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Abstract  Claims surrounding exceptional lon-
gevity are sometimes disputed or dismissed for 
lack of credible evidence. Here, we present three 
DNA methylation-based age estimators (epi-
genetic clocks) for verifying age claims of cen-
tenarians. The three centenarian clocks were 
developed based on n = 7039 blood and saliva 
samples from individuals older than 40, including 
n = 184 samples from centenarians, 122 samples 
from semi-supercentenarians (aged 105 +), and 
25 samples from supercentenarians (aged 110 +). 

The oldest individual was 115  years old. Our 
most accurate centenarian clock resulted from 
applying a neural network model to a training set 
composed of individuals older than 40. An epi-
genome-wide association study of age in differ-
ent age groups revealed that age effects in young 
individuals (age < 40) are correlated (r = 0.55) 
with age effects in old individuals (age > 90). We 
present a chromatin state analysis of age effects 
in centenarians. The centenarian clocks are 
expected to be useful for validating claims sur-
rounding exceptional old age.
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Introduction

In 2016, controversy surrounding the limits of human 
lifespan ignited when Vijg and colleagues published 
an analysis of demographic data suggesting a “natu-
ral limit” to human life [1]. Shortly thereafter, Brown 
et al. (2017) [2] challenged Vijg’s assertion after re-
analysis of the same data utilizing different statistical 
techniques and assumptions. Highlights of the history 
of this debate are well-summarized by Eisenstein’s 
article published earlier last year [3].

Clouding this debate is poor record keeping in the 
early twentieth century, and extreme age claims made 
for secondary gain. Norris McWhirter of the Guinness 
Book of World Records, wrote, “No single subject is 
more obscured by vanity, deceit, falsehood, and delib-
erate fraud than the extremes of human longevity” 
[4, 5]. Mistakes in age claims can also arise due to 

dementia or confabulations. The maximum life span 
of humans is currently determined by Jeanne Cal-
ment, documented to have lived for 122 years. Con-
troversy still exists over Jeanne Calment’s age despite 
verified documentation [6, 7]. Although a sample of 
her blood is stored and analyses might help resolve 
the controversy, to date, it has not been allowed due to 
ethical constraints surrounding the informed consent 
signed at the time of sample donation [8].

By necessity, many demographic studies of longevity 
relied on populations for which birth records had been 
kept. Formal recording of births and deaths in the USA 
began in Virginia in 1632. But not until 1933, were all 
states of the USA registering and reporting births and 
deaths with acceptable event coverage to the bureau of 
national birth and death statistics [9]. Demographic 
methodologies and early census activities from 1632 
to 1933 were evolving and far from perfect. If a person 
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were born before 1933, it may prove difficult for their age 
claim to be validated with a US government-issued docu-
ment. Had Jeanne Calment (born 1875) been born in the 
USA, her birth might not have been recorded properly, 
and her case subsequently discarded by demographers. 
This raises the question, might other supercentenarians 
be excluded from demographic databases because their 
age is not verifiable by one or more documents trusted 
as credible by a demographer? Even with proper docu-
mentation, Jeanne Calment’s age is doubted because doc-
umentation alone can be falsified or misattributed to an 
heir as some have suggested [7]. In theory, a very accu-
rate molecular estimator of age could settle such disputes 
and even obviate the need for birth certificates thereby 
allowing more inclusive sample collections from coun-
tries with incomplete census systems.

Highly accurate age estimators can be built based on 
DNAm levels [10–15]. The high accuracy of epigenetic 
clocks has been replicated numerous times and would 
be one way to verify the age of individuals too old to 

have been counted accurately by nascent census meth-
ods [16–18]. However, most current epigenetic clocks 
underestimate the ages of older individuals (due to the 
well-known regression to the mean effect) and lead to 
relatively low age correlations in the oldest old [19–21]. 
Here, we present three new epigenetic clocks whose 
express purpose is to verify age claims from centenarians.

Results

Data

We combined DNAm data from multiple sources. 
Centenarians and their offspring are collected by 
James Clement. Centenarian samples were obtained 
from multiple sources including from Italy [19] as 
well as blood samples from several large cohort 
studies including the Framingham Heart Study and 
Women’s Health Initiative (Table  1). The clocks 
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were trained based on n = 7039 blood and saliva 
samples from individuals older than 40, including 
n = 184 individuals older than 100, 122 individuals 
older than 105, and 25 individuals older than 110. 
The oldest individual in the training data was over 
115 years of age (Table 1).

To reduce the computational burden of our neu-
ral network predictors, we applied strong pre-filter-
ing steps resulting in 33,495 individual cytosines 
(Methods). Our subsequent analyses focused on the 
same set of 33,495 CpGs.

Standard epigenetic clocks underestimate ages of 
centenarians

We applied 3 widely used epigenetic age estimators to 
the data set (Supplementary Fig. S1).

The blood based clock by Hannum [12], the pan tis-
sue clock (Horvath 2013) [11], and the skin and blood 
clock [15]. When looking at the entire age range (from 
40 to 115), we observe high Pearson correlations 
between DNAmAge and age (r = 0.89, r = 0.88, r = 0.92, 
Supplementary Fig. S1A, D, G). Similarly, we observe 
high age correlations in individuals aged 80 or more 
(r = 0.69, r = 0.73, r = 0.80, Supplementary Fig. S1C, F, 
I). However, these clocks greatly underestimate the ages 
of centenarians (median errors 18 years, 12 years, and 
15 years, Supplementary Fig. S1B, E, F).

The regression to the mean effect (which inciden-
tally gives regression analysis its name) explains why 
the epigenetic clocks tend to underestimate ages of indi-
viduals that are very old.

Our centenarian clocks greatly outperform these 
standard clocks as described in the following.

