, we classified BLCA into two clusters based on 95 hub genes. There was a significant difference 
in OS between the two clusters. Interestingly, the DEGs derived from the differential expression analysis between 
the two clusters were also significantly enriched in immune response related pathways. This again confirms 
that RNH1 mediated EMT and invasion may influence the activation of immune responses. Indeed, based on 
different algorithms for the assessment of immune cell infiltration, we found a significant positive correlation 
between RNH1 expression and multiple immune cell infiltrates. In addition, other independent GEO dataset 

Figure 7.   RNH1 predicts the response to several therapies in BLCA. (A) Correlations between RNH1 and 
molecular subtypes using different algorithms and BLCA signatures. (B) Correlations between RNH1 and 
the enrichment scores of several therapeutic signatures based on ssGSEA. (C) Boxplot presentation of several 
therapeutic signatures from panel (B). (D) Correlation between RNH1 and BLCA-related drug-target genes 
screened from the DrugBank database. *p < 0.05.
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analyses showed that RNH1 expression was significantly correlated with multiple TIICs. In further analysis, we 
found a significant positive correlation between high RNH1 expression and the expression of multiple immune 
checkpoints. Meanwhile, RNH1 was significantly positively correlated with the immunotherapeutic response in 
the BLCA cohort IMvigor210. This is consistent with the most effective outcome of ICB therapy in patients with 
higher expression of immune checkpoints and T-cell infiltration50. Additionally, high immune cell infiltration 
was linked to an immune inflamed TME49. Our analysis also confirms that RNH1 shapes an inflammatory TME. 
Surprisingly, both the RNH1 high expression group and C1 group exhibited higher immune activation scores 
for the immune cycle. These findings establish for the first time a relationship between RNH1 and immunity. 
They also suggested that RNH1 plays an important role in immunotherapy.

Molecular subtypes can predict the response to immunotherapy, radiotherapy, neoadjuvant chemotherapy, 
and several targeted therapies2,52. We found that RNH1 expression was significantly associated with multiple 
BLCA-related signalling pathways. Notably, RNH1 expression was positively related to the enrichment scores of 
therapeutic signalling pathways. Furthermore, RNH1 expression predicted the response to therapeutic options 
in BLCA. In terms of drug response, high expression of RNH1 could make cancer cells more sensitive to cetuxi-
mab. There was a notably better response to ERBB therapy in the high-RNH1 group. This has important guiding 
significance for exploring the neoadjuvant combination therapy for BLCA53.

In conclusion, our study revealed that RNH1 affects multiple functional states of BLCA, especially EMT 
and invasion, and can predict BLCA invasion and metastasis. Moreover, we found that RNH1 expression is 
significantly associated with multiple therapeutic signalling pathways and drug targets in BLCA. We believe that 
RNH1 can provide new insights into the invasion and migration of BLCA and predict the treatment response 
in patients with BLCA.

Data availability
All data generated or analyzed during this study are included in this article and its supplementary information 
files. These data are also available in the following databases (https://​portal.​gdc.​cancer.​gov/, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/, http://​timer.​cistr​ome.​org/, http://​gepia2.​cancer-​pku.​cn/#​analy​sis, http://​ualcan.​path.​uab.​edu/​
analy​sis-​prot.​html, https://​go.​drugb​ank.​com/, https://​www.​cbiop​ortal.​org/, https://​string-​db.​org/, http://​biocc.​
hrbmu.​edu.​cn/​Cance​rSEA/).
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