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Simultaneously discovering the fate and
biochemical effects of pharmaceuticals
through untargeted metabolomics

Tara J. Bowen 1, AndrewD. Southam 1,2, AndrewR. Hall3, Ralf J.M.Weber 1,2,
Gavin R. Lloyd 2, Ruth Macdonald4, Amanda Wilson 5, Amy Pointon 3 &
Mark R. Viant 1,2

Untargeted metabolomics is an established approach in toxicology for char-
acterising endogenous metabolic responses to xenobiotic exposure. Detect-
ing the xenobiotic and its biotransformation products as part of the
metabolomics analysis provides an opportunity to simultaneously gain deep
insights into its fate andmetabolism, and to associate the internal relative dose
directly with endogenousmetabolic responses. This integration of untargeted
exposure and response measurements into a single assay has yet to be fully
demonstrated. Here we assemble a workflow to discover and analyse
pharmaceutical-related measurements from routine untargeted UHPLC-MS
metabolomics datasets, derived from in vivo (rat plasma and cardiac tissue,
and human plasma) and in vitro (human cardiomyocytes) studies that were
principally designed to investigate endogenous metabolic responses to drug
exposure. Our findings clearly demonstrate how untargeted metabolomics
can discover extensive biotransformation maps, temporally-changing relative
systemic exposure, and direct associations of endogenous biochemical
responses to the internal dose.

Untargetedmetabolomics is increasingly applied across a wide range
of fields including toxicology1–3. This approach uses an untargeted
analytical detector, typically mass spectrometry (MS), to measure
large numbers of low molecular weight biochemicals (metabolites
and lipids) in a biological sample4. In toxicology, such information
can be utilised to discover modes-of-action3,5–7; derive molecular
points-of-departure from baseline as a means to calculate safety
thresholds3,6,8; and group chemicals into categories based on simi-
larities of metabolic responses to increase the reliability of read-
across in chemical risk assessments3,6,9. A consequence of the
untargeted nature of the analytical detector is that xenobiotics
and related compounds are typically measured alongside endogen-
ous metabolites1,3. Simultaneous measurement of the exposure

xenobiotic(s) and its biotransformation products can confuse the
interpretation of endogenous metabolic responses if they remain
unidentified. Consequently, it is recommended to identify and dis-
card these xenobiotic-related data prior to statistical analyses10. Yet
measurements of xenobiotics can provide valuable information,
revealing insights into the exposome, i.e., the chemical environment
to which an individual has been exposed3,11,12, and into their fate and
metabolism1,13–19. While stable isotope and untargeted MS-based
approaches have successfully discovered biotransformation pro-
ducts of xenobiotics12,20–25, the integration of untargeted endogenous
metabolomics data with measurements of internal dose and bio-
transformation to simultaneously understand the fate and effects of
xenobiotics is limited26.
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Characterising the exposure to, and biotransformation of, a
xenobiotic are key factors in the safety assessment of pharmaceuticals,
biocides and industrial chemicals13–19, anti-doping testing27, and envir-
onmental risk assessment3,11. Internal dose measurements disclose
information on a xenobiotics disposition (absorption, distribution,
metabolism and elimination; ADME)28, e.g., by confirming distribution
to target organ(s), indicating the time and concentration of peak
internal dose, and revealing steady-state levels (after repeated
dosing)13,14,16,18. Such information can help to enable accurate predic-
tion of human risk from the responses of model species13,16–18. Bio-
transformation of a xenobioticmay result in compounds that aremore
toxic than the parent and, consequently, the toxicity of bio-
transformation products to which humans are exposed—either
through pharmacological intervention or unwanted exposure—must
be evaluated14,15,19. This requires the measurement of complete bio-
transformation maps of xenobiotics14,15,19. Knowledge of bio-
transformationmaps is also important for risk assessment of industrial
chemicals, e.g., serving as a basis for chemical grouping to support
read-across of toxicity data29.

Standardised methods for measuring xenobiotic internal dose
and/or biotransformation are described in guidance documents that
support regulatory safety legislation for pharmaceuticals, biocides
and industrial chemicals16,18. Methods typically rely on [14C]-labelling
(gold-standard)30, ormore recently, stable isotopic labelling ([13C] or
[2H])22,23, to track xenobiotic biotransformation, limiting their
application to pre-defined exposures. Additionally, while these
methods are not intended to provide insights into the impacts of a
xenobiotic on endogenous biochemistry, the potential to acquire
information simultaneously on the disposition of a xenobiotic
alongside its biological impacts is tantalising. This could enable a
deeper assessment of the covariance of systemic or organ-specific
exposure and endogenous response, revealing otherwise undis-
covered toxicological insights. Untargeted MS-based analysis of
biological samples, with statistical-based data mining, offers a pro-
ven alternative strategy to biotransformation product elucidation24

that may enable such simultaneous discovery of xenobiotic dis-
position and effect. Furthermore, there is an unmet need for rapidly
and affordably characterising xenobiotic biotransformation in vitro,
yet knowledge of such characteristics could enhance the in vitro-
in vivo extrapolation of dose-response relationships, helping to
promote the use of in vitro models for safety assessments and
contributing to a reduced need for expensive and time-consuming
in vivo toxicology studies31,32.

The overarching aim of the current study was to demonstrate an
integrative method to discover extensive xenobiotic-related data
from routine untargeted metabolomics datasets and subsequently
derive information on the disposition of an exposure substance, over
time, obtained from the same biological samples and analytical
measurements used to discover the endogenous metabolic respon-
ses. This type of analysis may be termed ‘untargeted toxicokinetics’6

(TK) or untargeted ADME/TK. The first objective was to develop a
computational open-source workflow to semi-automatically discover
and visualise the measurements of a xenobiotic and its bio-
transformation products within untargeted metabolomics datasets—
here demonstrated using pharmaceuticals. Secondly, we sought to
demonstrate the capability of this workflow to discover fingerprints
of xenobiotic biotransformation within the plasma (with temporal
resolution) and at a site of toxicity (the heart), in rats exposed to two
cardiotoxins, sunitinib and KU60648. The third objective was to
reveal the capacity, by association ofmeasured internal relative doses
with the endogenous biochemical responses, to uncover tox-
icologically relevant perturbations, including at a site of toxicity.
Next, we attempted to demonstrate the capability to reveal the
metabolic competencies of in vitro models by applying the workflow
to sunitinib-exposed human induced pluripotent stem cell-derived

cardiomyocytes (hiPSC-CMs). Our final objective was to highlight the
ability to discover exposures of humans to several pharmaceuticals
and, through implementation of the workflow, characterise their
metabolic fate.

Results
Development of untargeted workflow to discover xenobiotics
Untargeted metabolomics datasets are measured to provide infor-
mation on endogenous biochemistry but can also reveal insights into
the fate and metabolism of xenobiotics. Here we developed a data
processing and analysis workflow to discover information arising from
exposure to a xenobiotic and its biotransformation products using
data that can be measured routinely by state-of-the-art ultra-high
performance liquid chromatography mass spectrometry (UHPLC-MS)
untargeted metabolomics (Fig. 1).

With the demonstration of this workflow to discover rich and
extensive information on the disposition of pharmaceuticals and
related toxicodynamic knowledge presented in the following five
results sections, here we describe the rationale for the computational
workflow and selection of processing parameters. First, the workflow
applies three intensity-based filters to the acquiredMS1 data, following
peakpicking, to refine the dataset towards a list of putative xenobiotic-
related features: (1) Only features present in at least 80% of all
xenobiotic-exposed biological samples are retained. In principle,
xenobiotic-related features should be present in all samples taken
from exposed biological system(s), however, considering the low
concentrations of some analytes and routine occurrence of missing
values in UHPLC-MS untargeted metabolomics datasets33, some
leniency is incorporated into thefilter to reduce the false-negative rate.
(2) Features present inmore than50%of biological control samples are
removed. Although xenobiotic-related features should not be present
in control samples, peak detection can occur in cases of system carry-
over34, or in the event of co-eluting peaks, hence leniency was intro-
duced through this filter to reduce the false-negative rate. (3) Only
features with ≥10-fold median intensity in exposed samples relative to
control samples are retained (in principle the fold-change should be
infinite for xenobiotic-related features). This threshold was derived
based on an extensive review of toxicity datasets, which concluded
that a ≥ 10-fold intensity change is highly unlikely for endogenous
biochemicals (Supplementary Fig. 1). Subsequent exploratory corre-
lation analysis of the putative xenobiotic-related features, i.e., those
that pass these three filters, provides confidence that the features are
closely related based on their co-responsiveness35.

The list of putative xenobiotic-related features is then annotated
and grouped to unveil features common to a single compound36. This
includes consideration that features may arise from in-source mod-
ification, including adduct formation, heterodimerisation and frag-
mentation. The use of retention time data here enables the distinction
between products of analytical and biological transformation, i.e.,
chromatographically separated features likely arise from unique
compounds produced in biological test systems. Comparison of the
grouped features to a list of predicted biotransformation products,
generated by combining outputs of in silico prediction engines (e.g.,
SyGMa37) with previously reported experimental data, allows for
putative compound annotation. Further confidence in these annota-
tions can be gained from inspection of corresponding MS2 fragmen-
tation spectra. Since preparing analytical standards for each of the
biotransformation products of >100,000 compounds38,39 is impos-
sible, the application of in silico fragmentation predictor tools (e.g.,
MetFrag40) is essential to attempt to assign partial or complete che-
mical structures to the measured MS2 spectra. We use the structure
corresponding to the putative compound annotation(s) and/or expo-
sure xenobiotic structure as the input for these tools, since many
xenobiotic biotransformation products will not be documented
in publicly available databases. Annotation of a compound’s MS2
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spectrum with substructures of the parent xenobiotic is consistent
with it being related, via biotransformation, to the parent. The differ-
ences between the MS2 spectra of the parent and suspected bio-
transformation product may elucidate the site of modifications41,42.