Centenarian clocks

DNA methylation clocks are defined as prediction 
methods that regress a transformed version of chrono-
logical age (outcome variable) on methylation levels 
at cytosine-phosphate-guanines (CpGs). We devel-
oped three different clocks for centenarians that differ 
along two dimensions (i) the age range in the training 
sets and (ii) the method of machine learning: elastic 
net (EN) regression or neural network (NN).

We explored several different age ranges when 
it comes to developing centenarian clocks. For the 
sake of brevity, we report results for two scenarios: 
individuals aged 40  years or older (denoted 40 +) 
and individuals aged 100  years or older (denoted 
100 +). Despite the inclusion of middle aged indi-
viduals, the resulting predictors deserve the label 
“Centenarian clock” due to their relatively high 
cross-validation estimates of the Pearson correlation 
between chronological age and its DNAm-based esti-
mate (R ≥ 0.59) in centenarians (Fig. 1B, E, H). The 

Table 1   Characteristics of study individuals in training and test data sets

The table summarizes the characteristics of individuals in training data 1 (n = 8868), training data 2 (n = 184), and test data (n = 34). 
DNA methylation data were profiled in multiple tissue types in the training data set and profiled in urine in the test data set. Age is 
presented in the format of mean ± SD [range]. Female and tissue type variables are presented in the format of count (percentage %)

Tissue

Age group N Female Age Blood Saliva Buccal Urine

Training data 1
Age ≥ 110 25 20 (80.0%) 111.9 ± 1.4 [110, 115] 20 (80.0%) 2 (8.0%) 3 (12.0%) 0 (0%)
Age ≥ 100 184 128 (69.6%) 105.6 ± 3.5 [100, 115] 175 (95.1%) 6 (3.3%) 3 (1.6%) 0 (0%)
Age ≥ 90 358 220 (61.5%) 100.0 ± 6.6 [90, 115] 349 (97.5%) 6 (1.7%) 3 (0.8%) 0 (0%)
Age ≥ 80 1262 672 (53.2%) 88.2 ± 8.5 [80, 115] 1253 (99.3%) 6 (0.5%) 3 (0.2%) 0 (0%)
Age ≥ 40 7039 3838 (54.5%) 68.9 ± 13.1 [40, 115] 7030 (99.9%) 6 (0.1%) 3 (0.0%) 0 (0%)
Training data 2
Age ≥ 100 184 128 (69.6%) 105.6 ± 3.5 [100, 115] 175 (95.1%) 6 (3.3%) 3 (1.6%) 0 (0%)
Urine Test data
Age [50, 84] 12 7 (58.3%) 65.6 ± 10.7 [52, 84] 0 (0%) 0 (0%) 0 (0%) 12 (100%)
Age [2, 49] 22 10 (45.5%) 28.7 ± 13.2 [2, 48] 0 (0%) 0 (0%) 0 (0%) 22 (100%)
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Pearson correlation is high given that the underlying 
age range (from 100 to 115 years) is very narrow.

The centenarian clocks lead to high age correla-
tions in the 80 + group where we observe R = 0.89 
for the ENCen40 + clock and R = 0.90 for the 
NNCen40 + clocks (Fig. 1C, F).

We managed to fit an elastic regression model in 
centenarians (100 + age group), which led to the elas-
tic net clock denoted as ENCen100 + . However, a 
neural network-based clock could not be developed 
in this 100 + age group since the model failed to con-
verge in this small data set.

As expected, the elastic net (ENCen40 +) and 
neural net (NNCen40 +) clocks trained in individu-
als 40 + work substantially better in non-centenari-
ans compared to the ENCen100 + clock (Fig. 1A, D, 
G). The neural network based clock (NNCen40 +) 
achieved higher accuracy than the elastic net based 
clock (ENCen40 +) in terms of correlation and 
absolute error (r = 0.636 and MAE = 2.28  years 
for NNCen40 + clock compared to r = 0.592 and 
MAE = 4.31 for ENCen40 + , Fig. 1B, E).

For most situations, we advise against the use of the 
ENCen100 + clock, but it may be useful for evaluat-
ing supercentenarians (i.e., individuals older than 110). 
ENCen100 + , which was trained only on centenar-
ian samples, leads to a lower median absolute error in 
centenarians than the other clocks (MAE = 1.8  years 
for ENCen100 + compared to MAE = 2.28 for the 
NNCen40 + clock, Fig. 1E, H), but it is inferior in terms 
of the age correlations (r = 0.604, ENCen100 + com-
pared to r = 0.636 for the NNCen40 + clock, Fig. 1E, H).

By comparing Fig.  1 with Supplementary Fig.  S1, 
one can see that the centenarian clocks are better cali-
brated than the original clocks. Centenarians still appear 
to be epigenetically younger than their chronological 
age according to the cross-validation-based estimates 
of DNAm age (Fig. 1). This underestimate is expected 
based on the well-known regression-to-the-mean effect.

Urine samples

Due to their frailty, it is sometimes difficult to collect 
blood from older people. By contrast, the collection of 
urine is arguably less invasive. Therefore, we explored 
whether our epigenetic clocks also apply to urine sam-
ples. We find that ENCen40 + clock leads to the highest 
age correlation in urine (r = 0.945, Fig. 2), followed by 
the neural network-based clock NNCen40 + (r = 0.74). 

Since the urine samples were collected from people 
aged less than 90, we also find that previously pub-
lished clocks are accurate as well, e.g., the pan tissue 
clock (r = 0.96), Hannum blood based clock (r = 0.91), 
and the skin and blood clock (r = 0.94, Fig. 2).

