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Sodium fluoride (Na F) PET Response Criteria in Solid Tumors (NAFCIST):
a framework for response assessment in bone tumors
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The current Response Evaluation Criteria in Solid Tumors for measuring tumor response in osteosarcoma may be sub-
optimal, as even responsive bone tumors may show limited change in tumor diameters. This limits the use of traditional
imaging assessment tools. Therefore, discerning osteosarcoma response to therapy on magnetic resonance imaging
before surgery is often difficult, and it is typically evaluated after surgery by assessing the amount of necrosis in
resected surgical specimens. To address these challenges, sodium fluoride (Na18F) positron emission tomography/
computed tomography (PET/CT) scans can be utilized to better image bone response to therapy, as, fluoride is
avidly taken up by bone. Na18F Response Criteria in Solid Tumors (NAFCIST) has been developed as a novel method
to evaluate treatment response using Na18F PET/CT. Current evidence supporting NAFCIST comes from a pilot study
that evaluated alpha particle radium-223 in patients with osteosarcoma. In this review, practical guidance for
utilizing NAFCIST in the context of bone tumors is illustrated to aid future studies.
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INTRODUCTION

Osteosarcoma is an aggressive bone tumor with poor clin-
ical outcomes in the relapsed/recurrent setting.1 Although
relatively rare, it is the most frequent malignant type of
bone tumors.2-4 Osteosarcoma commonly occurs at a
bimodal age distribution in the distal femur, proximal tibia,
or proximal humerus.2,3,5,6 Treatment for localized disease
classically includes surgery, pre-operative, and possibly
post-operative chemotherapy. Recurrence, however, occurs
in many patients and dramatically compromises the overall
survival.5 The disseminated disease commonly presents
with lung metastases and in itself confers a feature of poor
prognosis.7,8 Treatment options in the recurrent and met-
astatic settings are limited although many potential thera-
pies are being explored in early-phase clinical trials.5,9,10 In
this concept paper, we elaborate on a novel method that
uses sodium fluoride scans to evaluate treatment response
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and activity of bone-targeted therapies specifically in the
context of alpha particle radiopharmaceuticals in
osteosarcoma.

CHALLENGES IN RADIOLOGICAL DIAGNOSIS

Response assessment has been historically challenging in
osteosarcoma given the nature of the disease in the bone.
For example, responsive tumors may show necrosis but still
a limited change in tumor diameters is observed. This
usually limits the use of traditional imaging assessment
tools e.g. Response Evaluation Criteria in Solid Tumors
(RECIST) that relies on dynamic changes in measure-
ments.11,12 Traditionally, the response to therapy in patients
with osteosarcoma has been evaluated with pathological
analysis following surgical excision, which might not be
feasible in metastatic or recurrent patients with multiple
lesions.13 Functional qualitative imaging including [18F]2-
fluoro-2-deoxy-D-glucose positron emission tomography/
computed tomography (FDGePET/CT), therefore, offers an
opportunity for tracking tumor activity in lieu of a diameter-
based assessment. Incorporating anatomical size changes
and functional activity has the potential to enable better
assessment of response to therapeutic options.14,15 FDGe
PET/CT-based response criteria have been developed for use
in solid tumors, namely PET Response Criteria in Solid tu-
mors (PERCIST).16,17 PERCIST has been suggested in
https://doi.org/10.1016/j.esmoop.2023.101575 1
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Figure 1. Schematic illustration of the role of sodium-18-fluoride (Na18F)-PET imaging in metastatic osteosarcoma. The fluoride ion (18F�) of Na18F is replacing one
hydroxyl group (OH-) in the bone hydroxyapatite forming radioactive fluorapatite which can be imaged with a PET camera. Bone formation is present in soft-tissue
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Figure 2. A 63-year-old male diagnosed with metastatic fibroblastic osteosarcoma in the right pelvis with soft-tissue expansion. Quantitatively, NaF-PET-images
demonstrated an SUV decrease (96.3 / 37.1 / 26.7) after three and six cycles of 223RaCl2, respectively. A cumulative activity of 50.3 MBq of 223Ra was admin-
istered. The upper row shows the left pelvic transaxially PET/CT-fusion image, CT image, PET image, and whole-body maximal intensity projection (MIP) image before
any treatment, and the lower-row corresponding images after six cycles of 223RaCl2.
CT, computed tomography; NaF, sodium fluoride; PET, positron emission tomography; SUV, standardized uptake values.
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different studies to provide a potentially better assessment
of the tumor response status.18-21
Na18F PET/CT AS A POTENTIAL MODALITY FOR
OSTEOSARCOMA