The final output of the workflow is a list of detected exposure
xenobiotic(s) and their biotransformation products, annotated with

putative molecular formula, partial or complete chemical structures,
and corresponding peak intensity data. These data can be further
analysed todiscover the fate of the xenobiotic, investigate associations
between exposure and effects on endogenous biochemistry, and
contrast the metabolic competency of biological test systems, as
described below.
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Untargeted workflow discovers cardiotoxin fate in rat
To test the ability of the workflow to discover pharmaceuticals and
their biotransformation products from an untargeted metabolomics
dataset, we applied it to an investigation of the metabolic perturba-
tions induced in rats exposed to sunitinib (Supplementary Table 1).
This dataset was originally measured to characterise endogenous
metabolic changes only and comprised four assays, HILIC (Hydrophilic
Interaction Liquid Chromatography) UHPLC-MS in positive and nega-
tive ionmodes to study the polarmetabolome, and reverse-phase (RP)
C18 UHPLC-MS in both ionmodes to investigate the lipidome, for both
plasma and cardiac samples. Application of the three intensity-based
filters (Fig. 1) to 12,197 features in the full peak matrix from HILIC
positive ion mode acquisition (HILIC-Pos) of plasma yielded 107
putative xenobiotic-related features. Similar filtering applied to the
HILIC negative (HILIC-Neg), RP C18 positive (RP-C18-Pos) and RP C18

negative (RP-C18-Neg) datasets isolated 7, 30 and 2 features, respec-
tively (Supplementary Table 2).

Correlation analysis of the putative sunitinib-related features
(data from the four assays combined) discovered the majority of fea-
tures are highly associated (R ≥0.75, Pearson’s), forming a dense
cluster with representative features of sunitinib (Fig. 2a). The obser-
vation of this co-responsive behaviour provides further confidence
that those features are sunitinib-related. Features peripheral to the
core cluster are likely not related to sunitinib, or represent bio-
transformation products who’s rate of synthesis is limited by other
factors beyond the availability of sunitinib35.

A list of predicted biotransformation products of sunitinib was
generated from literature sources30 and two in silico prediction tools,
comprising 1492 unique molecular formulae (Supplementary Data 1,
Supplementary Table 3). Of these, 109 were predicted by both pre-
diction engines, 217 were uniquely predicted by SyGMa37, and 1166
were predicted by only the ‘Generate Expected Compounds’ tool in
Compound Discoverer (Thermo Scientific) (Fig. 2b). Comparison with
the metabolomics data (Fig. 1) revealed 19 of the predicted bio-
transformation products, plus sunitinib, could be annotated in the
HILIC-Pos dataset (Supplementary Fig. 2; Supplementary Table 3).
Additionally, 2 and 5 products were annotated against the filtered
HILIC-Neg and RP-C18-Pos datasets, respectively, with some redun-
dancy across datasets. No biotransformations were annotated within
the RP-C18-Neg dataset (Fig. 2c). Taken together, 19 predicted bio-
transformation products of sunitinib were detected and annotated,
comprising 13 Phase I and 6 Phase II transformations (Fig. 2d). As such,
the workflow successfully revealed all except one (M10, previously
only reported inmonkey faeces) of the 11 sunitinib biotransformations
previously reported by ref. 30. (Supplementary Table 3). Of note, the
workflow discovered a further 9 biotransformations of sunitinib not
reported in the gold-standard pharmacokinetics study using [14C]-
radiolabelling30 (M12–M20; Fig. 2b).

The identity of features annotated as themolecular ions ([M+H]+/
[M −H]−) of sunitinib were confirmed by comparison against an
authentic chemical standard. In silico structural annotation of the
experimentally acquired MS2 spectra of sunitinib (from analysis of an
authentic chemical standard and exposed rat plasma) using MetFrag40

revealed that peaks at m/z 185, 210, 238, 255, 283 and 326 represent
substructures of sunitinib (Fig. 2e). To increase confidence in the

putative biotransformation product annotations derived from accu-
rate mass matching, and to elucidate structural information, the
experimentally acquired MS2 spectra of features corresponding to the
molecular ions of putative sunitinib biotransformation products were
structurally annotated using MetFrag40. MS2 spectra were acquired
successfully for 12 of the 19 biotransformation products reported here
(Supplementary Fig. 3). The acquired spectra confirmed all 12 com-
pounds were sunitinib-related given the annotation of at least three of
the substructures of sunitinib described above (Fig. 2e; Supplementary
Data 2). Deviations of the MS2 spectra of biotransformation products
from that of sunitinib provided insights into the location of mod-
ifications, thus contributing to the structural elucidation of the pre-
viously unreported biotransformations. As such, we report the
presence of sunitinib toMetabolomics Standards Initiative (MSI)43 and
Schymanski44 confidence level 1 (using accurate m/z, retention time
and MS2 spectral match to authentic standard), 12 biotransformation
products of sunitinib to MSI level 2 (Schymanski confidence level 2–3,
i.e., probable or tentative structure, using accurate m/z and in silico
structural annotation of MS2 spectra), and 7 biotransformation pro-
ducts with putative molecular formulae (Schymanski confidence level
4, unequivocal molecular formula, using accurate m/z), in the plasma
of rats exposed to sunitinib (Fig. 2f; Supplementary Data 2). Eight of
the biotransformation products detected included N-dealkylation of
sunitinib (M1, M3, M4, M11, M14, M15, M16, M17) while half are the
result of sunitinib oxygenation (M2, M4, M7, M8, M11, M12, M14, M16,
M18, M19). M9 and M15 are products of saturation of the exocyclic
double bond of sunitinib and M1, respectively. M20 results from the
hydrolysis of the cyclic head from the tail. Considering the Phase II
biotransformations detected, glucuronidation (M6, M7, M13, M16,
M17) appears as the preferred conjugation reaction, while only a single
sulphate conjugate (M5) was detected.

The workflow was also applied to data acquired from analysis of
cardiac tissue collected from the same rats. In total, 68, 41, 137 and 53
putative sunitinib-related features were isolated from the HILIC-Pos,
HILIC-Neg, RP-C18-Pos and RP-C18-Neg datasets, respectively (Supple-
mentary Table 2). These lists included 6 predicted biotransformation
products that were also detected in the plasma: M1, M2, M4, M6, M7
and M8 (Supplementary Data 2).

To further demonstrate the ability of the developed workflow to
discover biotransformation products of an exposure pharmaceutical
from an untargeted metabolomics dataset, we applied it to a second
experiment designed to investigate the endogenous metabolic per-
turbations induced in rats exposed to KU60648 (Supplementary
Table 1; Supplementary Note 1). The biotransformation map of this
xenobiotic has not been reported previously. We discovered 22 bio-
transformation products of KU60648 in the plasma of rats; 4 of those
products were also detected in the cardiac tissue of a subset of the
same animals (Fig. 3, Supplementary Data 3).

Temporally tracking pharmaceuticals and biotransformation
products
In addition to providing qualitative data regarding the presence of a
xenobiotic and its biotransformation products, untargeted metabo-
lomicsmeasurements also yield relative amounts of thosecompounds.
For the experimental design reported here, this enables changes in

Fig. 1 | Schematic of the untargeted ADME/TK workflow. An open-source
workflow to semi-automatically discover and visualise xenobiotics and their bio-
transformation products from UHPLC-MS untargeted metabolomics dataset.
(1) Full scanMS1 data are peak-picked andprocessedusingXCMS51 to produce a ‘full
peak matrix’. (2) A series of three peak intensity-based filters are applied using
structToolbox52 to reduce this matrix to generate a subset matrix of ‘putative
xenobiotic-related features’ which can be explored initially by (3) correlation ana-
lysis to reveal relationships between features. (4) Grouping of features and anno-
tation of peak patterns, followed by (5) annotation of compounds using a list of

predicted biotransformation products, yields a matrix of annotated xenobiotic-
related compounds and their relative intensities. Confidence in identifying the
xenobiotics and their biotransformation products can be increased by incorpor-
ating MS2 data measured for these annotated compounds. (6) MS2 data are pro-
cessed and filtered using msPurity53 and (7) compared against in silico predicted
assignments using MetFrag40 to generate a list of ‘structurally annotated
xenobiotic-related compounds’. Green shading indicates the outputs of the work-
flow. Putative xenobiotic-related features are removed from the full peak matrix,
generating a filtered (endogenous) peak matrix for endogenous data analysis.
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relative levels of each pharmaceutical and its biotransformation pro-
ducts in rat plasma to be tracked over time. Additionally, comparisons
of relative amounts of the pharmaceuticals (and their biotransforma-
tion products) between individual test subjects allows judgement on
the inter-individual variability in their disposition (Supplementary
Table 1).

First, the reliability of themetabolomics UHPLC-MSpeak intensity
measurements of the parent substances, made whilst simultaneously
measuring thousands of endogenous features, were verified by com-
parison to conventional quantification of the pharmaceuticals using
single compound targeted liquid chromatography-tandem mass
spectrometry (LC-MS/MS). A strong correlation of the intensities of
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sunitinib measured in the HILIC-Pos metabolomics assay with those
from the fully quantitative approach, for plasma samples collected on
day 15 (samples for metabolomics taken 4 h after targeted measure-
ments, from the same individuals), was observed (R =0.90; Fig. 4a).
High correlation coefficients were also calculated for the HILIC-Neg
and C18-RP-Pos assays relative to the conventional targeted approach
(Supplementary Fig. 6). Comparable analysis using intensity mea-
surements from untargeted metabolomics, and quantitative mea-
surements from targeted LC-MS/MS of KU60648 provided further
evidence of the reliability of intensity data from untargeted metabo-
lomics (Supplementary Fig. 7).