Out of distribution analysis

Our training set involved individuals aged between 
40 and 115. This leads to the question how well 
these clocks generalize to individuals who are 
younger than 40 (younger than expected) or older 
than 115 (older than expected). To address this 
issue, we carried out an “out-of-distribution pre-
diction analysis” using clocks that were trained in 
different age intervals (Supplementary Fig. S2). In 
brief, we find that that the clocks are well-aligned/
calibrated in younger individuals but lead to rela-
tively strong offset (underestimate) in older indi-
viduals (Supplementary Fig.  S2). Based on these 
results, we expect that our centenarian clocks will 
underestimate the ages of individuals aged above 
115.

Centenarian clocks weakly predict mortality risk

To assess whether our centenarian clocks are associ-
ated with human mortality risk in middle aged indi-
viduals, we used methods and data sets from retro-
spective epidemiological cohort studies as described 
previously [22–25].

To remove the confounding effect of age, we 
defined measures of epigenetic age acceleration 
(AgeAccel) by regressing DNAm age estimate on 
chronological age and forming raw residuals. The 
resulting residuals are not correlated with chronolog-
ical age (r = 0). By definition, these residuals are not 
correlated with chronological [13].

First, we evaluated whether race/ethnicity has 
a confounding effect. Age acceleration based on 
the neural network-based clock (NNCen40 +) 
was not associated with race (Supplementary 
Fig.  S3C), but the other 2 centenarian clocks 
showed significant (but weak) associations with 
race (p = 0.0025 and p = 1.6 × 10−6 for Supple-
mentary Fig. S3A, B).

Therefore, we decided to stratify the analysis by race 
and cohort. Within each stratum defined by race and 
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Fig. 1   Cross-validation analysis of three epigenetic 
clocks for centenarians. Age estimation 20-fold cross-val-
idation (LOFO20) of the ENCen40 + , ENCen100 + , and 
NNCen40 + clocks in blood, saliva, and buccals cells, for 
different age ranges (columns). The panels relate chrono-
logical age (x-axis) to DNAm age estimates (y-axis) from 
the ENCen40 + (A, B, C) and NNCen40 + (D, E, F), and 

ENCen100 + (G, H, I), respectively. Each column corresponds 
to a different age range. DNA methylation data from age 40 to 
115 (A, D, G), 100 to 115 (B, E, H), and 80 to 115 (C, F, I). 
Each panel reports the sample size (N), the median absolute 
error (MAE), Pearson correlation coefficient (r), the p value 
(p), and each point is color coded by sex (blue = male)
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study cohort, our Cox regression analysis for time to 
death (due to all-cause mortality) was adjusted for age, 
sex, and batch effect as needed. The individual Cox 
regression results were combined via meta-analysis 
(inverse-variance weighted fixed-effect models). All 
three centenarian clocks were significantly associated 
with human mortality risks (Supplementary Fig. S4). The 
associations are statistically significant for both centenar-
ian clocks trained in the 40 + age group (P = 4.8 × 10−16 
for NNCen40 + and P = 9.0 × 10−8 for ENCen40 +) and 
to a lesser extent for the centenarian clock trained in 
individuals 100 + (P = 0.027 for AgeAccelENCen100 + , 
Supplementary Fig. S4). But the hazard ratios are rela-
tively small: a 1-year increase in epigenetic age accelera-
tion (AgeAccel) is associated with hazard ratios ranging 
from 1.04 to 1.05 (Supplementary Fig. S4).

Centenarian clocks weakly relate to clinical 
biomarkers

One novel hallmark of epigenetic clocks is their 
associations with a broad category of age-related 
conditions and lifestyle factors including diet 
[22, 26]. Here, we examined the cross-sectional 
relationship between our clocks and a total of 59 
variables including (i) 27 self-reported dietary 
variables; (ii) 9 biomarkers measuring vegetable 
consumption dietary (such as carotenoid levels); 
(iii) 17 clinical biomarkers of organ function, vital 
signs, metabolic traits, inflammatory markers, cog-
nitive function, lung function, central adiposity, 
and leukocyte telomere length (LTL); and (iv) 6 
lifestyle factors such as education.

Fig. 2   Urine samples. Age estimation of the ENCen40 + , 
ENCen100 + , and NNCen40 + clocks. The panels relate chron-
ological age (x-axis) to DNAm Age estimates (y-axis) from the 
ENCen40 + (A) and ENCen100 + (B), and NNCen40 + (C), 

respectively. Results for the (D) pan tissue clock (Horvath 
2013), (E) Hannum blood clock (Hannum), and (F) skin and 
blood clock [15].
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We used a robust correlation test (biweight midcor-
relation, bicor) that is less sensitive to outliers [27]. 
We applied the bicor analysis stratified by gender and 
racial group to 3 large cohorts: FHS, WHI, and JHS, 
respectively. The results were combined via fixed 
effect meta-analysis (Methods). Age acceleration for 
our centenarian clocks trained in individuals 40 + (i.e., 
ENCen40 + and NNCen40 +) exhibited far more sig-
nificant associations with these biomarkers compared 
to the clock trained in individuals 100 + (Supplemen-
tary Fig. S5). Both ENCen40 + and NNCen40 + show 
very similar correlation patterns with the biomarkers 
(Supplementary Fig.  S5). For instance, higher beta-
carotene levels are negatively correlated with AgeAc-
celENCen40 + (bicor =  − 0.17 and P = 9.2 × 10−3) and 
AgeAccelNNCen40 + (bicor =  − 0.16 and P = 0.017). 
AgeAccelENCen40 +  is correlated with markers of 
inflammation, metabolic syndrome, and C-reactive 
protein (bicor = 0.08 and P = 8.8 × 10−11) and insulin 
levels (bicor = 0.09 and P = 1.7 × 10−5). AgeAcelEN-
Cen40 +  increases with glucose, triglyceride, and 
systolic blood pressure with less extent correlation 
(bicor ~ 0.04) and decreases with a lung function bio-
marker indicated by forced expiratory volume in one 
second (FEV1). We also found that AgeAccelEN-
Cen40 + was sensitive in response to body fat distri-
butions such as body mass index (bicor = 0.09 and 
P = 2.2 × 10−12) and waist to hip ratio (bicor = 0.08 
and P = 5.6 × 10−9). These results echo our previous 
findings for the association between epigenetic clocks 
and body fat distributions [22, 25, 28].