Another analog of FDG-based PET/CT is sodium fluoride
(18F-NaF) PET/CT which uses sodium fluoride (18F-NaF) as
the radioactive material.12,22 Na18F is an old radiopharma-
ceutical that was used in gamma cameraebased scintig-
raphy before the introduction of technetium (Tc)-based
compounds. It can be used for the assessment of bone
metabolism, primarily in the evaluation of malignancy and
metastatic disease of the bony skeleton. Na18F uptake is
both a reflection of blood flow to the bones and of bone
remodeling. A renewed interest in NaF-based PET imaging
has evolved over the past few years given its high bone
specificity.23 The radiotracer is injected intravenously and
once diffused through capillaries feeding the bones where
turnover is highest, the 18F is exchanged for a hydroxyl
metastases of osteosarcoma, and 18F-fluoroapatite in osteoblastic cells will be visu
osteosarcoma because soft-tissue metastases become visible.
PET, positron emission tomography.
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group in the bone mineral hydroxyapatite crystal form
Ca10(PO4)6(OH)2, leading to the formation of the 18F-fluo-
roapatite crystal form Ca10(PO4)6F2 (Figure 1). The same
phenomenon occurs in bone formation in soft tissues. This
means that soft-tissue metastases of osteosarcoma become
fluoride-ion (18Fe) avid and can be detected and evaluated
using NaF PET/CT. Comparative studies have suggested a
better image and higher sensitivity of detection of bony
lesions with NaF PET/CT compared to 99mTc-MDP whole-
body scan, conventional CT and magnetic resonance imag-
ing images, and FDGePET/CT.23
DEVELOPMENT OF NaF PET/CT RESPONSE CRITERIA

The first NaF PET/CT Response Criteria in Solid Tumors
(NAFCIST) were proposed in 2019 to accommodate the
need for a newer response assessment tool in osteosar-
coma.24 The tool was developed as part of a phase I study
of alpha particle therapy (radium-223) in advanced osteo-
sarcoma that included 18 patients.24 In this study, NaF PET/
alized using a PET camera. Thus Na18F-PET can be used for staging metastatic

https://doi.org/10.1016/j.esmoop.2023.101575 3
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Figure 3. A proposal for NAFCIST for future studies.
New lesions or >30% increase in NAFCIST (sum of five lesions) is a progression. For a response >30%, decrease in NAFCIST is required. NAFCIST, Na18F Response
Criteria in Solid Tumors.
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CT identified osteosarcoma lesions in many sites that were
not avid on FDGePET/CT, indicating a potential role for NaF
PET/CT in osteosarcoma’s baseline evaluation of lesions and
response to therapy. Moreover, NaF PET/CT could detect
skeletal metastases of osteosarcoma better than other im-
aging methods.24 Post-treatment pathologic response was
evaluated in a patient whose tumor showed extensive tu-
mor necrosis after two doses. More importantly, the NaF
PET/CT and FDGePET/CT scans depicted the lesions more
accurately than conventional scans. In fact, the two were
often complementary, with NaF PET/CT showing more bony
lesions than other modalities. Therefore, a preliminary
NAFCIST has been developed similar to PERCIST based on
data from patients with osteosarcoma treated in this phase
I trial.12 An example is shown in Figure 2 which
Table 1. NAFCIST criteria

Response category Criteria

Complete metabolic
response

Normalization of all lesions (target and non-
target) to SUV less than the mean skeletal SUV
and equal to the normal surrounding tissue SUV

Partial metabolic
response

>30% decrease in SUV peak

Progressive metabolic
disease

>30% decrease in SUV peak, >75% increase in
total Na 18F uptake, or new lesions

Stable metabolic disease Does not meet other criteria

Adapted from Kairemo et al.12

NAFCIST, Na18F Response Criteria in Solid Tumors; SUV, standardized uptake values.