The metabolomics measurements—originally intended to inves-
tigate the endogenous biochemical changes over time—were used to
track the relative temporal changes in sunitinib systemic exposure
over the 15-day study (Fig. 4b). Sunitinib intensities increase towards
steady statewith repeateddaily dosing between days 1 and4. At day 15,
28 h after the last dose on day 14, average levels of sunitinib are sig-
nificantly two-fold less than those measured 4 h post-dose on day 8,
providing evidence of effective elimination upon completion of dos-
ing. Comparison of relative sunitinib levels across individual rats
revealed greatest variability at the points of greatest systemic expo-
sure (days 4 and 8; Fig. 4b).

Similar analyses were conducted for KU60648 over the course of
the 4-day rat exposure study (Supplementary Fig. 8). Significantly
greater systemic exposure of KU60648 is achieved after a second
dose. Meanwhile, levels measured in the plasma on day 4 indicate
some elimination by 24 h post-dose.

The untargeted ADME/TK workflow also provides peak intensity
measurements for the discovered biotransformation products, repre-
senting additional information that is not measured in conventional
toxicokinetic studies. K-means clustering of the temporal responses of
sunitinib and its biotransformation products (Fig. 2f) discovered
commonality between the temporal variation in the systemic exposure
of sunitinib and the responses of the products of its simplest routes of
metabolism: M1 (de-ethylation), M2 (hydroxylation) and M9 (satura-
tion) (Figs. 2f; cluster 2, 4c). These compounds display significantly
greater systemic exposure on days 2, 4 and 8 compared with day 1. A
significant drop in levels is observed on day 15 to levels comparable to
day 1, evidencing effective elimination once dosing is ceased. Five
other clusters of biotransformation products diverge from the beha-
viour of the parent xenobiotic. Cluster 1 (M11, M15, M17 and M19) and
cluster 6 (M3, M4, M6, M12, M14 and M18) show similar trends to
cluster 2, with a significant increase fromday 1 levels observed on days
4 and 8, and just day 8, respectively. The majority of detected bio-
transformationproducts resulting fromPhase II conjugation reactions,
excluding M6 and M17, do not show any significant changes in sys-
temic levels across the measured time points (clusters 3, 4 and 5). M8
(product of oxidative de-fluorination) and M20 (product of parent
cleavage), also in cluster 5, displayed similar trends (Figs. 2f, 4c). This

suggests the steady state of these compounds is reached following the
initial dose.

Temporal responses of the biotransformation products of
KU60648 discovered in the plasma of exposed rats were also investi-
gated. K-means clustering revealed six clusters of responses (Supple-
mentary Fig. 9). The responses of M4,M6,M9,M11, M18 andM19 were
found to be most similar to that of KU60648, forming cluster 2, while
five other clusters of biotransformation products diverge to varying
degrees from the behaviour of the parent.

Lipid responses associate with internal dose
The capability of the untargeted ADME/TK workflow to reveal the
identities and relative levels of xenobiotic-related features from an
untargeted metabolomics dataset may be beneficial to the analysis of
the endogenous responses. First, by accurately removing the
xenobiotic-related features from the metabolomics dataset, a more
reliable multivariate statistical analysis of the endogenous data can be
achieved. This is demonstratedbyprincipal component analyses (PCA)
(Fig. 5a, b; Supplementary Fig. 10). Where putative sunitinib-related
features (Supplementary Table 2) are not removed from the metabo-
lomics dataset, these features are primarily responsible for the
separation of exposed plasma samples from biological controls along
PC1, as evidenced by the loadings plots. This influence of exposure
substance-related features leads to the false conclusion of a strong
perturbation of the plasma metabolome in response to sunitinib on
day 1 (Fig. 5a). At day 15, although sunitinib-related features have the
highest magnitude loadings, separation of sample classes remains
along PC1 after their removal, indicating a strong perturbation of the
endogenous fraction of the detected plasma metabolome as a con-
sequenceof sunitinib exposure (Fig. 5b). Similar analysis of day 2, day 4
and day 8 measurements reveals a trend of increasing perturbation
over time, which is only discerniblewhen sunitinib-related features are
excluded (Supplementary Fig. 10).

This trend of an increasing magnitude of perturbation is also
revealed by univariate statistical analyses conducted on the filtered
(endogenous) peak matrices (Supplementary Table 2). Specifically, a
total of 40, 121, 131, 463 and 3494 features were significantly perturbed
across the four assays on day 1, 2, 4, 8 and 15, respectively (Supple-
mentary Table 4). Changes are observed across a broad array of
metabolite and lipid classes (Supplementary Data 4).

PCA and univariate analyses conducted on the cardiac filtered
(endogenous) peak matrices (Supplementary Table 2) indicate a dis-
tinct perturbation of the cardiac metabolome by sunitinib (Supple-
mentary Fig. 11). A total of 455 features were significantly perturbed
across the four assays (Supplementary Table 5) with effects on the
lipidome dominating (Supplementary Data 5).

Inter-individual differences in internal dose should in principle
relate strongly to the magnitude of change of the endogenous meta-
bolome, therebyoffering aneffective route fordiscovering xenobiotic-

Fig. 2 | Application of the untargeted ADME/TK workflow to plasma of rats
exposed to sunitinib. a Pearson’s correlation-based network of putative sunitinib-
related features (n = 29 biologically independent samples). Edges present when
Holmadjusted p value <0.05 and R ≥0.75, node size is proportional to its degree of
connectivity. Node colour highlights molecular ions ([M+H]+/[M −H]−) of sunitinib
(orange), molecular ions of biotransformation products of sunitinib (green),
alternate ion forms (adducts and isotopes) of sunitinib or biotransformation pro-
ducts (pale blue), and unannotated features (dark blue). Node shape distinguishes
between annotations based on MS1 data only (circle) vs. more confident annota-
tions also based on MS2 data (triangle). The high density of this network is implicit
of the expected strong correlations between features representing a single com-
pound and chemically-related compounds. b The overlap of sunitinib bio-
transformation products reported in published literature30, predicted by the
‘Generate Expected Compounds’ tool of Compound Discoverer (Thermo Scien-
tific), and by SyGMa37, and detected by untargeted metabolomics. c Number of

molecular formulae-annotated (putative annotation) (purple) and structurally-
annotated (MSI level 2) (green) biotransformation products of sunitinib detected
by each UHPLC-MS metabolomics assay. The bars are annotated with the total
number of biotransformation products detected by eachUHPLC-MSmetabolomics
assay. d The proportion of Phase I (yellow) and Phase II (magenta) bio-
transformation products of sunitinib detected across all assays. e Representative
comparison of measured MS2 fragmentation spectra for sunitinib in rat plasma
(top) vs authentic chemical standard of sunitinib (bottom) and the corresponding
MetFrag-annotated structures of major peaks. f A biotransformation map of suni-
tinib showing the biotransformation products discovered in the rat plasmaUHPLC-
MS untargeted metabolomics dataset (data from four assays – HILIC positive
(*)/negative (†), RP C18 positive (‡)/negative (§)) by the untargeted ADME/TK
workflow. The colour of the arrowdenotes type of transformation– Phase I (yellow)
or Phase II (magenta). Extracted ion chromatograms and MS2 fragmentation
spectra for these compounds are displayed in Supplementary Figs. 2 and 3.
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induced perturbations. To this end, measurements of the relative
levels of pharmaceutical were used to explore the endogenous
responses, i.e., to attempt to discover direct associations between
exposure substance levels at a target site and endogenous lipids. This
would not be possible with nominal dose values which do not account
for inter-individual differences in bioavailability and distribution.
Specifically, correlation analysis revealed a dense network of direct

associations between sunitinib levels and subsets of multiple lipid
classes in the cardiac tissue of exposed rats (Fig. 5c; Supplemen-
tary Data 6).

Nine sphinogomyelins negatively correlated with the relative
internal levels of sunitinib; over-representation analysis confirming
that this lipid class is significantly overrepresented (p < 0.1) amongst
those lipids whose responses correlate with levels of sunitinib
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(Supplementary Table 6). This finding is supported by the conven-
tional statistical analyses of the endogenous cardiac data for which
seven sphingomyelins decreased significantly upon exposure, with a
mean fold-change of 0.71 (Supplementary Data 6). Related, levels of
seven sphingomyelins were significantly higher in the plasma of

exposed rats compared to biological controls on day 15 (Supplemen-
taryData 5). Of note, four of those overlapwith the nine that negatively
correlated to sunitinib levels at the site of toxicity (Fig. 5d). Taken
together, these analyses indicate sphingomyelins play a role in the
progression of sunitinib-induced cardiotoxicity, given their significant

Fig. 3 | Application of the untargeted ADME/TK workflow to plasma of rats
exposed to KU60648. a Pearson’s correlation-based network of putative
KU60648-related features (n = 19 biologically independent samples). Edgespresent
where Holm adjusted p value < 0.05 and R ≥0.75, size of node is proportional to its
degree connectivity. Node colour highlights molecular ions ([M +H]+/[M −H]−) of
KU60648 (orange), molecular ions of biotransformation products (green), alter-
nate ion forms (isotopes and adducts) of KU60648 or biotransformation products
(pale blue), and unannotated features (dark blue). Node shape distinguishes
between annotations based MS1 data only (circle) vs annotations using MS2 data
also (triangle). The high density of this network is implicit of the expected strong
correlation between features representing a single compound and chemically-
related compounds. b The overlap of KU60648 biotransformation products pre-
dicted by the ‘Generate Expected Compounds’ tool of Compound Discoverer
(Thermo Scientific), and by SyGMa37, and detected by untargeted metabolomics.
c Number of molecular formulae-annotated (putative annotation) (purple) and
structurally-annotated (MSI level 2) (green) biotransformation products of