Despite our large sample size, AgeAccelEN-
Cen40 + exhibits only nominally significant associa-
tions with educational level, income, and handgrip 
strength (p < 0.05, Supplementary Fig.  S5). In prac-
tice, these 3 variables can be ignored when estimating 
the ages of centenarians.

Epigenome‑wide association study of age

In our epigenome-wide association study (EWAS), 
we correlated each individual CpG with chrono-
logical age using a Pearson correlation test (imple-
mented in the WGCNA function standardScreen-
ingNumericTrait) [27]. The study was conducted in 
three age groups: (i) “young” denotes individuals 
aged between 0 and 40 years (n = 344), (ii) “middle” 
denotes individuals aged between 40 to 90  years 
(n = 6695), and (iii) “old” denotes individuals 

aged between 90 to 115 (n = 252). Our conclusions 
remain qualitatively the same for different choices 
of age intervals.

Our EWAS was limited to 33,495 CpGs (Meth-
ods). Our EWAS results show that chronologi-
cal age has abundant effects on the methyla-
tion levels of our CpGs in different age groups 
(Fig. 3A-C). The CpG with the highest and most 
significant correlation with age in the young and 
middle age group is cg16867657 (P = 9.5 × 10−69 
in the young group and P = 5.3 × 10−2188 in the 
middle group). This positively age-related CpG 
is located on chromosome 5 in ELOVL2. A less 
significant but noteworthy CpG (cg04875128) 
is located on chromosome 15 near OTUD7A 
(P = 5.8 × 10−1110).

We find a high conservation of age effects 
between the young and the old group (r = 0.545, 
Fig.  3E). Surprisingly, the aging effects in mid-
dle aged individuals (aged between 40 and 90) 
were less correlated with those in older individuals 
(r = 0.227, Fig.  3F) which probably reflects limita-
tions of the marginal correlation analysis, which 
ignored the heterogeneity of the underlying data 
(data from multiple different cohorts comprised of 
different groups).

Our EWAS in old individuals (aged between 90 
and 115) reveals the following top hits. Noteworthy 
genes include OXER1 (oxoeicosanoid receptor 1), 
which is associated with chemoattraction, inflamma-
tion, and oncogenesis. ZAR1 (zygote arrest protein 
1) was first characterized and named according to its 
role in the oocyte to embryo transition [29]. ZAR1 
can inhibit cell cycle progression and may serve as 
a tumor suppressor [29, 30]. NR4A2 (nuclear recep-
tor subfamily 4 group A member 2) has been impli-
cated in immune homeostasis via regulatory T cell 
development. NR4A2 regulates certain aspects of 
autophagy and some of the nuclear-encoded mito-
chondrial genes. The CAMP (cathelicidin antimi-
crobial peptide) gene encodes a protein involved in 
innate immunity against viruses and more generally 
functions in chemotaxis and inflammatory response 
regulation. CAMP gene promoter methylation inhib-
its inflammation and induces chondrocyte apoptosis 
which is known to play a role in osteoarthritis [31]. 
The CAMP protein has been suggested to be both 
anti- and protumorigenic depending on the cell type 
under investigation [32].
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Chromatin state analysis of EWAS results

To characterize the chromatin states in which age-
related CpGs are located, we employed a detailed uni-
versal chromatin state map constructed based on 1032 
experiments that mapped 32 types of chromatin marks 
in over 100 human cell and tissue types [33] (Fig. 4). 
We overlaid the positions of the top 1000 positively 
age-related CpGs and the top 1000 negatively age-
related CpGs onto this universal chromatin state map 
(Supplementary Data 1). We performed a hypergeo-
metric enrichment test with background a background 

set of 33,340 CpGs that could be mapped to chromatin 
states (Methods).

In the following, we focus on chromatin states that 
are enriched with age-related changes in old individuals 
(age > 90), but most comments apply to EWAS results in 
younger age groups as well (which reflects the high con-
servation of age effects across age groups, Fig. 3D-F).

Positive age-related CpGs showed strong enrich-
ments in chromatin states that were previously shown 
to have a strong association with binding sites of 
polycomb repressive complex 2 (states BivProm1-2, 

Fig. 3   Epigenome-wide association study (EWAS) of age in 
3 different age ranges. Epigenome-wide association (EWAS) 
of age in three age groups: (1) young for age between 0 and 
40 (n = 344), (2) middle for age between 40 and 90 (n = 6695), 
and (3) old for age between 90 and 115 (n = 252), using the 
training set. A–C Manhattan plots where the y-axis reports log 
(base 10 transformed) versions of nominal, unadjusted two-
sided p values. The red dashed line indicates genome-wide 
level of significance at P < 1.0 × 10−7. The x-axis displays the 
coordinates of CpGs in the human Hg19 assembly. The top 
1000 CpGs are colored in red and blue if they exhibit highly 
significant positive and negative age correlations according to 