4 https://doi.org/10.1016/j.esmoop.2023.101575
demonstrates a 63-year-old male patient who had meta-
static fibroblastic osteosarcoma and received six cycles of
223RaCl2. The patient demonstrated a metabolic response
visible on FDGePET/CT. This patient had three target lesions
measurable on bone scintigraphy and more than five indi-
cator lesions visible on NaF PET/CT. Visual inspection of the
bone scintigraphy revealed a reduction in the number and
size of lesions in this patient. Quantitatively, this patient had
a reduction in standardized uptake values (SUV) per NaF
PET/CT (from 96.3 to 37.1 and 26.7) as measured after three
cycles and six cycles of 223RaCl2. It is important to highlight
that the fluoride ion and radium cation do not form a
theragnostic pair similar to that of gallium-68 and lutenium-
177 in another setting.25 However, calcium and radium
could form a pair and therefore the fluoride ion here can act
as a surrogate marker.

NAFCIST CRITERIA

Based on the preliminary data presented in the previous study,
NAFCIST criteria (Figure 3)were proposed for the evaluation of
osteosarcoma using a 30% cut-off level to demonstrate
response or progression which was based on changes in other
parameters including biomarkers (Table 1).12 For example,
NAFCIST correlatedwith changes in bone alkaline phosphatase
level, a tumor marker in osteosarcoma.

Interestingly, the study reported that NAFCIST but not
PERCIST correlates with overall survival (Supplementary
Volume 8 - Issue 4 - 2023
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Table 2. The new NAFCIST criteria versus RECIST and PERCIST in primary
bone tumors

RECIST PERCIST NAFCIST

Characteristics Anatomic
response criteria
for soft-tissue
disease

Functional response
criteria reflecting
tumor glucose
metabolism

Metabolic response
criteria for bone-
forming disease

Advantages Commonly used Response
determination is
possible regardless
of the location

Response
determination is
possible regardless
of the organ

Disadvantages Limited to
‘measurable’ soft-
tissue disease

Limited to FDG avid
disease

Limited to NaF avid
disease

FDG, [18F]2-fluoro-2-deoxy-D-glucose; NaF, sodium fluoride; NAFCIST, Na18F
Response Criteria in Solid Tumors; PERCIST, Positron Emission Tomography Response
Criteria in Solid Tumors.
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Figure S1, available at https://doi.org/10.1016/j.esmoop.
2023.101575). Moreover, the NAFCIST change correlated
inversely with the cumulated activity, indicating that prob-
ably the administrated activity should be higher to obtain a
response. There was no correlation between the adminis-
trated activity and PERCIST changes.

NAFCIST is maximally an SUV peak sum of five lesions. SUV
peak is the average SUV value in 1 cm3 of the most active
lesion. Only two lesions per organ are accepted. A typical
example is two bone lesions, two lung lesions, and one soft-
tissue lesion. During the follow-up, all these lesions may
change, but in our practice so far this has not happened. The
idea is to pick the five most active lesions and remember to
limit the maximum to two lesions per organ.

NAFCIST criteria compare favorably with RECIST and PER-
CIST criteria in primary bone tumors (Table 2). In fact, NAF-
CIST could supplant PET/CT functional response by adding
metabolic response criteria for bone-forming diseases.
Therefore, NAFCIST may represent a more accurate method
of categorizing osteosarcoma than RECIST, which mainly re-
lies on unidimensional measurements of tumor lesions and
the sumofdiameters. At least currently, NAFCIST and PERCIST
should be considered complementary to each other.

LIMITATIONS

There are several limitations to the current use of NAFCIST.
First, data on NAFCIST originate from a single study that
needs to be prospectively validated by a larger cooperative
group study. Prospective studies with the aim of confirming
preliminary data previously presented and comparing
NAFCIST to other methods of assessment may be helpful.
Second, Na18F scans can have a lot of false positives due to
benign diseases which can be substantial in adult patients.
Therefore, they may not be used in staging; but rather they
may be used as baseline and follow up evaluation for
radiopharmaceutical therapy to assess response.

CONCLUSIONS

In summary, Na18F PET could become an essential part of
osteosarcoma management where Na18F PET and 18F-FDGe
PET are complementary. NAFCIST outcomes were consistent
Volume 8 - Issue 4 - 2023
with disease characteristics indicated by alkaline phospha-
tase levels and bone destruction. However, these are
preliminary findings that are hypothesis generating. A large-
scale, prospective analysis through a cooperative group trial
is warranted for the validation of NAFCIST in osteosarcoma.
Herein, we provide a framework for using NAFCIST to
evaluate the activity of bone-targeted therapy for future
studies.
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