KU60648 detected by each UHPLC-MS metabolomics assay. The bars are anno-
tated with the total number of biotransformation products detected by each
UHPLC-MS metabolomics assay. d The proportion of Phase I (yellow) and Phase II
(magenta) biotransformation products of KU60648 detected across all assays.
eRepresentative comparison ofmeasuredMS2 fragmentation spectra for KU60648
in rat plasma (top) vs authentic chemical standard of KU60648 (bottom) and the
corresponding MetFrag-annotated structures of major peaks. f A biotransforma-
tion map of KU60648 showing biotransformation products discovered in the rat
plasma UHPLC-MS untargeted metabolomics dataset (data from four assays –
HILIC positive (*)/negative (†), RP C18 positive (‡)/negative (§)) by the untargeted
workflow. The colour of the arrowdenotes type of transformation– Phase I (yellow)
or Phase II (magenta). Outlined (red dashed line) are the biotransformation pro-
ducts also detected in the cardiac tissue of exposed rats. Extracted ion chroma-
tograms and MS2 fragmentation spectra for these compounds are displayed in
Supplementary Figs. 4 and 5.

Fig. 4 | Peak intensity measurements of sunitinib and its biotransformation
products in rat plasma. a Relationship between UHPLC-MS untargeted metabo-
lomics peak intensity measurements of sunitinib (HILIC positive assay) and the
absolute quantificationof sunitinib using conventional targeted LC-MS/MS.bMean
peak intensity (cross) of sunitinib over the duration of the 15-day study, as mea-
sured by UHPLC-MS untargeted metabolomics. Individual data points are also
displayed (open circle). Error bars show standard error. Arrows indicate time of
dosing. c Median peak intensities, measured by UHPLC-MS untargeted metabo-
lomics and scaled by unit variance, of sunitinib and its biotransformation products
over the duration of the 15-day exposure study, clustered by an unsupervised
k-means approach (k = 6, optimal value determined by the ElbowMethod). Cluster
1: M11, M15, M17, and M19. Cluster 2: sunitinib, M1, M2 and M9. Cluster 3: M16.

Cluster 4: M7. Cluster 5: M5, M8, M13 and M20. Cluster 6: M3, M4, M6, M12, M14,
and M18. Statistical analysis (b, c) was conducted by one-way ANOVA followed by
Tukey’s post-hoc test. Significance is displayed as follows: * p <0.05 vs. day 1,
†p <0.05 vs. day 2, ‡p <0.05 vs. day 4, ¥p <0.05 vs. day 8). Specifically, b p =0.019
(day 15 vs. day 4) and p =0.0435 (day 15 vs. day 8); c, cluster 1: p =0.0001 (day 4 vs
day 1), p =0.0010 (day 8 vs. day 1),p =0.0046 (day 15 vs. day 4) and p =0.0382 (day
15 vs. day 8); cluster 2: p =0.0491 (day 2 vs. day 1), p =0.0001 (day 4 vs. day 1),
p ≤0.0001 (day 8 vs. day 1),p =0.0015 (day 15 vs. day 2), p ≤0.0001 (day 15 vs. day 4
and day 15 vs. day 8); cluster 6: p =0.0001 (day 8 vs. day 1), p =0.0001 (day 15 vs.
day 2), p =0.0001 (day 15 vs. day 4), p <0.0001 (day 15 vs. day 8). N = 5 individual
animals on days 1, 2, 4, and 8;n = 9 individual animals on day 15. Source data for this
figure are provided in the Source Data file.
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perturbation and direct association with sunitinib levels within the
cardiac tissue, and are amenable to use as biomarkers for sunitinib-
induced cardiotoxicity, given the measurable effects on their circu-
lating levels.

A significant perturbation of the plasma and cardiac metabo-
lome of rats exposed to KU60648 was also observed following
removal of putative KU60648-related features (Supplementary
Table 2; Supplementary Figs. 12, 13; Supplementary Table 7). In the
plasma, a total of 5771 and 5696 features were significantly per-
turbed across the four assays on days 2 and 4, respectively, indi-
cating extreme effects of KU60648 exposure (Supplementary
Table 7 and Supplementary Data 7). At the site of toxicity (cardiac
tissue), perturbation of lipids dominated the response to KU60648
exposure (Supplementary Table 7 and Supplementary Data 8). A
correlation-based approach was used to seek associations between

levels of KU60648 in the cardiac tissues of exposed rats and the
responses of MSI level 2 annotated lipids in the same samples
(Supplementary Fig. 14). Significant correlations were observed,
mostly for acylcarnitines, phosphatidylcholines and triacylglycerols
(Supplementary Data 9). Direct association of these lipids to
KU60648 levels explains the inter-individual variation of their rela-
tive levels amongst exposed samples.

Over-representation analysis identified the negative correlation of
a subset of eight acylcarnitines to relative amounts of KU60648 within
the cardiac tissue of exposed rats as significant (Supplementary
Table 8). Of note, conventional univariate analysis (t-test) of this
dataset did not reveal acylcarnitines in the cardiac tissue of exposed
rats as significantly different compared to controls. This is likely due
to the large inter-individual variation amongst exposed samples.
The explicit coupling of individual- and site-specific KU60648 levels

Fig. 5 | Biochemical changes revealed in the plasma and cardiac tissue of rats
exposed to sunitinib. PCA scores and loadings plots of plasma samples from rats
exposed to sunitinib (red) for (a) 1 and (b) 15 days and time-matched biological
control rats (blue) measured by HILIC UHPLC-MS in positive ion mode before and
after removal of putative sunitinib-related features (green in loadings plots).
cCorrelation networkof sunitinib andMSI level 2 annotated lipids: ceramides (cer),
lysophosphatidylethanolamines (LPE), methyl phosphatidylcholine (MePC), phos-
phatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS),
sphingomyelins (SM/SPH) and triacylglycerols (TG), in cardiac tissue of rats
exposed to sunitinib (N = 5). Node size is proportional to its degree of connectivity.

Edges represent significant Spearman’s correlation (p <0.05 and, |ρ| ≥0.9) between
compounds. All nodes displayed are significantly correlated to sunitinib. d Box
plots showing significantly increasedplasma levelsof four sphingomyelins found to
be associatedwith sunitinib levels at the site of toxicity, in rats exposed to sunitinib
(red) for 15 days, compared to time-matchedbiological controls (blue). Boxes show
the interquartile range (IQR), with the line representing the median, and the
whiskers showing 1.5× IQR. Data is from n = 9 individual animals. Fold change and q
values (FDR-corrected p values calculated by Student’s two-tailed t-test) are dis-
played. Source data for (d) are provided in the Source Data file.
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(i.e., internal dose) with measurements of the lipidome was therefore
required to reveal that the response of acylcarnitines is highly sensitive
to the relative exposure of cardiac tissue to KU60648, and thereby to
discover the involvement of acylcarnitines in KU60648-induced car-
diotoxicity. Levels of five of these acylcarnitines, alongside four others,
were further found to be significantly increased in the plasma of
exposed rats on days 2 and 4, with median fold changes of 7.80 and
12.94, respectively (Supplementary Data 7; Supplementary Fig. 15). The
evidenced direct association with KU60648 levels at the site of toxi-
city, coupledwith large and significant disruption in the plasma,makes
these molecules attractive putative biomarkers for the onset of drug-
induced cardiotoxicity.

Contrasting metabolic competencies of experimental models
In vitro models for assessing organ toxicities are becoming increas-
ingly common in accordance with the 3Rs concept (reduction,
refinement, and replacement of animal testing)1,45,46 and the advan-
tages of human-relevant test systems31. Xenobiotic biotransformations
can play amajor role in toxicity, however many in vitromodel systems
remain uncharacterised in terms of their metabolic competencies32,47.
Here we applied the untargeted ADME/TK workflow to metabolomics
datasets that were originally collected to investigate the effects of

sunitinib on hiPSC-CMs. By comparison to biotransformation of suni-
tinib in rat, we demonstrate the ability to reveal the metabolic com-
petences of experimental model in vitro systems.

Untargeted metabolomics measurements of both intracellular
extracts and culture medium of hiPSC-CM cultures were acquired by
the same four assays and processed using the workflow (Fig. 1). A total
of 356 and 87 putative sunitinib-related features were identified in
intracellular extracts and culture medium, respectively (Supplemen-
tary Table 9). This included sunitinib and its biotransformation pro-
ducts M1, M2, M3, M4, M12, M14 and M20 within the intracellular
extracts, and sunitinib, M1, M2, M12 M14 and M18 in the culture
medium (Fig. 6a; Supplementary Data 10). The observation of pro-
ducts of sunitinib de-ethylation, oxidation and/or hydrolysis demon-
strates that cardiomyocytes possess metabolic competency, yet this
appears to be limited to a subset of Phase I biotransformations.
Meanwhile, investigation of the temporal distribution of sunitinib
levels provides evidence, through lack of significant change, that
hiPSC-CMs were exposed to a consistent level of sunitinib over the
duration of the 24 h experiment (Supplementary Fig. 16).