P < 1.0 × 10−12,1.0 × 10−210, and 1.0 × 10−14 for A–C, respec-
tively. Adjacent genes are annotated for the top 20 CpGs. The 
gene symbol for the most significant CpG is marked in bold. 
The lower panels (D–F) display pairwise correlation among 
the three EWAS results: D young (x-axis) versus middle 
(y-axis), E young versus old, and F middle versus old. Each 
axis reports a Z score. Each dot corresponds to a CpG. Labels 
are provided for the top 10 hypermethylated/hypomethylated 
CpGs according to the product of Z scores in x- and y-axis. 
The Pearson correlation coefficient and corresponding nominal 
(unadjusted) two-sided correlation test P value can be found in 
the title
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ReprPC1)(35) [33]. These CpGs localized to PRC2-
binding sites are characterized by Eed, Ezh2, and 
Suz12 binding. PRC2 is a transcriptional repressor 
complex which is associated with the histone mark 
H3K27me3 [35]. Significantly, PRC2-mediated meth-
ylation of H3K27 is essential for the establishment 
of bivalent promoters, which simultaneously con-
tain both H3K27me3 and H3K4me3 marks. There 
is greater enrichment of these CpGs in a bivalent 
promoter state that contains more H3K27me3 than 
H3K4me3 (state BivProm2), compared to states such 
as BivProm1, which contains equal amounts of these 

two histone types. These results echo those from 
many human studies that reported age-related gain 
of DNAm in PRC2-binding sites [36, 37]. We also 
observe significant enrichment in active enhancer 
state EnhA7, but this enrichment is somewhat sus-
pect since it could not be observed in our EWAS of 
middle-aged individuals. The overlap with PRC2-
binding sites depends to some extent on age group. 
The strongest and weakest overlap could be observed 
in young individuals (age < 40) and old individu-
als (age > 90), respectively. Target sites of poly-
comb repressive complex 1 (as opposed to 2) did 

Fig. 4   Chromatin state analysis of age-related CpGs. Chro-
matic state annotation and polycomb repressive complex 
(PRC) annotation for the age-related CpGs identified from 
EWAS of age in three age groups: (1) young for age between 
0 and 40, (2) middle for age between 40 and 90, and (3) old 
for age between 90 and 115. The heatmap color codes the 
hypergeometric overlap analysis between age-related CpGs 
(columns) and (1) universal chromatin states analysis [33] and 
PRC1-/PRC2-binding sites defined based on ChipSeq data sets 
in ENCODE [34]. For each row, the table reports odds ratios 
(OR) from hypergeometric test results for the top 1000 CpGs 
that increased/decreased with age from our EWAS of age in 
three age groups (young, middle, old). The color gradient in 

the heatmap is based on − log10 (unadjusted hypergeometric 
P value) multiplied by the sign of OR greater than one. Red 
colors denote OR greater than one in contrast with blue colors 
for OR less than one. Legend lists states based on their group 
category. The y-axis lists the chromatin state or PRC binding 
and the respective number of CpGs inside parentheses. The bar 
plot on the left reports the proportion of CpGs that are known 
to be bound by PRC2 that ranges from zero (PRC1) to one 
(PRC2). The left/right panel lists the results based on the top 
1000 CpGs with positive and the top 1000 CpGs with nega-
tive age correlations, respectively. We displayed 23 universal 
chromatin states that show significant enrichment/depletion at 
an uncorrected/nominal P < 1.0 × 10−10 in any of the EWAS
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not overlap significantly with positively age-related 
CpGs.

Negatively age-related CpGs (those that lose meth-
ylation levels with age) led to less significant overlaps 
with chromatin states. Age-related loss of methylation 
could be observed for CpGs located in the following 
chromatin states: first, active enhancer states (EnhA1, 
EnhA2) associated with H3K4me1, accessible chro-
matin, H2A.Z, and/or H3K27ac; second, exon-asso-
ciated transcription state TxEx4 which is most highly 
enriched for transcription termination sites, exons, 
and promoters [33]; and third, flanking promoter state 
PromF6 which was located within 2 kb of annotated 
transcriptional start sites. The findings are consistent 
with those from the EWAS of age by the Mammalian 
Methylation Consortium [38].

Non‑linear relationships between DNAm and age

Age can have a non-linear effect on individual CpGs. 
Similarly, non-linear effects could also be present 
for the mean methylation levels of CpGs of a given 
chromatin state. To investigate non-linear patterns, 
we used LOWESS regression models to the most 
significant CpGs and chromatin states (Fig.  5). The 
CpG at ELOVL2 is strongly linearly correlated with 
age (Fig.  5A). However, we find evidence for non-
linear relationships for the mean methylation levels 
in chromatin state BivProm2 and binding sites of 
PRC2 (Fig. 5B,C). Only one chromatin state (PromF2) 
exhibits a saturation type behavior for age-related loss 
of DNAm (Fig. 5F). The other chromatin states do not 
reveal any leveling off effect (Fig. 5).

Fig. 5   Individual CpGs and mean CpG in chromatin states. 
Chronological age (x-axis) versus A ELOVL2 methylation 
(y-axis) or mean methylation in B chromatin state BivProm2, 
C target sites of polycomb repressive complex 2, D chromatin 

state EnhA1, E chromatin state TxEx4, and F chromatin state 
PromF2. Each panel reports the sample size (N), Pearson cor-
relation coefficient (r), and the p value (p), and red line is the 
LOWESS regression smooth curve
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Principal component analysis

We carried out a principal component analysis of the 
DNAm data (Supplementary Fig.  S6) to understand 
the main sources of variation. The first 2 principal 
components (which explain 19% and 14% of the vari-
ation, respectively) reveal two main clusters which 
correspond to sex (male, female). The first three PCs 
do not seem to relate to the underlying data source, 
but principal components 4 and 5 relate weakly to 
at least one of the underlying data sets (Supplemen-
tary Fig.  S6B, C). Overall, this analysis shows the 
expected results: DNA methylation is subject to batch 
effects. However, age has a far stronger signal as 
demonstrated by our ability to find CpGs and chro-
matin states that had previously been found in other 
data sets.

Discussion

Centenarians are paragons of successful aging that 
manage to delay or resist the onset of age-related dis-
eases [39, 40]. Studying these successful agers prom-
ises to elucidate the molecular secrets underlying 
healthy aging. By necessity, previous studies of cen-
tenarians were limited to populations that maintained 
rigorous birth records. In theory, birth certificates 
could be replaced by accurate molecular age estimates. 
In practice, it is very challenging to find biomark-
ers that are accurate and not confounded by biologi-
cal factors including genetic ancestry, various disease 
states, or stress factors. As a first step to address this 
challenge, we propose centenarian clocks that apply to 
ethnically diverse study participants since they were 
trained in individuals from different ancestries includ-
ing European, African, and Hispanic ancestry.

These centenarian clocks were developed as chron-
ological age estimators (i.e., first generation clocks) 
as opposed to morbidity risk estimators (second gen-
eration clocks). In general, epigenetic age estimates 
can be influenced by conditions such as Down syn-
drome [41, 42], HIV [43], obesity [44], diet [26], 
and onset of menopause [45]. Most epigenetic clocks 
predict human mortality risk when the sample size is 
sufficiently large [13,22,23,46]. Even our centenar-
ian clocks predict human mortality risk and relate to 
various clinical biomarkers, but these associations are 
very weak and have only a negligible effect on the 

age estimate. This reflects that the centenarian clocks 
were designed for the purpose of estimating chrono-
logical age as opposed to biological age.

Our EWAS of age finds highly significant asso-
ciations for CpGs located near the following genes. 
ELOVL2 (elongation of very long-chain fatty acids-
like 2) is an enzyme located in the endoplasmic reticu-
lum membrane. It catalyzes the first and rate limiting 
step in long-chain fatty acid elongation. CpGs near 
ELOVL2 are part of many methylation-based clocks 
[47]. ELOVL2 has been reported to play a role in retinal 
physiology and age-related macular degeneration [48].

Our chromatin state analysis reveals that mean 
methylation of PRC2 target sites continue to 
increase late in life while exhibiting increased 
variability (Fig. 5D). Similarly, the mean methyla-
tion levels of two negatively age-related chromatin 
states (EnhA1, TxEx4) do not exhibit any leveling 
off effect late in life (Fig. 5). These results suggest 
that one will be able to build accurate centenarian 
clocks for people who live beyond 120 years.

Our study has several limitations. First, we 
removed severe outliers from the training set. This 
data cleaning step was necessary since we only had 
a limited number of centenarians. It will be desira-
ble to validate our claims in independent data. Our 
freely available software can be found in the Sup-
plement. Second, we applied strong pre-filtering 
steps which limited our analysis to 33,495 individ-
ual cytosines. Third, our analysis (both regression 
and EWAS) ignored batch effects arising from 
lumping together data from different cohorts. Our 
principal component analysis reveals evidence for 
batch effects (Supplementary Fig.  S6). Technical 
confounders are expected to bias the results toward 
the null hypothesis of zero correlation. In general, 
this source of confounding is negligible compared 
to the effect of age on methylation as can be seen 
from the following two facts. First, our EWAS 
of age highlights genes (e.g., ELOVL2) that have 
been reported in many previous articles. Second, 
our chromatin state analysis highlights chromatin 
states (bivalent promoters, PRC2 bound regions) 
that have been implicated in previous articles.

Fourth, our enrichment analysis for chromatin states 
did not adjust for potential biases arising from sequence 
context (e.g., transcription start site/gene promoter bias 
or CpG island bias). To address this source of bias, one 
could use the eForge software tool [49]. Fifth, neural 
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network clocks are vulnerable to overfitting in this rela-
tively small data set as can also be seen in the urine data.

In conclusion, we demonstrate that one can build 
accurate epigenetic clocks for validating age claims 
in centenarians. Going forward, we believe that more 
accurate centenarian clocks can be developed once 
larger training sets become available.

Methods

Ethics

Since the data came from multiple sources, we 
report multiple ethics approvals. The study was 
approved through UCLA IRB#18–000315. Bet-
terhumans Inc. received IRB approval (Protocol 
Number: BH-SC-300, Approval Number: IRCM-
2018–185, Approval Date: April 18, 2018). The 
Italian study was approved by the local ethical com-
mittee (S. Orsola Hospital—University of Bolo-
gna; Prot. n. 2006061707, amendment 08/11/2011; 
Fondazione IRCCS Cà Granda Ospedale Maggiore 
Policlinico, Prot. n. 2035, amendment 30/11/2011; 
University of Calabria 9/9/2004 amendment on 
24/11/2011). A written informed consent form was 
obtained from all participants. Each of the epide-
miological cohort studies was approved by their 
local ethical committee as detailed in the respec-
tive publications describing the data.

Methylation arrays

We used data generated on two Illumina methylation 
array platforms: Infinium 450 K array and the Infinium 
methylation EPIC beadchip array that profiles > 866  k 
CpGs. The data came from multiple teams that used dif-
ferent normalization methods. To reduce the computa-
tional burden, we pre-filtered the CpGs. We focused on 
CpGs that were part of the following 3 groups: strong 
positive correlation with age, strong negative correla-
tion, or close to zero correlation with age.

Removal of outlying samples

Since influential outliers can severely impair the fit 
of regression models, we erred on the side of caution 
by removing putative outliers. This was done to mini-
mize the potential effect of platemap errors, human 

labeling errors, and the presence of blood cancers. To 
address the concern that the removal of outliers might 
have led to a biased evaluation, we release the soft-
ware code in the Supplement. Independent data from 
centenarians and younger individuals are needed to 
further evaluate our centenarian clocks.

Penalized regression models

Penalized regression models (implemented in the R 
package glmnet [50]) and Python package Sklearn 
[51] were used to regress chronological age on the 
CpG probes in the training set. The alpha param-
eter of glmnet was chosen as 0.5 (elastic net (EN) 
regression) and the lambda values were chosen using 
cross-validation on the training data. DNAm age was 
defined as predicted age. Since samples from cente-
narians were relatively rare, we used a sample weight 
of 10 for these samples in our regression models (e.g., 
weight parameter in glmnet). Our 20-fold cross-val-
idation model splits the data into 20 bins. Circling 
through the bins, each model was trained in 19 bins 
and evaluated in the left-out bin. This led to cross-
validation-based estimates of the Pearson correlation 
between age and its methylation-based estimate and 
the median absolute error.