Some overlap in the biotransformation products detected in
cardiomyocyte cultures and cardiac tissueof ratswasobserved,mainly
M1, M2 and M4. However, three products were unique to cardiac

Fig. 6 | Comparison of the metabolic competencies of cardiomyocyte (hiPSC-
CM) invitro cultures and ratbyapplying theuntargetedADME/TKworkflowto
four UHPLC-MS metabolomics datasets. Euler diagram depicting in which

biological samples (rat plasma, rat cardiac tissue, the intracellular extracts and
culture medium of hiPSC-CM cultures) sunitinib and its biotransformation pro-
ducts were detected.
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tissue, including two glucuronidation biotransformations (M6 and
M7). Five biotransformation products were detected in the cardio-
myocytes but not the cardiac tissue. Although this comparison may
be confounded by differences in detection limits between matrices, it
has revealed distinct patterns in the biotransformations of the
pharmaceutical.

Untargeted workflow discovers fate of pharmaceuticals in
humans
The ability to characterise the exposure to, and biotransformation of,
xenobiotics in humans as a component of an untargeted metabo-
lomics assay of biochemical effects could enhance mechanistic safety
assessments of pharmaceuticals, biocides and industrial chemicals.
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Additionally, characterising unknown and/or unintended human
exposure to xenobiotics is important in environmental health
research, e.g., to identify populations exposed through the environ-
ment to xenobiotics of concern. Herewe demonstrate the capability of
our workflow to detect human exposure to pharmaceuticals, from a
list of suspects, and discover their metabolic fates (Supplementary
Table 1; Fig. 7).

A list of the UK National Health Service (NHS) top 20 most pre-
scribed pharmaceuticals was selected as an appropriate ‘suspect’ list for
demonstrating this application of the workflow (Supplementary
Table 10). All 20 of the suspects are considered emerging chemicals of
concern and listed within the NORMAN48 and CECscreen49 databases.
Eight of these pharmaceuticals were confidently detected (MSI level 1 or
2, or Schymanski confidence level 1–3) within the human plasma
untargeted metabolomics dataset (Fig. 7a, b Supplementary Fig. 17;
Supplementary Table 10). Subsequent labelling of each sample as either
‘exposed’ or ‘control’ for each of the eight confidently detected phar-
maceuticals, followed by application of the three intensity-based filters
(Fig. 1) generatedmatrices of putative xenobiotic-related features for six
parent substances (each detected in at least two human plasma sam-
ples). Annotation of these features using BEAMSpy50 and SyGMA37 pre-
dictions revealed 10, 10, 4, 9, 2 and 12 biotransformation products of
paracetamol (acetaminophen), omeprazole, atorvastatin, lansoprazole,
bisoprolol, and amitriptyline, respectively (Fig. 7c; Supplementary
Table 11; Supplementary Data 11–16; Supplementary Fig. 18). Of the total
of 47 biotransformation products detected, 31 are products of Phase I
transformations, while 16 result from Phase II transformations, mainly
glucuronidation (Fig. 7d). Corresponding MS2 spectra for 53% of the
biotransformation products were measured and interpreted, providing
confidence in their annotation (Fig. 7c, e; Supplementary Fig. 19; Sup-
plementary Fig. 20; Supplementary Table 11; SupplementaryData 11–16).

Discussion
The ability to measure xenobiotics and their biotransformation pro-
ducts in the same UHPLC-MS analysis used to probe endogenous
biochemical effects enables insights into both the external chemical
environments to which individuals are exposed and the internal fate
and effects of xenobiotics, without the need for additional samples
and analytical measurements, and hence associated costs. We imple-
mented a data processing workflow to semi-automatically discover
measurements corresponding to pharmaceuticals and their bio-
transformation products within untargeted UHPLC-MS metabolomics
datasets, centred on three principles: (1) unbiased data-driven dis-
covery of unknown biotransformation products. This is facilitated by
exploiting the high sensitivity of high resolution, high mass accuracy
mass spectrometry, enablingdiscoveryof lower abundancemolecules,
and the application of three intensity-based filters to untargeted
metabolomics datasets, which were designed to reduce the frequency
of false-positive (fold-change filter) and false-negative (exposed and
biological control sample filters) outputs, and requires no prior
knowledge of xenobiotic biotransformations. Unlike other strategies
for measuring xenobiotic biotransformations, this approach does not
require stable isotope-labelling, opening the door to discovering
unknown exposures to xenobiotics and their internal fate. (2) Targeted
detection of known and/or predicted biotransformation products.

Primarily achieved through the application of in silico biotransforma-
tion prediction engines, this aids annotation of xenobiotic bio-
transformation products; e.g., combining SyGMa37 and the ‘Generate
Expected Compounds’ tool in Compound Discoverer, we successfully
predicted 90% of the observed biotransformation products of suniti-
nib and KU60648. (3) Maximising confidence in the identity of
detected xenobiotics and biotransformation products, largely through
MS2-based structural elucidation; e.g., this approach was used to
confirm identities of 26 of the 41 detected sunitinib and KU60648
biotransformation products. In the absence of MS2 fragmentation
data, e.g., for low intensity or low purity precursor ions, the combi-
nation of an accurate mass match to a predicted biotransformation
product (‘targeted’) along with passing filtering thresholds (‘data dri-
ven’), provides substantial evidence that compounds are xenobiotic-
related. Taken together, the untargeted ADME/TK workflow can dis-
cover predicted and novel biotransformation products of unlabelled
pharmaceuticals as well as provide confidence in their annotation or
identity. The use of open-source software37,40,51–53 following application
of published UHPLC-MS-based untargeted metabolomics analytical
methods54 makes this approach amenable to application by the wider
metabolomics community.

Applying this workflow to data collected from plasma samples of
exposed rats, we discovered both previously reported and unreported
biotransformation products for two cardiotoxins, sunitinib and
KU60648. For the former, consistent with previous findings30,55, we
detected products of de-ethylation, oxidation, dehydrogenation, oxi-
dative defluorination, and glucuronide and sulfate conjugation. The
workflow additionally discovered biotransformation products resulting
from combinations of these reactions in rat plasma (M12–M20; Fig. 2).
Hence, our approach has supported and furthered prior knowledge on
the biotransformation of sunitinib in rats using a dataset primarily
intended toprovide insights into endogenousmetabolic responses. The
discovery of biotransformation products of sunitinib was enabled
through the use of high resolution, high mass accuracy mass spectro-
metry which offers enhanced sensitivity over [14C]-labelling-based
approaches. We also report on the biotransformation of KU60648; we
measured products of de-ethylation, oxidation, dehydrogenation,
methylation and glucuronide and glycine conjugations. From similar
analysesof cardiac tissue fromthe same rats,wegained insights into the
distribution of sunitinib, KU60648 and their biotransformation pro-
ducts to a site of toxicity, the heart. The detection of sunitinib in cardiac
tissueof rats buildsonpreviousfindings that demonstrateddistribution
of sunitinib-related material to the heart following dosing with [14C]-
sunitinib30. The distribution of sunitinib, M1, M2 and M9 to the liver,
kidney and tumour tissue has been reported in syngeneic subcutaneous
mouse tumourmodels byMALDI-MS56; the application of our workflow
has furthered the knowledge on the distribution of sunitinib bio-
transformation products by discovering the presence of Phase I (M1,
M2, M4, M8—de-ethylation, oxidation, oxidative defluorination) and
Phase II (M6, M7—glucuronidation) biotransformation products in rat
heart. Similarly, we detected KU60648 and three of its biotransforma-
tion products (M2, M10 and M14—hydrolysis, glucuronidation and de-
ethylation) in cardiac tissue of KU60648-exposed rats. The capability to
examine the distribution of a xenobiotic and its biotransformation
products to a site of toxicity could, for example, improve the ability to

Fig. 7 | Discoveryofpharmaceuticals and their biotransformationproducts in a
human plasma untargeted metabolomics dataset. a Pie chart displaying detec-
tion of UK National Health Service (NHS) top 20 most prescribed pharmaceuticals
within the human plasma UHPLC-MS untargeted metabolomics dataset: blue—
pharmaceuticals thatweredetected,with identity confirmedbymatching retention
time and MS2 to analytical standard, orange—pharmaceuticals detected, with con-
fidence in annotation from matching MS2 to public database, yellow—pharmaceu-
ticals detected according to putative MS1-based annotation, grey—not detected.
b Representative comparison of measured MS2 fragmentation spectrum for

lansoprazole in human plasma (top) vs. its authentic chemical standard (bottom)
and the corresponding MetFrag-annotated structures of major peaks. c Number of
molecular formulae-annotated (putative annotation) (purple) and structurally-
annotated (MSI level 2) (green) biotransformation products of detected and con-
fidently annotated parent pharmaceuticals.dNumber of Phase I (yellow) and Phase
II (magenta) biotransformation products derived from six confidently annotated
parent pharmaceuticals discovered by the workflow. e Map showing the bio-
transformation products of lansoprazole discovered in plasma of healthy humans
by UHPLC-MS untargetedmetabolomics using our untargeted ADME/TKworkflow.
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decipher the causative agent of toxicity by providing compound-
specific evidence of tissue exposure.

Analysis of the relative peak intensity measurements afforded by
the metabolomics assays provided evidence of increases in systemic
exposure with daily dosing, towards a steady state, and systemic
clearance within 24 h of the final dose, of both sunitinib and KU60648.
Time-resolved measurements of relative systemic exposure of a
xenobiotic made by the same analysis, within the same samples, as the
endogenous response, could, by association, help to explain the tem-
poral trends detected in toxicological response(s) of the test subjects.
Thus, through application of our workflow, untargeted metabolomics
offers an effective route for discovering dose-response associations.
Furthermore, analysis of the time-resolved responses of the bio-
transformation products revealed clusters of co-responsiveness. Such
analysis of temporal changes in relative systemic levels of bio-
transformation products is not usually investigated. However, it pro-
vides potentially important insight into the fate of biotransformation
products, some of which may possess efficacious or toxic activities,
which could aid explanation of temporal toxicological responses.