Neural network models

Neural network (NN) models (implemented in Python 
package Sklearn) were used to regress chronological 
age on the CpG probes in the training set. The hyperpa-
rameters (architecture, batch-size, learning rate) of the 
neural networks were not tuned but chosen according 
to the phenomenon of the over-parameterization gen-
eralization ability [52]. The hyperparameters were kept 
the same for all training, to avoid overfitting the hyper-
parameters. ReLU activation functions were chosen to 
preserve some linearity but also allow non-linear flex-
ibility [53].

Training and validation

Our two main centenarian clocks were trained in indi-
viduals aged 40 + . We also trained clocks in people 
aged in different groups, e.g., 90 + or 80 + , but found 
that this did not improve the performance. Therefore, 
we focused on presenting results from the analysis of 
40 + and 100 + only.
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For both EN and NN, we have a sample weight of 
10 for the centenarian samples. After training to con-
vergence, we perform random splitting 20-fold cross-
validation for an unbiased validation.

Clock software

The elastic net-based centenarian clock can be found 
in the Supplement. The neural network-based soft-
ware can be downloaded from Github. https://​github.​
com/​victo​rycha​in/​Cente​narian-​Clock.​git

Meta‑analysis

We used the R function metafor for the fixed effect 
meta-analysis models weighted by inverse variance 
[54]. We combine the study results across the follow-
ing cohorts: FHS, WHI BA23, and JHS.

Diet, clinical biomarkers, and lifestyle factors

We performed a robust correlation analysis (biweight 
midcorrelation, bicor [27]) between the epigenetic 
age acceleration measures of three centenarian clocks 
and a total of 59 variables including 27 self-reported 
diet, 9 dietary biomarkers, 17 clinically relevant meas-
urements, and 6 lifestyle factors including hand grip 
strength. The sample size for each variable is up to 6397 
individuals across FHS, WHI BA23, and JHS cohorts. 
The 9 dietary biomarkers are only available in the WHI 
cohort. Blood biomarkers were measured from fasting 
plasma collected at baseline. Food groups and nutri-
ents are inclusive, including all types and all prepara-
tion methods; e.g., folic acid includes synthetic and 
natural, and dairy includes cheese and all types of milk. 
The individual variables of WHI are explained in our 
previous study [26]. For each study cohort, we stratified 
the samples based on ethnic-gender category. The WHI 
samples were stratified by European, African, and His-
panic ancestry groups. Ancestry information was veri-
fied using ancestry informative SNP markers. We con-
ducted robust correlation (bicor) analysis stratified by 
study cohort/ethnicity/sex and meta-analyzed the results 
with fixed effect models weighted by inverse variance. 
The fixed effect models yield a meta-estimate of bicor. 
As a caveat, the bicor analysis did not accommodate the 
intra-pedigree correlation in FHS.

Universal chromatin state analysis

We used a recently published universal Chrom-
HMM chromatin state annotation of the human 
genome [33]. The underlying hidden Markov 
model (HMM) was trained with over 1000 data sets 
of 32 chromatin marks in more than 100 human 
cell and tissue types. This model then produced 
a single chromatin state annotation per genomic 
position that is applicable across cell and tissue 
types, as opposed to producing an annotation that 
is specific to one cell or tissue type. A total of 100 
distinct states were generated and categorized into 
16 major groups according to the parameters of the 
model and external genome annotations [33].

We performed a one-sided hypergeometric 
analysis to study both the enrichment (odds ratios 
[OR] > 1) and depletion (OR < 1) patterns for our 
age-related markers based on the top 1000 CpGs 
with a positive correlation with age and the top 
1000 CpGs with a negative correlation with age. Of 
the 33,495 CpGs used in our EWAS, 33,340 sites 
could be annotated to a unique chromatin state and 
were remained in our analysis. The background in 
our hypergeometric analysis was specified based on 
the 33,340 CpGs.

Polycomb repressive complex

We defined indicator variables for PRC annotations 
based on the binding of at least two members of 
polycomb repressor complex 1 (PRC1 with sub-
groups RING1, RNF2, BMI1) or PRC2 (PRC2 with 
subgroups EED, SUZ12, and EZH2). Of the 33,340 
CpGs, 4.25% sites were located near binding sites 
of PRC1, and 21.38% sites were located near bind-
ing sites of PRC2.

DNA extraction and bisulfite conversion

Extraction of genomic DNA from blood was per-
formed using the AllPrep DNA/RNA/protein kit 
(QIAGEN, Hilden, Germany). Sodium bisulphite 
conversion for Infinium HumanMethylation450 
beadchip was performed using the EZ-DNA methyl-
ation-gold kit and the EZ-96 DNA methylation kit, 
respectively, and genome-wide DNA methylation was 

https://github.com/victorychain/Centenarian-Clock.git
https://github.com/victorychain/Centenarian-Clock.git
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analyzed using the Infinium HumanMethylation450 
beadchip (Illumina, San Diego, CA) following the 
manufacturer’s instructions. Arrays were scanned by 
HiScan (Illumina).

Betterhumans study

James Clement engaged in an extensive, interna-
tional study of centenarians, supercentenarians, and 
their offspring. The DNA samples were provided by 
Betterhumans Inc. a 501(c)(3), tax-exempt scientific 
research organization.