The biotransformation capacity of in vitro models are typically
not characterised and often assumed to be low. We reveal, through
application of our workflow, that hiPSC-CMs have a previously unre-
ported capacity for Phase I-typeoxidative andhydrolytic reactions, but
no indications of Phase II reactions. Such discoveries of in vitro bio-
transformation, by comparison to in vivo biotransformation, could
help to explain discrepancies between in vitro and in vivo toxicological
responses to a xenobiotic31, without requiring additional time-
consuming and expensive analysis.

In addition to the discoveries on the fate of pharmaceuticals, we
mined the metabolomics dataset to investigate the endogenous bio-
chemical responses of rats, in both plasma and at a site of toxicity
(cardiac tissue), following exposure to sunitinib and KU60648. First, as
demonstrated through PCA, xenobiotic-related features can be con-
sidered confounding factors in the analysis of endogenousbiochemical
responses somust be excluded from the dataset prior to analysis. Once
removed, a strong endogenous biochemical response to exposure was
revealed in plasma (at later time points) and cardiac tissue. Con-
ventionally applied univariate analysis uncovered a number of com-
pounds which significantly responded to exposure, predominantly
various classes of lipids including ceramides, phospholipids, sphingo-
lipids and di- and tri-acylglycerols in the cardiac tissue. This is con-
sistent with the known association of perturbed lipid uptake and
metabolism with cardiomyopathy57,58. Going beyond conventional
analysis, we utilised the availability of relative internal dose and
untargeted metabolomics measurements from the same samples to
discover dose-response associations within the cardiac tissue. We dis-
covered that the responses of sphingomyelinswere strongly negatively
correlated to the level of sunitinib in heart, providingdirect evidenceof
a role for sphinogomyelins in sunitinib-induced cardiotoxicity. This is
accordant with previous reports of a decrease in sphingomyelin in
isolated primary rat cardiomyocytes exposed to doxorubicin, a model
cardiotoxin, concurrently with an increase in ceramide levels59. Fur-
thermore, sphingomyelins, through their catabolism to ceramides,
have been linked to the induction of apoptosis58,60. Consistent with
sunitinib-dependent sphingomyelin perturbation at a site of toxicity,
significant increases of some sphingomyelins were measured in the
plasma of exposed rats on day 15. Assuming circulating levels of
sphingomyelins are a direct consequence of cardiac changes, these
discoveries suggest sphingomyelins could be successfully employed as
biomarkers for drug-induced cardiotoxicity. Supporting this, previous
studies have reported increases in circulating levels of sphingomyelins
followingmyocardial infarction, and demonstrated a direct correlation
with clinical biomarkers of cardiac pathologies, including high-
sensitive-troponin and C-reactive protein, and lower left ventricular
ejection fraction (LVEF)61,62.

We also discovered a direct association of KU60648 levels and
acylcarnitines. Since acylcarnitines have previously been proposed as
biomarkers of dysregulated fatty acid metabolism and/or mitochon-
drial dysfunction63,64, a commonly proposed mechanism in the pro-
gression of xenobiotic-induced cardiotoxicity65, our discovery
implicates mitochondrial dysfunction in the progression also of
KU60648-induced cardiotoxicity. Consistent with this direct associa-
tion between internal dose and response at the site of toxicity, large
and significant increases of acylcarnitines were measured in the
plasma of exposed rats onday 2 and 4. Significant increases in levels of
acylcarnitines have been associated with heart failure, including cor-
relation with LVEF66, while it has also been reported that plasma acyl-
carnitine levels reflect the acylcarnitine profile in the cardiac tissues67.
Taken together, these discoveries and previous findings identify acyl-
carnitines as tantalising putative biomarkers for drug-induced cardiac
metabolic dysfunction. Further investigations would be required to
test these hypotheses.

Following untargeted UHPLC-MS analysis of human plasma sam-
ples, we also present the capability of the untargeted ADME/TK
workflow to reveal exposure to (suspect) pharmaceuticals. Specifically,
we confidently detected seven of the UK NHS top 20 most prescribed
pharmaceuticals within the dataset. Through subsequent imple-
mentation of the workflow, we detected and annotated 47 bio-
transformation products of the parent substances. Thus, our approach
revealed insights into the pharmaceutical exposomes of the tested
individuals. There is opportunity for such measurements (i.e., relative
internal dose of pharmaceuticals and their biotransformation pro-
ducts) to be associated with (relative) levels of endogenous metabo-
lites and lipids,measured in the same analysis, as an approach to relate
exposure and internal fate to biological effect.

There are some limitations to the workflow presented here that
require discussion. First, the workflow uses datasets acquired by
UHPLC-MS-based metabolomics, i.e., analytical methods which are
optimised tomeasurebiochemicals using electrospray ionisation (ESI).
However, many xenobiotics have physicochemical properties that are
not compatible with ESI and will not be detectable4. As bio-
transformation products are typically more polar than parent sub-
stances, the detectability of such products using UHPLC-MS based
metabolomics is anticipated to be higher. Furthermore, xenobiotics
and their biotransformation products can occur at very low con-
centrations in biological samples, particularly when originating from
unintended environmental exposure11. Detection of low abundant
compounds is challenging, particularly in complex matrices from
crude extraction of biological samples4. Where biotransformation
products are measured, only partial structural formulae may be
assigned. Finally, the workflow is limited to discovering only features
related to either pre-defined exposure xenobiotics or suspects with
available analytical standards.

In conclusion, we first demonstrated the capability to discover
information on the disposition of pharmaceuticals from untargeted
metabolomics using two case studies: sunitinib and KU60648
exposure in rats. Use of xenobiotic-related measurements revealed
by our workflow has supported previous findings, providing con-
fidence in our approach, and made discoveries on the bio-
transformation, tissue distribution and temporal changes in relative
systemic exposure of the pharmaceuticals in exposed rats. Further
application of the workflow on an untargeted metabolomics
experiment with hiPSC-CMs has revealed the ability to discover
metabolic competencies of in vitro model systems. We have shown
that internal dosemeasurementsmade by untargetedmetabolomics
can aid the discovery of endogenous biochemical responses that are
directly associated with internal exposure. Finally, we present how
our approach can reveal insights into the exposome of humans,
including mapping the biotransformation pathways of detected
pharmaceuticals.
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Methods
Chemicals
Sunitinibmalatewaspurchased fromCarbosynthLtd (UK).KU60648was
synthesised in-house at AstraZeneca. Amitriptyline hydrochloride, lan-
soprazole, Paracetamol (acetaminophen) and ramipril were purchased
from Merck Life Sciences UK Ltd. The purity of all chemicals was ≥98%.

In vivo rat studies: animals, treatment and sampling
Animal studies were performed in accordance with the United King-
dom Animal (Scientific Procedures) Act 1986, were subject to local
ethics committee (AstraZeneca Animal Welfare Review Board and
Babraham InstituteAnimalWelfare and EthicalReviewBoard) approval
and in line with project and personal license conditions.

Rats (Han-Wistar—Crl:WIST; 240–260 g or 220 − 240 g for male
and female, respectively; age ca. 7 weeks) were purchased from
Charles River Laboratories (CRL) UK. Animals were housed as pre-
viously described68.

Animals were grouped randomly for the purposes of the study:
groups 1–4 were formed of N= 5 male rats, groups 5–8 were formed of
N= 5 female rats. Sunitinib and KU60648 were formulated in 20% w/v
aqueous (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) and administered
orally. Sunitinib-exposed rats (groups 6 and 8) were dosed with
25mg/kg/day (10mL/kg/day) of sunitinib malate for 14 days. KU60648-
exposed rats (groups 2 and 4) were dosed with 150mg/kg/day
(10mL/kg/day) for 2 days, then with 225mg/kg/day (10mL/kg/day) on
day 3. These doses were selected as doses that were likely to elicit
toxicologically-relevant molecular responses whilst considered suitable
for investigation based on previous studies demonstrating tolerance to
these doses, i.e., approximately the maximum tolerated dose.

Toxicokinetic analysiswas carriedout onplasma samples collected
onday 1 (groups 2, 4, 6 and8) at 1, 4, 6 and24hpost-dose, day 3 (groups
2 and4) pre-dose and4hpost-dose andday 14 (groups 6 and8) at 1, 4, 6
and 24 h post-dose. Sample collection and analysis was performed as
described previously68.

Blood samples for untargetedmetabolomicswere taken on days 1
and 2 (groups 1–4), day 1 and 4 (groups 5–6) or days 2 and 8 (groups
7–8) at 4 h post-dose. Terminal sampleswere also taken 24 h post-dose
(day 4, groups 1–4) and 28 h post-dose (day 15, groups 5 – 8). 300μL
whole blood was collected via the tail vein, mixed with Lith Hep
anticoagulant, and used to derive ~150μL of plasma for analysis.

KU60648-exposed rats (groups 2 and 4) and corresponding
vehicle controls (groups 1 and 3) were terminated on day 4. Sunitinib-
exposed rats (groups 6 and 8) and corresponding vehicle-controls
(groups 5 and 7)were terminated on day 15. Following termination, the
whole heart was removed (groups 3, 4, 7 and 8), with the apex sec-
tioned for untargeted metabolomics analysis.

Cardiomyocyte study
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs, Cellular Dynamics International, Fujifilm, USA) were defrosted
according tomanufacturer’s instructions andplatedat 500,000cells per
well in six-well plates pre-coated with 0.1% gelatin. (Each well formed a
time-point, N, and was repeated from three separate vials). After plating
in Cardiomyocyte plating media, cells were cultured in Cardiomyocyte
maintenancemedia from48h post plating, until end of experiment. Ten
days post-plating, the cardiomyocytes were treated with either 0.1%
DMSO (control) or 5 µM sunitinib (treated), for either 1, 6 or 24h, added
as part of a media change. This concentration was selected as one that
would elicit a toxicologically relevant molecular response without sig-
nificant loss in cell viability, i.e., approximately the maximum tolerated
dose, based on previous studies. Once the exposure time had elapsed,
plates were placed on wet ice, the media was removed (to micro-
centrifuge tubes), then wells were washed twice with 1mL cold 0.9%
NaCl. Plates were then immediately frozen on dry ice. Media samples
were spun at 10,000-g for 5min at 4 °C to remove any cell debris. The

supernatants were then transferred to clean microcentrifuge tubes. All
samples were stored at −80 °C prior to metabolomic analyses.

Human plasma samples
Plasma from 21 healthy human volunteers (gender, self-reported: 18
female, 3 male; age: 24–62) was obtained from the University of Bir-
mingham’s Human Biomaterials Resource Centre (HBRC), which holds
ethical approval from an NHS Research Ethics Committee (NRES
Committee North West – Haydock; Ref 20/NW/0001) to provide
human biomaterials and associated data for a broad spectrum of
biomedical research. Human biomaterials and associated data were
obtained in accordance with the Human Tissue Act 2004 and asso-
ciated Codes of Practice, and project specific use of human bioma-
terials and associated data were subject to the HBRC Access Review
panel for ethical approval and sponsorship under the UK Policy Fra-
mework forHealth and Social Care Research. All donors gave informed
consent. They were not compensated.

Plasma samples selected for analysis were from donors (healthy
volunteers) who reported to have taken some common medication in
the 24 hprior to sampling. Plasmawas prepared fromperipheral blood
samples mixed with EDTA and stored at −80 °C until analysis.

Extraction of polar metabolites and lipids from cardiac tissue
Sample preparation was carried out according to previous studies69,70,
with someminor changes. Tissue sizes ranged from 54–124mg. 8 µL/mg
wet tissue mass of ice-cold methanol (LC-MS grade, VWR International,
UK) and 3.2 µL/mg ice-cold water (LC-MS grade, VWR International, UK)
was added to frozen tissue samples, whichwere homogenised in a bead-
based homogenisation system (Precellys 24 with CK28 tubes, Stretton
Scientific, UK). The homogenate was transferred to a 1.8mL glass vial
and 8 µL/mg ice-cold chloroform (HPLC grade, Fisher Scientific, UK) and
4 µL/mg water were added. Sample was vortexed (30 s), left on ice
(10min, for extraction) and centrifuged (2500-g, 4 °C, 10min). Sample
was set at room temperature (~20 °C) for 5min to complete phase par-
titioning. Fixed volumes of the polar (400 µL—equivalent to 30mg
extracted tissue) and non-polar (250 µL—equivalent to 30mg extracted
tissue) were removed and dried in a SpeedVac sample concentrator
(Savant SPD111V230, Thermo Fisher Scientific) or a nitrogen blow down
drier (TechneFSC400D,ThermoFisher Scientific), respectively. Samples
were stored at −80 °C until analysis. To create polar intra-study quality
control samples (QCs) anextra 300 µLof thepolar extract (post-bi-phase
partition) was taken from each sample, mixed (vortexed 30 s) and ali-
quoted (400 µL) before drying by SpeedVac. To create non-polar QCs an
extra 200 µL of the non-polar extract (post-bi-phase partition) was taken
from each sample, mixed (vortexed 30 s) and aliquoted (250 µL) before
drying by nitrogen blow down drier. Extract blank samples were created
by carrying out the above procedure in the absence of tissue. Prior to
UHPLC-MS analysis, dried samples were resuspended in 300 µL 3:1
acetonitrile:water (polar extracts) or 300 µL 3:1 isopropanol:water (non-
polar extracts), vortexed (30 s), centrifuged (20,000-g, 4 °C, 20min) and
100 µL supernatant loaded into a low recovery HPLC vial (Chromato-
graphy Direct, UK).

Extraction of polar metabolites and lipids from cardiomyocytes
Six-well plates (containing saline-washed cardiomyocyteswith all liquid
removed) were placed on dry-ice and 600 µL of 2:0.8 methanol:water
(prechilled on dry ice for 60min) was added to each well. Cardio-
myocytesweredislodged into the solvent using a cell scraper (Corning)
and all cardiomyocytes and liquid were removed into a fresh 1.8mL
glass vial. A further 240 µL of prechilled 2:0.8 methanol:water was
added to the well, scraped and all contents added to the 1.8mL glass
vial. 600 µL ice-cold chloroform and 300 µL ice-cold water were added
to the 1.8mL glass vial and sample was vortexed (30 s), left on ice
(10min, for extraction) and centrifuged (2500-g, 4 °C, 10min). Sample
was set at room temperature (~20 °C) for 5min to complete phase
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partitioning. Fixed volumes of the polar (900 µL) and non-polar
(600 µL) were removed and dried in a SpeedVac sample concentrator
(Savant SPD111V230, ThermoFisher Scientific) or a nitrogenblowdown
drier (Techne FSC400D, Thermo Fisher Scientific), respectively. Sam-
ples were stored at −80 °C until analysis. Extract blank samples were
created by carrying out the above procedure in the absence of cells.
Prior to UHPLC-MS analysis, dried samples were resuspended in 150 µL
3:1 acetonitrile:water (polar extracts) or 150 µL 3:1 isopropanol:water
(non-polar extracts), vortexed (30 s), centrifuged (20,000-g, 4 °C,
20min) and 100 µL supernatant loaded into a low recovery HPLC vial
(Chromatography Direct, UK). To create the QCs, the remaining 50 µL
liquid from each centrifuged resuspended sample was pooled (for
polar and non-polar separately), vortexed andmoved to a low recovery
HPLC vial (Chromatography Direct, UK) for direct analysis.

Extraction of polar metabolites and lipids from biofluids
Samples were prepared in accordance with previous studies54, with
some minor changes. Biofluids (rat plasma, human plasma or cardio-
myocyte spent culturemedia)were thawed on ice and briefly vortexed
(5 s). 50 µL of the biofluidwasmixedwith either (i) 150 µL 100% ice-cold
acetonitrile (LC-MS grade, VWR International; polar metabolite
extraction for HILIC analysis], or (ii) 150 µL 100% ice-cold isopropanol
(LC-MS grade, VWR International; lipid extraction for RP C18). Samples
were vortexed and centrifuged (20,000-g, 4 °C, 20min) and 100 µL
supernatant removed into a low recovery HPLC vial (Chromatography
Direct, UK) for direct analysis. To create the QCs, 50 µL of each plasma
sample (plasma QC) or 50 µL of each media sample (media QC) was
pooled, vortexed (30 s) and split into several 50 µL aliquots. Each ali-
quot was prepared as for the samples (above).

Untargeted ultra-performance liquid chromatography-mass
spectrometry
Samples were analysed as described previously54 using a Q Exactive
Focus Orbitrap MS (Thermo Scientific, Hemel Hempstead, UK) cou-
pled to a Dionex Ultimate 3000 UPLC (Thermo Scientific), employing
HILIC and RP C18 chromatography. Instruments were controlled using
XCalibur software (Thermo Scientific). For the HILIC method, an
Accucore 150 Amide column (100 × 2.1mm, 2.6 µm, Thermo Scientific)
was used. Mobile phase A was 95% acetonitrile/water (10mM ammo-
nium formate, 0.1% formic acid) and mobile phase B was 50% acet-
onitrile/water (10mM ammonium formate, 0.1% formic acid). The
gradient was as follows: t =0.0, 1% B; t = 1.0, 1% B; t = 3.0, 15% B; t = 6.0,
50% B; t = 9.0, 95% B; t = 10.0, 95% B; t = 10.5, 1% B; t = 14.0, 1% B. All
changes were linear (curve = 5). The flow rate was 0.50mL/min and the
column temperature 35 °C. For the RP C18 chromatography, a Hypersil
GOLD C18 column (10 × 2.1mm, 1.9 µm, Thermo Scientific) was
employed. Mobile phase A was 60% acetonitrile/40% water (10mM
ammonium formate, 0.1% formic acid) and mobile phase B was 85.5%
propan-2-ol/9.5% acetonitrile/5% water (10mM ammonium formate,
0.1% formic acid). The gradient was as follows: t = 0.0, 20% B; t =0.5,
20% B, t = 8.5, 100% B; t = 9.5, 100% B; t = 11.5, 20% B; t = 14.0, 20% B. All
changeswere linear (curve = 5). The flow rate was0.40mL/min and the
column temperature 55 °C. In all cases analysis was performed in
positive and negative ionisation modes separately at a resolution of
70,000, between 70 and 1050m/z (HILIC) and 150–2000m/z (RP C18).
The sample injection volume was 2 µL. MS2 fragmentation data was
collectedby data-dependent acquisition (DDAusing ‘DiscoveryMode’)
of QCs using HCD with stepped collision energies (CEs) (HILIC 25, 60,
100; RP C18 20, 50, 80). For HILIC and RP C18 separately, MS2 data were
collected for three differentm/z ranges from three separate injections.
Scan ranges were: HILIC m/z 70–200, m/z 200–400, and m/z
400–1000; C18 RP m/z 200–400, m/z 400–700 and m/z 700–1500.
Additional MS2 fragmentation data of putative xenobiotic-related
features was collected by DDA, using targeted inclusion lists across
multiple injections of selected xenobiotic-exposed samples, using

HCD with stepped CEs (HILIC 25, 60, 100; RP C18 20, 40, 100). For MS2

fragmentation data acquisition, analysis was performed at a of reso-
lution of 35,000 and 17,500 for full scan (MS1) and MS2, respectively.