The object of the Betterhumans Supercentenarian 
Research Study is to compare genomic and molecu-
lar data from extremely long-lived individuals with 
“normal” shorter-lived individuals, especially those 
who died having known illnesses, such as cancer, 
cardiovascular diseases, Alzheimer’s, stroke, and 
diabetes,

https://​www.​super​cente​naria​nstudy.​com/

Italian centenarian data

The individuals were recruited in three Italian cent-
ers (Bologna, Milan, and the University of Calabria 
at Rende). This data set (measured on the Illumina 
450  K array) includes 192 subjects: 82 semi-super-
centenarians (33 from Bologna, 29 from Milan, and 
20 from Calabria), 63 offspring of semi-supercen-
tenarians (22 from Bologna, 28 from Milan, and 13 
from Calabria) and 47 control subjects whose parents 
were not centenarians (16 from Bologna, 17 from 
Milan and 14 from Calabria).

CRELES cohorts

We used both data generated from the 450 K array 
and the EPIC array from participants of the “CRE-
LES-Costa Rican study of longevity and healthy 
aging” from the Costa Rican Berkeley CRELES 
cohort. The 450  K array data were applied to 
whole blood and were collected from 95 individu-
als. The EPIC data were applied to whole blood 
samples collected from 508 individuals who are 
participants of the “CRELES-Costa Rican study of 
longevity and healthy aging” [55, 56].

The Framingham Heart Study (FHS)

The FHS cohort [57] is a large-scale longitudinal 
study started in 1948, initially investigating the 
common factors of characteristics that contribute to 
cardiovascular disease (CVD). The study initially 
enrolled participants living in the town of Framing-
ham, Massachusetts, who were free of overt symp-
toms of CVD, heart attack, or stroke at enrollment. 
In 1971, the study started the FHS offspring cohort 
to enroll a second generation of the original partic-
ipants’ adult children and their spouses (n = 5124) 
to conduct similar examinations [58]. Participants 
from the FHS offspring cohort were eligible for our 
study if they attended both the seventh and eighth 
examination cycles and consented to having their 
molecular data used for the study. We used the 
2544 participants from the group of health/medi-
cal/biomedical (IRB, MDS) consent with available 
DNA methylation array data.

Deaths among the FHS participants that occurred 
prior to January 1, 2013, were ascertained using 
multiple strategies, including routine contact with 
participants for health history updates, surveil-
lance at the local hospital and in obituaries of the 
local newspaper, and queries to the national death 
index. Death certificates, hospital and nursing home 
records prior to death, and autopsy reports were 
requested. When cause of death was undetermina-
ble, the next of kin were interviewed. The date and 
cause of death were reviewed by an endpoint panel 
of 3 investigators.

All participants provided written informed consent 
at the time of each examination visit. The study pro-
tocol was approved by the Institutional Review Board 
at Boston University Medical Center (Boston, MA).

DNA methylation

Peripheral blood samples were collected at the 8th 
examination. Genomic DNA was extracted from the 
buffy coat using the Gentra Puregene DNA extrac-
tion kit (Qiagen) and bisulfite converted using the EZ 
DNA methylation kit (Zymo Research Corporation). 
DNA methylation quantification was conducted in 
two laboratory batches using the Illumina Infinium 
HumanMethylation450 array (Illumina). Methylation 

https://www.supercentenarianstudy.com/
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beta values were generated using the bioconductor 
minfi package with Noob background correction.

Women’s Health Initiative (WHI)

The WHI is a national study that enrolled postmeno-
pausal women aged 50–79 years into the clinical tri-
als (CT) or observational study (OS) cohorts between 
1993 and 1998 [59, 60]. We included 2107 WHI par-
ticipants with available phenotype and DNA methyla-
tion array data from “Broad Agency Award 23” (WHI 
BA23). WHI BA23 focuses on identifying miRNA 
and genomic biomarkers of coronary heart disease 
(CHD), integrating the biomarkers into diagnostic 
and prognostic predictors of CHD and other related 
phenotypes, and other objectives can be found in 
https://​www.​whi.​org/​resea​rchers/​data/​WHISt​udies/​
Study​Sites/​BA23/​Pages/​home.​aspx.

Jackson Heart Study (JHS)

The JHS is a large, population-based observational 
study evaluating the etiology of cardiovascular, renal, 
and respiratory diseases among African Americans 
residing in the three counties (Hinds, Madison, and 
Rankin) that make up the Jackson, Mississippi, met-
ropolitan area [61].

The age at enrollment for the unrelated cohort 
was 35–84  years; the family cohort included 
related individuals > 21 years old. Participants pro-
vided extensive medical and social history, had an 
array of physical and biochemical measurements 
and diagnostic procedures, and provided genomic 
DNA during a baseline examination (2000–2004) 
and two follow-up examinations (2005–2008 and 
2009–2012). The annual follow-up interviews and 
cohort surveillance are ongoing. In our analysis, 
we used the visits at baseline from 1747 individu-
als as part of project JHS ancillary study ASN0104, 
available with both phenotype and DNA methyla-
tion array data.

DNA methylation quantification

In brief, bisulfite conversion using the Zymo EZ DNA 
methylation kit (Zymo Research, Irvine, CA, USA) 
as well as subsequent hybridization of the Human-
Methylation450k beadchip (Illumina, San Diego, 

CA) and scanning (iScan, Illumina) was performed 
according to the manufacturers protocols by applying 
standard settings. DNA methylation levels (β values) 
were determined by calculating the ratio of intensi-
ties between methylated (signal A) and un-methylated 
(signal B) sites. Specifically, the β value was calcu-
lated from the intensity of the methylated (M corre-
sponding to signal A) and un-methylated (U corre-
sponding to signal B) sites, as the ratio of fluorescent 
signals β = Max(M,0)/[Max(M,0) + Max(U,0) + 100]. 
Thus, β values range from 0 (completely un-methyl-
ated) to 1 (completely methylated). Peripheral blood 
samples were collected at the baseline. Methylation 
beta values were generated using the bioconductor 
minfi package with Noob background correction [62].
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