The analysis of human plasma extracts was performed using a
positive ion HILIC UHPLC-MS method only (based on results of rat
studies above) as described above, but deployed on an Orbitrap ID-X
Tribrid MS (Thermo Scientific) coupled to a Vanquish Horizon UHPLC
(Thermo Scientific) (with method gradient: t = 0.0, 1% B; t = 2.1, 1% B;
t = 4.1, 15% B; t = 7.1, 50% B; t = 10.1, 95% B; t = 11.0, 95% B; t = 11.5, 1% B;
t = 15.0, 1% B). Analysis was performed at a resolution of 120,000, over
a scan range ofm/z 70–1050.MS2 fragmentation data was collected by
DDA (ddMSnScan) frompooled samples usingHCDwith steppedNCEs
(20, 40, 130%), and inclusion lists targeting SyGMa predicted bio-
transformation products ([M+H]+, [M + Na]+ and [M+NH4]

+ ion
forms). Analysis was performed at resolutions of 60,000 and 30,000
for full scan and MS2, respectively, for fragmentation data acquisition.

Untargeted metabolomics raw data processing
Vendor format raw data files (.RAW) were converted to mzML file
format using ProteoWizard software71. Full scan (MS1) data deconvo-
lution was performed by XCMS operated in Galaxy51, as reported
previously54 (settings: min. peak width (HILIC = 4; RP C18 = 6); max.
peak width (30); ppm (HILIC = 12; RP C18 = 14); mzdiff (0.001); bw
(0.25); mzwid (0.01); minfrac (0.2 for rat and cardiomyocyte datasets,
0.05 for human dataset)). A data matrix of peak intensities for meta-
bolite features (m/z-retention time pairs) vs. samples were con-
structed.MS2 datafileswereprocessed,filtered and averagedusing the
R/Bioconductor package msPurity53 (settings: XCMS (as described
above except minfrac (0.1)), plim (0.5), ppm (5.0)). Processed MS2

spectra were aligned to metabolite features in the peak matrix gen-
erated from full scan (MS1) data files using 5 ppm mass error and 10 s
retention time tolerance window.

Xenobiotic-based data analysis and annotation
Exposure to suspect xenobiotics, i.e., any of the top 20 pharmaceu-
ticals prescribed by the UK NHS between 2014 and 2020, was defined
for human samples with unknown exposures as follows. First, mea-
sured features corresponding to each of the ten suspect xenobiotics
(pharmaceuticals) were identified by (i) match of measured m/z to
theoretical m/z, for a low confidence annotation (MSI level 3/Schy-
manski level 3), (ii) match of selected MS2 fragmentation data to MS2

spectrum contained within a public database (MassBank, GNPS), for a
mid-confidence annotation (MSI level 2/Schymanski level 2) and/or
(iii),matchofMS2 fragmentationpatternand retention time to that of a
chemical standardmeasured using the same instrument and analytical
method, for a high-confidence annotation (MSI Level 1/Schymanski
level 1). Using the annotated features, samples were defined as
exposed to a given xenobiotic if the relative intensity of the repre-
sentative feature was >10-fold the median intensity across all samples
and QCs, after imputing missing values with the lowest measured
relative intensity across all features.Where relative intensitywas below
this value, the sample was defined as ‘control’.

In the case of laboratorymodel-based experiments (in vivo rat and
in vitro cardiomyocyte studies), the ‘exposed’ and ‘control’ sample
labels were defined as per the experimental conditions.

Putative xenobiotic-related features were discovered by applying
the following filters: feature present in ≥80% (for rat and cardiomyo-
cyte datasets) or ≥50% (human datasets) of exposed samples; feature
present in ≤50% biological control samples; and the median intensity
of a feature in exposed samples is ≥10-fold its median intensity in
biological control samples. This was implemented using the R/Bio-
conductor package structToolbox52 (v1.6.0, https://bioconductor.org/
packages/release/bioc/html/structToolbox.html). Ion form annotation
and feature grouping of the putative xenobiotic-related features was
carried out using the functions ‘Group features’ and ‘Annotate Peak
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Patterns’ in the python package BEAMSpy50 (v1.1.0, https://github.
com/computational-metabolomics/beamspy), using 5 ppm mass
error, 5 s retention time tolerance window.

Pearson’s correlation analysis was carried out using the
R/cran package RcmdrMisc (https://cran.r-project.org/web/packages/
RcmdrMisc/index.html) on combined data from all UHPLC-MS assays
following normalisation of intensity measurements by probabilistic
quotient normalisation (PQN), applying coefficients calculated for the
endogenous datasets. A given pair of features were defined as co-
responsive when Holm adjusted p value < 0.05 and R ≥0.75. A network
diagram of the correlation matrix was analysed and visualised in
Cytoscape 3.7.272.

Biotransformation products of parent substances (sunitinib,
KU60648, paracetamol, omeprazole, atorvastatin, lansoprazole, biso-
prolol, and amitriptyline were predicted using SyGMa37 and the ‘Gen-
erate Expected Compounds’ tool in Compound Discoverer (v3.0,
Thermo Scientific, suntinib and KU60648, only). For SyGMa, both
number of Phase I and Phase II transformation steps were set to 3. The
outputs were filtered to predictions with a SyGMa score ≥0.01% and
predictions wheremolecular formulae of predicted biotransformation
products were identical were combined. For Compound Discoverer
predictions, the standard software transformation library was used to
predict biotransformation products for both xenobiotics, with max-
imum number of dealkylation steps set to 1, maximum number of
Phase II steps set to 1 and maximum number of all steps set to 3.
Predicted biotransformation products were aligned to putative
xenobiotic-related features using the R programming language
(https://www.R-project.org), using 5 ppm mass error.

The molecular formula/structures associated with the measured
fragmentation peaks of parent substances and their putative bio-
transformation products were annotated in silico using MetFrag in
command line40 with the candidate molecule(s) a given spectra user-
defined as the annotation from SyGMa and/or Compound Discoverer,
or parent substances where features were not annotated (settings:
fragment peak match mass deviation = 5 ppm)

K-means cluster analysis, a type of unsupervised clustering, was
carried out using the R programming language (https://www.R-
project.org). Prior to analysis, data was scaled by unit variance. An
elbow plot was generated for each dataset to select the optimal value
of k prior to execution of k-means cluster analysis using the median
intensity of feature across biological replicates at each time point.

Endogenous metabolite and lipid-based data analysis
Prior to data analysis, datasets were filtered as follows: any feature
whose median intensity in biological samples is <20× its median
intensity in blank samples was removed; features with relative stan-
dard deviation ≥ 30% across the QCs were removed; samples with
>50% missing values were removed; features which were missing in
≥10% QCs and/or ≥50% of all samples were removed; features present
in the list of putative xenobiotic features were removed. Univariate
statistical analysis (t-test) were applied after PQN. Principal compo-
nents analysis was carried out after PQN, missing value imputation by
k-nearest neighbour (k = 5) and generalised log transformation. These
steps were executed using the R/Bioconductor packages pmp (v1.6.0,
https://bioconductor.org/packages/release/bioc/html/pmp.html) and
structToolbox52 (v1.6.1, https://bioconductor.org/packages/release/
bioc/html/structToolbox.html).

Endogenous polar metabolite annotation was performed using
Compound Discoverer (Thermo Scientific). Metabolite features within
theUHPLC-MS2 datawere searched against themzClouddatabase.Only
annotations with spectral match score >0.6 were used. Endogenous
lipid annotation was performed using LipidSearch (Thermo Scientific).
Lipid features within the UHPLC-MS2 data were searched against the
entire in silico HCD database (5 ppm mass error). Only annotations
graded A–C were used for annotation purposes (Grade A—all fatty acyl

chains and class were completely identified; Grade B—some fatty acyl
chains and the class were identified; Grade C—either the lipid class or
some fatty acyls were identified). These approaches provided annota-
tions consistent with reporting level 2 of the MSI recommendations43.
Annotations were aligned to the XCMS outputs using the R program-
ming language (https://www.R-project.org), using3ppmmass error and
10 s retention time tolerance window.

Spearman’s correlation analysis of annotated lipids and parent
xenobiotics (sunitinib or KU60648) in the cardiac tissue of exposed
rats was carried out using PQN-normalised peak intensity measure-
ments. This was executed using the R/cran package RcmdrMisc
(https://cran.r-project.org/web/packages/RcmdrMisc/index.html). A
network diagram of the resulting correlation matrix was analysed and
visualised in Cytoscape 3.7.272. Over-representation analysis of lipid
classes significantly correlated with sunitinib or KU60648 (p < 0.05)
was carried out by one-way Fisher’s Exact test, using full list of anno-
tated lipids as the reference set.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Untargeted UHPLC-MS(/MS) metabolomics raw and derived data and
associated metadata that support the findings of this study have been
deposited in MetaboLights with the accession code MTBLS2746.
Additionally, fragmentation data (MS/MS) used to support findings
presented in the manuscript has been deposited inMassBank (https://
massbank.eu/MassBank/; accession codes: MSBNK-UoB-XB000xxx,
where xxx is 101–112, 200–215, 300–306, 400–406, 500–504, 600,
700–701, 800 or 900–902). Source data are provided with this paper.
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